A Novel Approach of Investigating Deceptive Activities of Developer for Ranking apps

Authors

  • jali P Department of Computer science, VTU belgaum, India
  • Biradar N Department of Computer science, VTU belgaum, India

Keywords:

Mobile ranking, fraudulent mobile apps

Abstract

Ranking fraud in the mobile App market refers to fraudulent or deceptive activities which have a purpose of bumping up the Apps in the popularity list. Indeed, it becomes more and more frequent for App developers to use shady means, such as inflating their Apps’ sales or posting phony App ratings, to commit ranking fraud. While the importance of preventing ranking fraud has been widely recognized, there is limited understanding and research in this area. To this end, in this paper, we provide a holistic view of ranking fraud and propose a ranking fraud detection system for mobile Apps. Specifically, we first propose to accurately locate the ranking fraud by mining the active periods, namely leading sessions, of mobile Apps. Such leading sessions can be leveraged for detecting the local anomaly instead of global anomaly of App rankings. Furthermore, we investigate three types of evidences, i.e., ranking based evidences, rating based evidences and review based evidences, by modelling Apps’ ranking, rating and review behaviours through statistical hypotheses tests. In addition, we propose an optimization based aggregation method to integrate all the evidences for fraud detection. Finally, we evaluate the proposed system with real-world App data collected from the iOS App Store for a long time period. In the experiments, we validate the effectiveness of the proposed system, and show the scalability of the detection algorithm as well as some regularity of ranking fraud activities.

References

L. Azzopardi, M. Girolami, and K. V. Risjbergen, “Investigating the relationship between language model perplexity and ir precision-recall measures,” in Proc. 26th Int. Conf. Res. Develop. Inform. Retrieval, 2003, pp. 369–370.

D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,” J. Mach. Learn. Res., pp. 993–1022, 2003.

Java The complete Reference.

My sql Reference Books.

Downloads

Published

2025-11-11

How to Cite

[1]
P. jali and N. Biradar, “A Novel Approach of Investigating Deceptive Activities of Developer for Ranking apps”, Int. J. Comp. Sci. Eng., vol. 4, no. 3, pp. 139–141, Nov. 2025.

Issue

Section

Review Article