Implement of Students Result by Using Genetic Algorithm
DOI:
https://doi.org/10.26438/ijcse/v7i12.5156Keywords:
students’ performance, quantitative factors, genetic algorithm, influencing parameter, student’s evaluation resultsAbstract
The artificial intelligence technique such as Genetic algorithm plays a significant role for handling in many fields such as artificial intelligence, engineering, robotic, etc. This is the technique to evaluate the new populations from natural population and provide the best result generation to generation. This is applied in students’ quantitative data analysis to identify the most impact factor in their performance in their curriculum. The results will help the educational institutions to improve the quality of teaching after evaluating the marks achieved by the students’ in academic career. This student analysis model considers the quantitative factors such as compiler, automata, data structure and other departmental marks to find the most impacting factor using genetic algorithm.
References
[1] P ramya, M, Mahesh kumar,”Student Performance Analysis using Educational Data Mining”, International Journal of Computer science and Information Security (IJCSIS), ISSN NO 1947-5500, vol-14, pp:69-76, 2016.
[2] Chew li sa, Emmy Dehlana Hossain, “Student Performance Analysis System (SPAS)”, JANUARY 2015.
[3] Saddam Khan, Sunny Gupta,”A Study of Data Mining Techniques and Genetic Algorithm in education sector”, International Journal of Computer Science and Mobile Computing,ISSN 2320-088X, vol 4, march, 2015, pg 681-683.
[4] Somnath mazi,”genetic algorithm with different crossover for new analysis model of students performance”international journal of advanced research and development, ISSN: 2455-4030, march-2018, volume:3,pp:67-72.
[5] A. Martin, V. Prasanna Venkatesan et al, “To find the most impact financial features for bankruptcy model using genetic algorithm”, International Conference on Advances in Engineering and Technology, (ICAET-2011), May 27-28, 2011.
[6] Ramjeet Singh Yadav, “Modeling Academic Performance Evaluation Using Soft Computing Techniques: A Fuzzy Logic Approach”, International Journal on Computer Science and Engineering (IJCSE), Vol. 3 No. 2 Feb 2011.
[7] O.K Chaudhari, P.G khot, “Soft computing model for academic performance of teachers using fuzzy lo logic”, British journal of applied science and technology, 2(2):213-226, 2012.
[8] V.O. Oladokun, “Predicting Students’ Academic Performance using Artificial Neural Network: A Case Study of an Engineering Course”, The Pacific Journal of Science and Technology, Volume9. Number 1. May-June 2008 (Springer).
[9] Osman Taylan, Bahattin Karagozog, “An adaptive neuro-fuzzy model for prediction of student’s academic performance computers & Industrial Engineering”, 57 (2009) 732-741.
[10] Emmanuel N. Ogor “Student Academic Performance Monitoring and Evaluation Using Data Mining Techniques” published on Fourth Congress of Electronics, Robotics and Automotive Mechanics, 2009
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors contributing to this journal agree to publish their articles under the Creative Commons Attribution 4.0 International License, allowing third parties to share their work (copy, distribute, transmit) and to adapt it, under the condition that the authors are given credit and that in the event of reuse or distribution, the terms of this license are made clear.
