Advancements in AI-Based Compiler Optimization Techniques for Machine Learning Workloads

Authors

DOI:

https://doi.org/10.26438/ijcse/v13i3.7077

Keywords:

AI-based compilers, reinforcement learning, neural architecture search, machine learning, compiler optimization

Abstract

This paper primarily explores the application of AI-driven compiler optimization techniques for machine learning (ML) workloads, with a focus on reinforcement learning and neural architecture search. It examines the performance of traditional compilers compared to AI-optimized compilers leveraging various ML models, including CNNs, RNNs, FNNs, and transformers. The results indicate that AI-driven compilers — particularly those using a hybrid RL + NAS approach—outperforms traditional compilers in energy consumption, memory usage, execution time and hardware utilization. Additionally, the findings suggest that AI-based optimization techniques can streamline ML pipeline development, enhancing efficiency and performance for both resource-constrained environments and large-scale applications.

References

[1] M. Sponner, B. Waschneck, and A. Kumar, “AI-driven performance modeling for AI inference workloads,” Electronics, Vol.11, No.15, pp.2316, 2022. DOI: 10.3390/electronics11152316.

[2] M. K. Sheikh, “A Machine Learning Based Compiler Optimization Technique,” Sukkur IBA Journal of Emerging Technologies, Vol.7, No.1, pp.37-47, 2024.

[3] M. Trofin, Y. Qian, E. Brevdo, Z. Lin, K. Choromanski, and D. Li, "MLGO: A Machine Learning Guided Compiler Optimizations Framework," arXiv preprint, arXiv:2101.04808, 2021.

[4] C. Metz, “Towards Sustainable Artificial Intelligence Systems: Enhanced System Design with Machine Learning-Based Design Techniques,” Ph.D. dissertation, Universität Bremen, Germany, 2024.

[5] A. N. Mazumder, J. Meng, H. A. Rashid, U. Kallakuri, X. Zhang, J. S. Seo, and T. Mohsenin, “A survey on the optimization of neural network accelerators for micro-ai on-device inference,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Vol.11, No.4, pp.532-547, 2021. DOI: 10.1109/JETCAS.2021.3120032.

[6] F. Ponzina, “Hardware-Software Co-Design Methodologies for Edge AI Optimization,” Ph.D. dissertation, EPFL, Switzerland, 2023.

[7] P. Gonzalez-Guerrero, A. Butko, G. Michelogianniakis, and J. Shalf, “AI-Enabled Analysis and Control for Enhancing Data Transition and Movement,” In Position Papers for the ASCR Workshop on Reimagining Codesign, March 2021.

[8] H. Bouzidi, “Efficient Deployment of Deep Neural Networks on Hardware Devices for Edge AI,” Ph.D. dissertation, Université Polytechnique Hauts-de-France, France, 2024.

[9] I. Hidalgo, F. Fenández-de Vega, J. Ceberio, O. Garnica, J. M. Velasco, J. C. Cortés, R. Villanueva, and J. Díaz, “Sustainable Artificial Intelligence Systems: An Energy Efficiency Approach,” [Preprint - Not Accepted for Final Publication], Authorea Preprints, 2023.

[10] K.K. Balasubramanian, M. Di Salvo, W. Rocchia, S. Decherchi, and M. Crepaldi, “Designing RISC-V Instruction Set Extensions for Artificial Neural Networks: An LLVM Compiler-Driven Perspective,” IEEE Access, 2024. DOI: 10.1109/ACCESS.2024.3290706.

[11] Ashouri, A. H., Manzoor, M. A., Vu, D. M., Zhang, R., Wang, Z., Zhang, A., ... & Gao, Y., “ACPO: AI-Enabled Compiler-Driven Program Optimization,” arXiv preprint arXiv:2312.09982, 2023.

[12] J. A. H. Klein, “Exploring High-Performance and Energy-Efficient Architectures for Edge AI-Enabled Applications,” Ph.D. dissertation, EPFL, Switzerland, 2024.

[13] S. S. Gill, M. Golec, J. Hu, M. Xu, J. Du, H. Wu, G. K. Walia, S. S. Murugesan, B. Ali, M. Kumar, and K. Ye, “Edge AI: A taxonomy, systematic review and future directions,” Cluster Computing, Vol.28, No.1, pp.1-53, 2025. DOI: 10.1007/s10586-024-04057-9.

[14] E. Kakoulli, “Latest Innovations in Intelligent Network-on-Chip Architectures: A Systematic Review,” 2024 17th IEEE/ACM International Workshop on Network on Chip Architectures (NoCArc), IEEE, Nov., pp.1-6, 2024.

[15] Wang, H., Tang, Z., Zhang, C., Zhao, J., Cummins, C., Leather, H., & Wang, Z., “Automating Reinforcement Learning Architecture Design for Code Optimization,” in Proceedings of the 31st ACM SIGPLAN International Conference on Compiler Construction, Mar., pp.129-143, 2022.

[16] Mammadli, R., Jannesari, A., & Wolf, F., “Static Neural Compiler Optimization via Deep Reinforcement Learning,” in 2020 IEEE/ACM 6th Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC) and Workshop on Hierarchical Parallelism for Exascale Computing (HiPar), Nov., pp.1-11, 2020.

[17] D. Alsadie, “A comprehensive review of AI techniques for resource management in fog computing: Trends, challenges and future directions,” IEEE Access, 2024. DOI: 10.1109/ACCESS.2024.3284783.

[18] V. Shankar, “Edge AI: A Comprehensive Survey of Technologies, Applications, and Challenges,” 2024 1st International Conference on Advanced Computing and Emerging Technologies (ACET), IEEE, Ghaziabad, India, pp.1-6, 2024. DOI: 10.1109/ACET61898.2024.10730112.

[19] Ashouri, A. H., Manzoor, M. A., Vu, D. M., Zhang, R., Wang, Z., Zhang, A., ... & Gao, Y., “ACPO: AI-Enabled Compiler-Driven Program Optimization,” arXiv preprint arXiv:2312.09982, 2023.

[20] V. Shankar, M. M. Deshpande, N. Chaitra, and S. Aditi, “Automatic detection of acute lymphoblastic leukemia using image processing,” 2016 IEEE International Conference on Advances in Computer Applications (ICACA), IEEE, Coimbatore, India, pp.186-189, 2016. DOI: 10.1109/ICACA.2016.7887948.

[21] Zhu, S., Yu, T., Xu, T., Chen, H., Dustdar, S., Gigan, S., ... & Pan, Y., “Intelligent Computing: The Latest Advances, Challenges, and Future,” Intelligent Computing, Vol.2, pp.0006, 2023.

Downloads

Published

2025-03-31
CITATION
DOI: 10.26438/ijcse/v13i3.7077
Published: 2025-03-31

How to Cite

[1]
V. Shankar, “Advancements in AI-Based Compiler Optimization Techniques for Machine Learning Workloads”, Int. J. Comp. Sci. Eng., vol. 13, no. 3, pp. 70–77, Mar. 2025.

Issue

Section

Review Article