A New Uncertainty Measure and Application to Image Processing

Authors

  • T.K Sheeja Associate Professor of Mathematics, T. M. Jacob Memorial Government College, Manimalakunnu, Kerala, India
  • Sunny Kuriakose A Professor and Dean, Federal Institute of Science and Technology, Angamaly, Kerala, India

DOI:

https://doi.org/10.26438/ijcse/v9i4.2024

Keywords:

Divergence, Image segmentation, Fuzzy Set, Rough set, Uncertainty measure

Abstract

Uncertainty measures form essential constituents of information theory as they provide a sufficient mechanism for determining the quantity of useful information contained in a system. In the present work, the concept of divergence between fuzzy sets are made use of in defining new measures of uncertainty in the framework of fuzzy rough sets. Further, these measures are utilized in developing an algorithm for binary image segmentation of a grey level image. Moreover, the proposed algorithm is implemented using different test images with the help of an OCTAVE program.

References

[1] C. E. Shannon, “A Mathematical Theory of Communication", The Bell System Technical Journal Vol.27, pp. 379 – 423, 1948.

[2] Z. Pawlak, "Rough Sets", International Journal of Computer and Information Sciences, Vol.11, Issue.5, pp.341 - 356, 1982.

[3] L. A. Zadeh, "Fuzzy Sets", Information and Control, Vol.8, Issue.3, pp.338-353, 1965.

[4] A. Nakamura, “Fuzzy Rough Sets”, Note on Multiple-Valued Logic in Japan, Vol.3, pp.1-8, 1988.

[5] A. Radzikowska and E. E. Kerre, "A comparative Study of Fuzzy Rough Sets", Fuzzy Sets and Systems, Vol.126, pp.137-155, 2002.

[6] T. Beaubouef, F. E.. Petry and G. Arora, “Information Theoretic Measures of Uncertainty for Rough Sets and Rough Relational Databases”, Information Sciences, Vol.109, pp.185 – 195, 1998.

[7] J. Y. Liang, K. S. Chin, C. Y. Dang and R. C. M. Yam, "A New Method for Measuring Uncertainty and Fuzziness in Rough Set Theory", International Journal of General Systems Vol.31(4) pp.331- 342, 2002.

[8] J. Y. Liang, J. H. Wang and Y. H. Qian, “A New Measure of Uncertainty Based on Knowledge Granulation for Rough Sets”, Information Sciences Vol.179, pp. 458 – 470, 2009.

[9] J.S. Mi, X. M. Li, H. Y. Zhao and T. Feng, "Information Theoretic Measures of Uncertainty in Generalized Fuzzy Rough Sets", in A. An et al. (eds) RSFDGrC 2007, LNAI 4482, Springer pp. 63 – 70, 2007.

[10] N. Dhanachandra and Y. J. Chanu, "A survey on image segmentation methods using clustering techniques", European Journal of Engineering Research and Science, Vol.2(1), pp 15-20, 2017.

[11] E. E. Kerre and M. Nachtegael(Eds), “Fuzzy Techniques in Image Processing”, Sringer-Verlag, Heidelberg, 2000.

[12] A. E. Hassanien, A. Abraham, J. F. Peters, G. Schaefer, and C. Henry, "Rough sets and near sets in medical imaging: a review", IEEE Transactions on Information Technology in Biomedicine, Vol.13(6), pp.955-968, 2009.

[13] S. S. Begum, D. R. Lakshmi, “A Review of Current Methods in Medical Image Segmentation”, International Journal of Computer Sciences and Engineering, Vol.7(12), pp.67–73, 2019.

[14] N. Senthilkumaran and S. Vaithegi, "Image Segmentation by Using Thresholding Techniques for Medical Images", Computer Science and Engineering: An International Journal, Vol.6(1), pp.1-13, 2016.

[15] J. C. Bezdek, “Pattern recognition with fuzzy objective function algorithms” Plenum Press, New York, 2013.

[16] N. Otsu, "A Threshold Selection Algorithm from Gray Level Histograms", IEEE Transactions on Systems, Man and Cybernetics, Vol.9, pp.62 – 66, 1979.

[17] J. Klir and B. Yuan, “Fuzzy Sets and Fuzzy Logic”, Prentice Hall, New Jersey, 1995.

[18] S. Montes, I. Couso, P. Gil and C. Bertoluzza, "Divergence Measure Between Fuzzy Sets", International Journal of Approximate Reasoning, Vol.30, pp.91-105, 2002.

[19] Z. Pawlak, "Rough Sets - Theoretical Aspect of Reasoning About Data", Kluwer Academic Publishers, The Netherlands, 1991.

[20] D. Dubois and H. Prade, "Rough Fuzzy Sets and Fuzzy Rough Sets", International Journal of General Systems, Vol.17, pp.191-209, 1990.

[21] J. S. Mi, Y. Leung and T. Feng, "Generalized Fuzzy Rough Sets Determined by aTriangular Norm", Information Sciences, Vol.178, pp.3203-3213, 2008.

[22] S. Vluymans, L. D`eer, Y. Saeys and C. Cornelis, "Applications of Fuzzy Rough Set Theory in Machine Learning: a Survey", Fundamenta Informaticae, pp.1-34, 2015.

[23] W. Z. Wu, J. S. Mi and W. X. Zhang, "Generalized Fuzzy Rough Sets", Information Sciences, Vol.151, pp.263-282, 2003.

[24] Sheeja T. K. and A. Sunny Kuriakose, "Divergence Based Generalized Fuzzy Rough Sets", International Journal of Computer Sciences and Engineering, Vol.6(6), pp.809 – 815, 2018.

[25] M. J. Wierman, “Measuring Uncertainty in Rough Set Theory”, International Journal of General System Vol.28, pp.283 – 297, 1999.

[26] J. Y. Zhao, Z. Zhang, C. Han, and Z. Zhou, "Complement information entropy for uncertainty measure in fuzzy rough set and its applications", Soft Computing, Vol.19 (7), pp.1997– 2010, 2015.

Downloads

Published

2021-04-30
CITATION
DOI: 10.26438/ijcse/v9i4.2024
Published: 2021-04-30

How to Cite

[1]
T. Sheeja and S. Kuriakose A, “A New Uncertainty Measure and Application to Image Processing”, Int. J. Comp. Sci. Eng., vol. 9, no. 4, pp. 20–24, Apr. 2021.

Issue

Section

Research Article