A New Recursive Two Dimensional Pattern On Kolakoski Sequence

Authors

  • Rani NJ Department of Mathematics, Queen Mary’s College, Chennai
  • Vigneswaran L Department of Mathematics, Saveetha Engineering College, Chennai
  • Dare VR Department of Mathematics, Madras Christian College, Chennai

Keywords:

2D word, Block, Fibonacci,, Kolakoski, Palindrome

Abstract

An efficient infinite Kolakoski sequence that’s not even in any particular order can be generated in two dimensional [2D] array of size (3x3) over a binary alphabet is introduced and it is denoted by -blocks, – positions, - rd column). In this paper first 66 blocks with 100 positions from Kolakoski sequence is considered and 2D arrays are analyzed. Also combinatorial properties of the basis arrays are studied

References

[1] Valerie Berthe, Srecko Brlek, Philippe Choquette, “Smooth words over arbitrary alphabets:Theoretical Computer Science, volume 341, issues 1-3, (2005) 293-310

[2] Bernd Sing, “Kolakoski-(2m,2n) are Limit-Periodic Model Sets: J. Math.Phys. 44, No 2, 899-912 (2003).

[3] Genevieve Paquin, Srecko Brlek, “Extremal Generalized Smooth Words: Computer Science [cs] / Discrete Mathematics [cs.DM], 2009.

[4] Bernd Sing, “More Kolakoski Sequences: [Math.CO], 2010.

[5] S. Brlek, A. Ladouceur, A note on differentiable palindromes, Theoret. Comput. Sci., 302 (2003) 167–178

[6] S. Brlek, S. Dulucq, A. Ladouceur, L. Vuillon, Combinatorial properties of smooth infinite words, MFCS’04, Prague, Czech Republic (2004) submitted.

[7] F. M. Dekking, What is the long range order in the Kolakoski sequence, in R. V. Moody (ed.), The mathematics of Long-Range Aperiodic Order, Kluwer Academic Publishers (1997) 115–125.

[8] S. Brlek, S. Dulucq, A. Ladouceur, L. Vuillon, Combinatorial properties of smooth infinite words, Theoret. Comput. Sci. 352 (2006) 306–317.

[9] V. Chv´atal, Notes on the Kolakoski Sequence, DIMACS Techn. Rep. 93-84, February 1994. [8] F. M. Dekking, On the structure of self generating sequences, S´eminaire de th´eorie des nombres de Bordeaux, expos´e 31 (1980–1981).

[10] R. Steacey, Structure in the Kolakoski sequence, Bull. EATCS 59: 173–182 (1996).

[11] B. Steinsky, A recursive formula for the Kolakoski sequence A000002, J. Integer Sequences 9(3): 06.3.7 (2006), 5pp. The corresponding numerical study of the letter frequencies is available at http://www.lirmm.fr/ monteil/blog/BruteForceKolakoski.

[12] E.J. Kupin and E.S. Rowland, Bounds on the frequency of 1 in the Kolakoski word, preprint. http://arxiv.org/abs/0809.2776/.

Downloads

Published

2025-11-25

How to Cite

[1]
N. J. Rani, L. Vigneswaran, and V. Dare, “A New Recursive Two Dimensional Pattern On Kolakoski Sequence”, Int. J. Comp. Sci. Eng., vol. 7, no. 5, pp. 203–207, Nov. 2025.