A simple method for automatic brain extraction from T1-W Magnetic Resonance Images (MRI) of human head scans
Keywords:
Magnetic Resonance Image (MRI),, Brain Extraction, , Mean filter, Morphological Operations and Connected Component analysisAbstract
A simple method to extract brain portion from T1-Weighted Magnetic Resonance Image (MRI) of human head scans is proposed in this article. The proposed method employs mean filter and morphological operations. This method is experimented on five volumes of normal T1-W MRI of human head scans taken from the Internet Brain Segmentation Repository (IBSR). The chosen method gives comparable results with the existing popular methods such as Brain Extraction Tool (BET) and Brain Surface Extractor (BSE). The performance of the proposed method is evaluated using Jaccard (J) similarity index and Dice coefficient (D) and a corresponding mean value of 0.936 and 0.965 is obtained
References
T. Kalaiselvi, “Brain Portion Extraction and Brain Abnormality Detection from Magnetic Resonance Imaging of Human Head Scans”, Pallavi publications India pvt.ltd, Erode. ISBN 978-93-80406-76-3, 2011.
A. Klein, S.S. Ghosh, B. Avants, B.T.T. Yeo, B. Fischl, B. Ardekani, J.C. Gee, J.J. Mann, R. V. Parsey, “Evaluation of volume-based and surface-based brain image registration methods”, NeuroImage, Vol. 51, pp. 214-220, 2010.
R. de Boer, H. A. Vrooman, M. A. Ikram, M. W. Vernooij, M. M. B Breteler, A. V. D. Lugt, W. J. Niessen, “Accuracy and reproducibility study of automatic MRI brain tissue segmentation methods”, NeuroImage, Vol. 51, pp. 1047–1056, 2010.
M. Wels, Y. Zheng, M. Huber, J. Hornegger, D. Comaniciu, “A discriminative model-constrained EM approach to 3D MRI brain tissue classification and intensity non-uniformity correction”, Physics in Medicine and Biology, Vol. 56, pp. 3269–3300, 2011.
L. Zhao, U. Ruotsalainen, J. Hirvonen, J. Hietala, J. Tohka, “Automatic cerebral and cerebellar hemisphere segmentation in 3D MRI: Adaptive disconnection algorithm”, Medical Image Analysis, Vol. 14, pp. 360–372, 2010.
J.G. Park, C Lee, “Skull stripping based on region growing for magnetic resonance brain images”, NeuroImage, vol. 47, pp. 1394-1407, 2009.
A. Dale, B. Fischl, M. Sereno, “Cortical surface-based analysis I: segmentation and surface reconstruction”, NeuroImage, Vol.9, pp. 179–194, 1999.
M. S. Atkins, B.T. Mackiewich, “Fully automatic segmentation of the brain in MRI”, IEEE Transactions on Medical Imaging, Vol. 17, pp. 98-107, 1998.
S. M. Smith, “Fast robust automated brain extraction”, Human Brain Mapping, Vol. 17, pp. 143-155, 2002.
D. W. Shattuck, S. R. Sandor-Leahy, K. A. Schaper, D. A. Rottenberg, R. M. Leahy, “Magnetic resonance image tissue classification using a partial volume model”, NeuroImage, Vol. 13, pp. 856-876, 2001.
D. Marr, E. Hildreth, “Theory of edge detection”, Proceedings of the royal society of London, Series B, Biological Science, Vol. 207, pp. 187-217, 1980.
F. Se´gonne, A. M. Dale, E. Busa, M. Glessner, D. Salat, H. K. Hahn, B. Fischl, “A hybrid approach to the skull stripping problem in MRI”, NeuroImage, Vol.22, pp.1060-1075, 2004.
B. D. Ward, “Intracranial segmentation”, Technical report, Medical College of Wisconsin, online at http://afni-dev.nimh.nih.gov/pub/dist/doc/manual/3dIntracranial.ps
C. Fennema-Notestine, I. B. Ozyurt, C. P. Clark, S. Morris, A. Bischoff-Grethe, M. W. Bondi, T. L. Jernigan, B. Fischl, F. Segonne, D. W. Shattuck, R. M. Leahy, D. E. Rex, A. W.Toga, K.H. Zou, G. G. Brown, “Quantitative evaluation of automated skull-stripping methods applied to contemporary and legacy images: Effects of diagnosis, bias correction, and slice location”, Human Brain Mapping, Vol.27, pp.99-113, 2006.
A. H. Zhuang, D. J. Valentino, A. W. Toga, “Skull-stripping magnetic resonance brain images using a model-based level set”, NeuroImage, Vol. 32, pp. 79-92, 2006.
A. Mikheev, G. Nevsky, S. Govindan, R. Grossman, H. Rusinek, “Fully automatic segmentation of the brain from T1-weighted MRI using bridge burner algorithm”, Journal of Magnetic Resonance Imaging, Vol. 27, pp. 1235-1241, 2008.
F. J. Galdames, F. Jaillet, C. A. Perez, “An accurate skull stripping method based on simplex meshes and histogram analysis for magnetic resonance images” , Journal of Neuroscience Methods, Vol. 206, pp. 103-119, 2012.
K. Somasundaram, T. Kalaiselvi, “Automatic brain extraction methods for T1 magnetic resonance images using region labeling and morphological operations”, Computers in Biology and Medicine, vol. 41, pp. 716-725, 2011.
K. Somasundaram, T. Kalaiselvi, “Fully automatic brain extraction algorithm for axial T2-weighted magnetic resonance images”, Computers in Biology and Medicine, Vol. 40, pp. 811–822, 2010.
E. Roura, A. Oliver, M. Cabezas, J. C. Vilanova, A. Rovira, L. Ramió-Torrentà, X. Lladó, “MARGA: Multispectral adaptive region growing algorithm for brain extraction on axial MRI”, Computer Methods and Programs in Biomedicine, Vol. 113, pp. 655-673, 2014.
S. Ray, P. Maij, “A simple skull stripping algorithm for brain MRI”, International Conference on Advances in Pattern Recognition, pp. 1-6, 2015.
J. Doshi, G. Erus, Y. Ou, B. Gaonkar, C. Davatzikos, “Multi-atlas skull-stripping”, Academic Radiology, Vol. 20, pp. 1566–1576, 2013.
P. Kalavathi, V. B. Surya Prasath, “Methods on Skull Stripping of MRI Head Scan Images—a Review”, Journal of Digital Imaging, Vol. 29, pp. 365–379, 2016.
https://www.nitrc.org/projects/ibsr
T.W.Ridler, S. Calvard, “Picture thresholding using an iterative selection method”, IEEE Transactions on Systems Man and Cybernetics, Vol.8, pp. 630-632, 1978.
M. Sonka, V. Hlavac, R. Boyle, “Image processing analysis and machine vision”, 3rd edition, Thomson Learning Singapore, ISBN 13 978-0-495-24428-7, 2008.
P. Jaccard, “The distribution of flora in the alpine zone” , New Phytol, Vol. 11, pp.37-50, 1912.
L. Dice, “Measures of the amount of ecologic association between species”, Ecology, Vol. 26, pp. 297-302, 1945.
C. John, W. Kevin, L.Emma, C. Chao, P. Barbara, J. Declan, “ Statistical morphological skull stripping of adult and infant MRI data”, Computers in Biology and Medicine, Vol.37, pp. 342–357, .2007.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors contributing to this journal agree to publish their articles under the Creative Commons Attribution 4.0 International License, allowing third parties to share their work (copy, distribute, transmit) and to adapt it, under the condition that the authors are given credit and that in the event of reuse or distribution, the terms of this license are made clear.
