Data Retrieval from Data Warehouse Using Materialized Query Database

Authors

  • Chakraborty S Gujarat University, Ahmedabad, Gujarat, India
  • Doshi J GLS University, Ahmedabad, Gujarat, India

DOI:

https://doi.org/10.26438/ijcse/v6i1.280284

Keywords:

Data warehouse, Data mart, materialized query, faster execution

Abstract

Decision making in an organization requires aggregate as well as non- aggregate results, computed from data stored in data warehouse. Performance in case of result extraction from a data warehouse is an important factor. Probability that the same query is fired more often is high. This results into frequent analysis of warehouse data for fetching same results or results with incremental updates. This paper discusses an approach for storing such frequent queries along with their result, timestamp, frequency and threshold in a separate database. Past results are fetched from database and only incremental updates are done through data marts. This approach may improve performance removing or reducing execution time.

References

[1] T. Morzy, R. Wrembel, ―On Querying Versions of Multiversion

Data Warehouse,‖ DOLAP’04, November 12–13, 2004,

Washington, DC, USA. Copyright 2004 ACM 1-58113-977-

2/04/001.

[2] S. Vanichayobon. ―Indexing Techniques for Data Warehouses’

Queries‖. [Online] Available:

http://www.cs.ou.edu/~database/documents/vg99.pdf [Accessed

September 15, 2016]

[3] A. Gupta, I. S. Mumick, V.S.Subrahmanian, ―Maintaining Views

Incrementally,‖ Proceedings of the 1993 ACM SIGMOD

International Conference on Management of Data, Pages 157-166.

[4] D. Quass, ―Maintenance Expressions for Views with Aggregation,‖

Views'96, June 1996, [Online]. Available:

http://ilpubs.stanford.edu:8090/183/1/1996-54.pdf.

[5] Y. Zhuge, H. G.Molina, J. Hammer, J. Widom, ―View

Maintenance in a Warehousing Environment,‖ Proceedings of the

1995 ACM SIGMOD International Conference on Management of

Data, Pages 316-327.

[6] A. Gupta, H.V. Jagadish, I. S. Mumick, ―Data Integration using

Self-Maintainable Views,‖ Advances in Database Technology —

EDBT '96, Volume 1057 of the series Lecture Notes in Computer

Science, pp 140-144.

[7] K. A. Ross, D. Srivastava, S.Sudarshan, ―Materialized View

Maintenance and Integrity Constraint Checking: Trading Space

for Time,‖ Proceedings of the 1996 ACM SIGMOD International

Conference on Management of Data, Pages 447-458.

[8] J. Zhou, P. A. Larson, H. G. Elmongui, ―Lazy Maintenance of

Materialized Views,‖ VLDB '07 Proceedings of the 33rd

International Conference on Very large Databases, Pages 231-242.

[9] D. Srivastava, S. Dar, H. V . Jagadish, A. Y.Levy, ―Answering

Queries with Aggregation Using Views,‖ Proceedings of the 22nd

VLDB Conference, Mumbai (Bombay), India, 1996.

[10] D. Agrawal, A. El Abbadi, A. Singh, T. Yurek, ―Efficient View

Maintenance at Data Warehouses,‖ SIGMOD ’97 AZ,USA @

1997 ACM 0-89791 -911 -419710005.

[11] J. Goldstein, P. A. Larson, ―Optimizing Queries Using

Materialized Views: A Practical, Scalable Solution,‖ Proceedings

of the 2001 ACM SIGMOD International Conference on

Management of Data, Pages 331-342, ISBN:1-58113-332-4.

[12] P. Vassiliadis, ―Modeling Multidimensional Databases, Cubes and

Cube Operations,‖ Proceedings of Tenth International Conference

on Scientific and Statistical Database Management, 1998.

[13] P. Vassiliadis, T. Sellis, ―A Survey of Logical Models

for OLAP databases,‖ ACM SIGMOD Record, Volume 28 Issue

4, Dec.1999, Pages 64 – 69.

[14] V. Harinarayan, A. Rajaraman, J. D. Ullman, ―Implementing Data

Cubes Efficiently,‖ Proceedings of the 1996 ACM SIGMOD

International Conference on Management of data, Pages 205-216.

[15] A. Datta, H. Thomas, ―The Cube Data Model: A Conceptual

Model and Algebra for On-Line Analytical Processing in Data

Warehouses,‖ Decision Support Systems, Volume 27, Issue 3,

December 1999, Pages 289-301.

[16] R. Agrawal, A. Gupta, S. Sarawagi, ―Modeling Multidimensional

Databases,‖ Proceedings 13th International Conference on Data

Engineering, pages232-243.

[17] P. Deshpande, S. Agarwal, J. Naughton, R. Ramakrishnan,

―Computation of Multidimensional Aggregates,‖ Proceedings

22nd VLDB Conference.

[18] S. J. Chun, C. W. Chung, J. H. Lee, S. L. Lee, ―Dynamic Update

Cube for Range-Sum Queries,‖ Proceedings of the 27th VLDB

Conference.

[19] J. Shanmugasundaram, U. Fayyad, P. S. Bradley, ―Compressed

Data Cubes for OLAP Aggregate Query Approximation on

Continuous Dimensions,‖ Proceedings of the fifth ACM SIGKDD

international conference on Knowledge discovery and data mining,

Pages 223-232.

[20] C. Li , X. S. Wang, ―A Data Model for Supporting On-Line

Analytical Processing,‖ Proceedings of the fifth international

conference on Information and knowledge management, Pages 81-

88.

[21] G. K. Gupta, Introduction to Data Mining with Case Studies, PHI

Learning Private Limited, 2014.

[22] S. Chakraborty, J. Doshi, ―Faster Query Result Retrieval

Approaches from a Data Warehouse: A Survey,‖ ―International

Journal of Current Engineering and Scientific Research

(IJCESR)‖, Volume 4, Issue 6, 2017, ISSN (PRINT): 2393-8374,

(ONLINE): 2394-0697, Pages 7-14.

[23] F. Sultan, A. Aziz, ―Ideal Strategy to Improve Data warehouse

Performance,‖ International Journal on Computer Science and

Engineering Vol. 02, No. 02, 2010, 409-415.

Downloads

Published

2025-11-12
CITATION
DOI: 10.26438/ijcse/v6i1.280284
Published: 2025-11-12

How to Cite

[1]
S. Chakraborty and J. Doshi, “Data Retrieval from Data Warehouse Using Materialized Query Database”, Int. J. Comp. Sci. Eng., vol. 6, no. 1, pp. 280–284, Nov. 2025.

Issue

Section

Research Article