Enhance the Performance of Video Compression Based on Fractal H-V Partition Technique with Particle Swarm Optimization
DOI:
https://doi.org/10.26438/ijcse/v6i1.3135Keywords:
Video Compression, Fractal Transform, H-V partitioning, MATLAB, MSEAbstract
The searching of coefficient and blocks in video compression is important phase. For the searching of blocks and coefficient used zig-zag and some other random searching technique for symmetry of blocks. In this paper used particle swarm optimization for the searching of block coefficient in domain and range of fractal transform function. The particle swarm optimization enhances the searching capacity of encoder for the process of compression. The particle swarm optimization decides two dual functions one for the mapping of symmetry and other is mapping of video encoded block. For the process of fractal transform encoding used H-V partition technique. H-V partition technique mapped the data in terms of range and domain for the processing of video compression. The H-V partition process creates multiple rectangle blocks the processing of video. The process of video compression methods simulated in MATLAB software and used some standard parameters for the evaluation of compression results.
References
Rakhi Ashok Aswani and Prof.S.D.Kamble “Fractal Video Compression using Block Matching Motion Estimation - A Study”, IOSR, 2014, Pp 82-90.
Ehsan Lotfi “A Novel Hybrid System Based on Fractal Coding for Soccer Retrieval from Video Database”, Majlesi Journal of Electrical Engineering, 2012, Pp 40-47.
Nevart A. Minas and Faten H. Mohammed Sediq “Compression of an AVI Video File Using Fractal System”, IJCSI, 2013, Pp 182-189.
R. E. Chaudhari and S. B. Dhok “Review of Fractal Transform based Image and Video Compression”, International Journal of Computer Applications, 2012, Pp 23-31.
Vitor de Lima, William Robson Schwartz and HelioPedrini “3D Searchless Fractal Video Encoding at Low Bit Rates”, J Math Imaging Vis, 2013, Pp 239–250.
Shiping Zhu, Liyun Li, Juqiang Chen and KamelBelloulata “An Efficient Fractal Video Sequences Codec with Multiviews”, Hindawi Publishing Corporation, 2013, Pp 1-9.
Ravindra E. Chaudhari and Sanjay B. Dhok “Fractal Video Coding Using Fast Normalized Covariance Based Similarity Measure”, Hindawi Publishing Corporation, 2016, Pp 1-12.
R. E. Chaudhari and S. B. Dhok “Fast Quadtree Based Normalized Cross Correlation Method for Fractal Video Compression using FFT”, JEET, 2016, Pp 709-718.
MambayeNdiaye, Lisa Terranova, Romain Mallet, Guillaume Mabilleau and Daniel Chappard “Three-dimensional arrangement of b-tricalcium phosphate granules evaluated by microcomputed tomography and fractal analysis”, Acta Biomaterialia, 2015, Pp 404–411.
Shailesh D. Kamble, Nileshsingh V. Thakur and Preeti R. Bajaj “A Review on Block Matching Motion Estimation and Automata Theory based Approaches for Fractal Coding”, IJIMAI, 2016, Pp 91-104.
Shiping Zhu, Liyun Li, Juqiang Chen and KamelBelloulata “An automatic region-based video sequence codec based on fractal compression”, Int. J. Electron. Commun. 2014, Pp 1-12.
KamelBelloulata, Amina Belalia and Shiping Zhu “Object-based stereo video compression using fractals and shape-adaptive DCT”, Int. J. Electron. Commun., 2014, Pp 687–697.
G.Sandhiya, M.Rajkumar and S.G.Vishnu Prasad “Hardware Implementation of 2D - DWT for Video Compression using Bit Parallel Architecture”, IJSETR, 2015, Pp 1211-1215.
Dr. Fadhil Salman Abed and Iraq-Diyala-Jalawla “A Proposed Encoding and Hiding Text in an Image by using Fractal Image Compression”, IJCSE, 2013, Pp 1-13.
Ryan Rey M. Daga and John Paul T. Yusiong “Image Compression Using Harmony Search Algorithm”, IJCSI, 2012, Pp 16-23.
Tanudeep Kaur and Anupam Garg “Review of various Fractal Detection Techniques in X-Ray Images”, IJEDR, 2016, Pp 553-559.
Chun-Ho Wu, W.H. Ip, C. Y. Chan and Kai Leung Yung “A flexible H.264/AVC compressed video watermarking scheme using particle swarm optimization based dither modulation”, International Journal of Electronics and Communications, 2011, Pp 29-36.
Jean-Francois Connolly, Eric Granger and Robert Sabourin “Evolution of heterogeneous ensembles through dynamic particle swarm optimization for video-based face recognition”, Pattern Recognition, 2012, Pp 2460-2477.
J.F. Connolly, E. Granger and R. Sabourin “Incremental adaptation of fuzzy artmap neural networks for video-based face classification”, IEEE, 2009, Pp 1-8.
D.O. Gorodnichy “Video-based framework for face recognition in video”, Conference on Computer and Robot Vision, 2005, Pp 325–344.
Ran Ren, Madan mohan Manokar, Yaogang Shi and Baoyu Zheng “A Fast Block Matching Algorithm for Video Motion Estimation Based on Particle Swarm Optimization and Motion Prejudgment”, IEEE, 2006, Pp 1-5.
Yuanyuan Sun, Rudan Xu, Lina Chen and Xiaopeng Hu “Image compression and encryption scheme using fractal dictionary and Julia set”, IET Image Processing, 2014, Pp 173-183.
22] D.Sophin Seeli and Dr.M.K.Jeyakumar “A Study on Fractal Image Compression using Soft Computing Techniques ”, IJCSI, 2012, Pp 1-11.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors contributing to this journal agree to publish their articles under the Creative Commons Attribution 4.0 International License, allowing third parties to share their work (copy, distribute, transmit) and to adapt it, under the condition that the authors are given credit and that in the event of reuse or distribution, the terms of this license are made clear.
