Data Mining Approach for Feature Reduction Using Fuzzy Association Rule
DOI:
https://doi.org/10.26438/ijcse/v5i11.4449Keywords:
Data Mining, Prediction, Feature Reduction, Fuzzy, Association Rule and Rule GenerationAbstract
Data mining is an upgrading technology for knowledge extraction in many fields like medical, educational, industrial, etc. Extracting an important data from large database is most vital factor. Data extraction processwere done through many techniques like feature extraction, prediction, classification, etc. for our research analyses prediction of data mining helps a lot for accessing useful information. In this paper we focused on road traffic dataset and we used fuzzy data extraction for membership function by using FCM. For the knowledge extraction process here we implemented the correlation and coefficient algorithm for road traffic dataset and attribute reduction were done by using Genetic algorithm and finally with the help of A-Priori algorithm we generate the rule for the mining the associate object for feature reduction.
References
V. Palanisamy and A. Kumarkombaiya, "Designing a Knowledge Discovery of Clustering Techniques in Pharmaceutical Compounds", International Journal of Computer Sciences and Engineering, Vol.3, Issue.4, pp.58-63, 2015.
Raghupathi W. “Data mining in healthcare. Healthcare Informatics: Improving Efficiency through Technology”, Analytics, and Management. 2016 Apr 27:353-72..
Biafore, S. (1999). Predictive solutions bring more power to decision makers. Health Management Technology, Vol.20(10), pp 12-14.
Lu, J., Xu, B. & Jiang, J. (2003). A prediction method of fuzzy association rules. InProceedings of IEEE international conference on information reuse and integration(pp. 98–103), Nanjing, China.
Siji PD, Valarmathi ML, Mohana S. A new soft computing technique for efficient rule mining. Journal of Theoretical and Applied Information Technology. 2016 Jan 1;83(3):434.
Lei, Z. &Ren-hou, L. (2007). An algorithm for mining fuzzy association rules basedon immune principles. In Proceedings of the 7th IEEE international conference onbioinformatics and bioengineering, Boston, MA.
Mishra N, Silakari DS. Predictive Analytics: A Survey, Trends, Applications, Oppurtunities & Challenges. International Journal of Computer Science and Information Technologies. 2012;3(3):4434-8.
SunitaSoni and O.P.Vyas Using Associative Classifiers for Predictive Analysis in Health Care Data Mining ―International Journal of Computer Applications (0975 – 8887) Volume 4 – No.5, July 2010.
Kumari Nirmala, R.M.Singh and Shilpi Gupta, "Analysis for Heart Related Issues using comprehensive Approaches: A Review", International Journal of Computer Sciences and Engineering, Vol.3, Issue.3, pp.184-187, 2015.
Nithya NS, Duraiswamy K. Gain ratio based fuzzy weighted association rule mining classifier for medical diagnostic interface. Sadhana. 2014 Feb 1;39(1):39-52.
Kuok, C. M., Fu, A., & Wong, M. H. (1998). Mining fuzzy association rules indatabases. ACM SIGMOD Record, 27(1),pp- 41–46.
M. Patel, A. Hasan , S.Kumar, "A Survey: Preventing Discovering Association Rules for Large Data Base", International Journal of Scientific Research in Computer Science and Engineering, Vol.1, Issue.2, pp.30-32, 2013.
Kaya, M. &Alhajj, R. (2003). Facilitating fuzzy association rules mining by usingmulti-objective genetic algorithms for automated clustering. In Proceedings ofthe third IEEE international conference on data mining (ICDM’03).
Ho, G. T. S., Ip, W. H., Wu, C. H., &Tse, Y. K. (2012). Using a fuzzy association rulemining approach to identify the financial data association. Expert Systems withApplications, 39(10), 9054–9063. doi: 10.1016/j.eswa.2012.02.047.
Sowan B, Dahal K, Hossain MA, Zhang L, Spencer L. Fuzzy association rule mining approaches for enhancing prediction performance. Expert Systems with Applications. 2013 Dec 1;40(17):6928-37.
Hong, T. P., Kuo, C. S., & Wang, S. L. (2004). A fuzzy AprioriTid mining algorithmwith reduced computational time. Applied Soft Computing Journal, 5(1), 1–10.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors contributing to this journal agree to publish their articles under the Creative Commons Attribution 4.0 International License, allowing third parties to share their work (copy, distribute, transmit) and to adapt it, under the condition that the authors are given credit and that in the event of reuse or distribution, the terms of this license are made clear.
