Groundwater Pollution Source Identification Using Genetic Algorithm Based Optimization Model
DOI:
https://doi.org/10.26438/ijcse/v5i10.6572Keywords:
Groundwater Pollution, Genetic Algorithm, Inverse Problem, Optimization, Pollution source identificationAbstract
Groundwater is an important natural resource available on the earth. Contamination of groundwater resources has become a major problem today due to some artificial and natural activities. Identification of groundwater pollution sources is a major step in groundwater pollution remediation. A pollution source is said to be known only when its source characteristics (location, strength and duration of pollution activity) are known. Identification of unknown groundwater pollution source is an inverse problem, which is generally ill posed due to existence of local minima. This problem becomes more complex for real field conditions, when the lag time (defined as the time difference between the first reading at the observation well and the time when source becomes active) is not known. Genetic Algorithm (GA) based simulation optimization methodology has been used in this study for complete identification of unknown groundwater pollution source. GA is non-gradient based search technique and it is capable of finding the global optimum. A contaminant transport model, which can simulate the concentrations at the observation well location, is combined with the GA based optimization simulation model. The performance of the developed methodology is evaluated for one and two dimensional cases with error free and erroneous concentration measurement data. Performance results show the capability and practical applicability of proposed methodology. Main advantage of the proposed methodology is that complete identification of unknown groundwater pollution source is possible with the help of only one observation well when the lag time is also not known.
References
V. Batu, M.T. van Genuchten, “First and third type boundary conditions in two dimensional solute transport modeling”, Water Resourc. Res., Vol. 26, Issue.2, pp. 339-350, 1990.
K. Deb, “Optimization for engineering design: Algorithms and examples”, Prentice-Hall Publisher, Delhi, 1995.
R.A. Deninger, “System analysis of water supply systems”, Water Resourc. Bull., Vol. 6, Issue.4, pp. 573-579, 1970.
S.M. Gorelick, “A review of distributed parameter groundwater modeling methods”, Water Resour. Res., Vol. 19, Issue.2, pp. 305-319, 1983.
T. Maddock III, “Algebraic technological function from a simulation model”, Water Resourc. Res., Vol. 8, Issue.1, pp. 129-134, 1972.
P.S. Mahar, B. Datta, “Optimal monitoring network and ground-water pollution source identification”, J. Water Resour. Plng. And Mgmt., ASCE, Vol. 123, Issue.4, pp. 199-207, 1997.
P.S. Mahar, B. Datta, “Identification of pollution sources in transient groundwater systems”, Water Resour. Mgmt., Vol. 14, Issue.3, pp. 209-227, 2000.
P.S. Mahar, B. Datta, “Optimal Identification of groundwater pollution sources and parameter estimation”, J. Water Resour. Plng. And Mgmt., ASCE, Vol. 127, Issue.1, pp. 20-29, 2001.
A. Ogata, R.B. Banks, "A solution of the differential equation of longitudinal dispersion in porous media", U.S. Geol. Surv., Prof. Pap. No. 411-A, 1961.
A. Peck, S.M. Gorelick, G. de Marsily, V. Kovalevsky, “Consequences of spatial variability in aquifer properties and data limitation for groundwater modeling practice”, J. Water Resour. Plng. And Mgmt., ASCE, Vol. 116, Issue.5, pp. 676-692, 1988.
R.M. Singh, B. Datta, A. Jain, “Identification of unknown groundwater pollution sources using artificial neural networks”, J. Water Resour. Plng. & Mgmt, ASCE, Vol. 130, Issue.6, pp. 506-514, 2004.
R.M. Singh, B. Datta, “Identification of groundwater pollution sources using GA-based linked simulation optimization model”, Journal of Hydrologic Engineering, ASCE, Vol. 11, Issue.2, pp. 101-109, 2006.
Y. K. Tung, C. E. Kolterman, “Some computational experiments using embedding technique for groundwater management”, Groundwater, Vol. 23, Issue.4, pp. 455-464, 1985.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors contributing to this journal agree to publish their articles under the Creative Commons Attribution 4.0 International License, allowing third parties to share their work (copy, distribute, transmit) and to adapt it, under the condition that the authors are given credit and that in the event of reuse or distribution, the terms of this license are made clear.
