Classification Techniques in WEKA: A Review
DOI:
https://doi.org/10.26438/ijcse/v5i8.4952Keywords:
Classification, Weka, Data MiningAbstract
Due to the Internet Revolution there has been a data explosion in recent decades. This is due to the easy availability of Internet at any place and time. Therefore it has become very important to extract relevant information from these explosion of data. Data Mining is extraction or mining of useful information from large amount of data. This can be done manually, semi-automatic or automatically. With an enormous of data stored in databases and data warehouse there is need for development of powerful tools to get meaningful data. Data Mining has many tasks such as Classification, Clustering, etc but Classification has gained much importance. Classification is to classify the data into groups based on its characteristics. WEKA is widely used data mining tool. Here a comparison of various algorithms available in WEKA for classification tasks is done. The dataset considered is iris and various parameters considered for evaluation include accuracy, kappa statistics, mean absolute error and root mean square error. 10 mostly used algorithms are compared. Accuracy is given in terms of CCI (Correctly Classified Instances) and ICI (Incorrectly Classified Instances).
References
E. Hullermeir, “Fuzzy sets in machine learning and data mining”, Elsevier, pp.1493-1505, 2008.
G. Peter Zhang, “Neural Network for Data Mining”, Springer, pp.419-444, 2010.
J. Vashishtha, D. Kumar, S. Ratnoo, “Revisiting Interestingness Measures for Knowledge Discovery in Databases ”, IEEE, pp.72-78, 2012.
K. Lal, N.C. Mahanti, “Role of soft computing as a tool in data mining”, IJCSIT, Vol.2, Issue.1, pp.526-537, 2011.
L. Gagnani, H. Chhinkaniwala, “Soft Computing as a Tool in Data Mining:A Review”, In the Proceedings of the 2015 International Conference on Emerging Trends in Scientific Research (ICETSR 2015), Wadhwan, INDIA, pp.148-155, 2015.
M.F. Otham, T.M. Yau, “Comparison of Different Classification Techniques using WEKA for Breast Cancer”, In the Proceedings of 2007 IFMBE, pp.520-523, 2007.
Marie Fernandes , "Data Mining: A Comparative Study of its Various Techniques and its Process", International Journal of Scientific Research in Computer Science and Engineering, Vol.5, Issue.1, pp.19-23, 2017.
N. Bhargava, S. Dayma, A. Kuar and P. Singh, “An approach for classification using simple CART algorithm in WEKA”, In Proceedings of 2017 ISCO, Coimbatore, INDIA, pp.212-216, 2017.
P. Shabanzadeh and R. Yusof, “An Efficient Optimization method for solving Unsupervised data classification problems”, Computational and Mathematical Methods in Medicine, Hindawi, 9 pages, 2015.
R. Agrawal, T.L Mielinski, A. Swami, “Database Mining:A Performance Perspective”, IEEE Transactions on Knowledge and Data Engineering, Vol. 12, pp.914-925, 1993.
S. Radha Priya and M. Devapriya, "Survey on Attribute Oriented Induction Using Data Mining Techniques", International Journal of Computer Sciences and Engineering, Vol.4, Issue.5, pp.125-129, 2016.
AR. PonPeriasamy, E. Thenmozhi, “A Brief Survey of Data Mining Techniques Applied to Agricultural Data”, International Journal of Computer Sciences and Engineering (IJCSE), Vol. 5, Issue. 4, pp.129-132, 2017.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors contributing to this journal agree to publish their articles under the Creative Commons Attribution 4.0 International License, allowing third parties to share their work (copy, distribute, transmit) and to adapt it, under the condition that the authors are given credit and that in the event of reuse or distribution, the terms of this license are made clear.
