Spatial Domain Edge Detection of Image in Rainy Weather
DOI:
https://doi.org/10.26438/ijcse/v5i7.3238Keywords:
Gradient and LoG, Peak signal-to-noise ratio, Intensity level, Edge detectionAbstract
Edges are the set of curved line segments where brightness level of image changes sharply. It is one of the most important information of an image which can helps to detect object boundary, its relative position within target area and many other useful information. In edge detection process, edges are retrieved from an image by spotting high intensity variations of the pixels. Edge detection of an image minimizes the amount of processed data effectively and discards information that is less important, keeping the important structural properties of an image. This paper presents a different approach to apply Gradient and LoG operator to get more continuous edges than the conventional one using MATLAB. Their results are compared using peak signal to noise ratio (PSNR). Two images in rainy weather are taken by my camera for case study. It can be used in many applications such as in object tracking, in data compression, in image analysis and medical imaging.
References
. G.T.Shrivakshan & Dr. C. Chandrasekhar, “A comparison of various edge detection techniques used in image processing” IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No. 1, pp. 269-276, September 2012.
. Mohamed A. El-Sayed, “A new algorithm based Entropic threshold for edge detection in images” IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No. 1, pp. 71-78, September 2011.
. Kumar & Sukhwinder Singh, “Edge detection and denoising medical images using Morphology” International Journal of Engineering Sciences & Emerging Technologies, Vol. 2, Issue 2, pp. 66-72, June 2012.
. Rashmi Dubey, Rajendra Prasad Singh, Dr. Sarika Jain & Dr. Rakesh Singh Jadon “Quantum methodology for edge detection: A compelling approach to enhance edge detection in Digital image processing” In the proceeding of the 2014 5th International Conference- Confluence The Next Generation Information Technology Summit, pp. 631-636, 2014.
. Sasmita Mishra, “Edge detection of images: A novel approach” International Journal of Advanced Research in Computer Science and Software Engineering 5(3), Vol. 5, Issue 3, pp. 1213-1215, March 2015.
. Swetha.M & Jyoshna.C, “Boundary detection in medical images using edge field vector based on Law’s texture and Canny method” International Journal of Engineering Trends and Technology (IJETT) Vol. 4, Issue 5, pp. 1912-1917, May 2013.
. Ballado, A.H.Jr., Dela Cruz, J.C., Avendaño, G. O., Echano, N. M., Ella, J. E., Medina, M.E.M., Paquiz,B.K.C.“Philippine currency paper bill counterfeit detection through image processing using Canny edge technology” 8th IEEE International Conference Humanoid, Nanotechnology, Information Technology Communication and Control, Environment and Management (HNICEM) The Institute of Electrical and Electronics Engineers Inc. (IEEE) – Philippine Section, Philippines, December 2015.
. Bo Lia, Aleksandar Jevticb, Ulrik Söderströma, Shafiq Ur Réhmana, Haibo Li “Fast edge detection by center of mass” Proceedings of the 1st IEEE/IIAE International Conference on Intelligent Systems and Image Processing pp. 103-110, Japan, 2013.
. Y. Ramadevi, T. Sridevi, B. Poornima, B. Kalyani “Segmentation and object recognition using edge detection techniques” International Journal of Computer Science & Information Technology (IJCSIT), Vol. 2, No. 6, pp. 153-161, December 2010.
. Sunanda Gupta, Charu Gupta & S.K.Chakarvarty “Image edge detection: A review” International journal of advance research in computer science and technology (IJARCET) Vol. 2, Issue 7, pp. 2246-2251, July 2013.
. Veena Dohare, Prof. M.P. Parsai, “A review of speed performance evaluation of various edge detection methods of images”, Indian journal of computer science and engineering, Vol.8, No. 2, pp: 128-138, Apr-May 2017.
. K. Rajalakshmi, K. Nirmala, “Heart disease analysis using support vector machine and Sobel edge detection” International Journal of Computer sciences and engineering, Vol. 5, Issue 4, pp. 5-13, Apr 2017.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors contributing to this journal agree to publish their articles under the Creative Commons Attribution 4.0 International License, allowing third parties to share their work (copy, distribute, transmit) and to adapt it, under the condition that the authors are given credit and that in the event of reuse or distribution, the terms of this license are made clear.
