Cloud Based Big Data Processing Approaches
Keywords:
Big data, Cloud, Data processing in cloud, Big data processing, Big Data processing approachesAbstract
Nowadays Big data processing in cloud has become a challenging task. This paper describes the basics of cloud computing and current big-data processing approaches in cloud such as batch-based, stream-based, graph-based, DAG-based, interactive-based, visual-based and summarizes the strengths and weaknesses of these approaches in order to help the future big data research scholars to select the appropriate processing technique.
References
B. D. Martino, R. Aversa, G. Cretella, et al., “Big data (lost) in the cloud,” International Journal of Big Data Intelligence, vol. 1, no. 1, pp. 3–17, 2014. doi:10.1504/IJBDI.2014.063840.
A. A. Chandio, F. Zhang, and T.D. Memon, “Study on LBS for characterization and analysis of big data benchmarks,” Mehran University Research Journal of Engineering and Technology, vol. 33, no. 4, pp. 432–440, Oct. 2014.
GigaSpaces. (2013). Big Data Survey [Online]. Available: http://www.gigaspaces.com
Q. Li, T. Zhang, and Y. Yu, “Using cloud computing to process intensive floating car data for urban traffic surveillance,” International Journal of Geographical Information Science, vol. 25, no. 8, pp. 1303–1322, Aug. 2011. doi: 10.1080/13658816.2011.577746.
Z. Li, C. Chen, and K. Wang, “Cloud computing for agent-based urban transportation systems,” IEEE Intelligent Systems, vol. 26, no. 1, pp. 73–79, 2011. doi: 10.1109/MIS.2011.10.
S. Seo, E. J. Yoon, J. Kim, et al., “Hama: an efficient matrix computation with the mapreduce framework,” in IEEE Second International Conference on Cloud Computing Technology and Science, Indianapolis, USA, 2010, pp. 721–726. doi:10.1109/CloudCom.2010.17.
G. Malewicz, M. H. Austern, A. J. C Bik, et al., “Pregel: a system for large-scale graph processing,” in ACM SIGMOD International Conference on Management of Data, Indianapolis, USA, 2010, pp. 135–146. doi: 10.1145/1807167.1807184.
M. Isard, M. Budiu, Y. Yu, et al., “Dryad: distributed data-parallel programs from sequential building blocks,” in EuroSys'07, Lisboa, Portugal, 2007.
Apache. (2013). Apache Mahout [Online]. Available: http://mahout.apache.org/
Pentaho. (2013). Pentaho Big Data Analytics [Online]. Available: http://www.pentaho.com/product/big-data-analytics.
Skytree. (2013). Skytree The Machine Learning Company [Online]. Available:http://www.skytree.net/
Karmasphere. (2012). FICO Big Data Analyzer [Online] Available:http://www.karmasphere.com/
Datameer. (2013). Datameer [Online]. Available: http://www.datameer.com/
Cloudera. (2013). Cloudera [Online]. Available: http://www.cloudera.com/
Apache. (2012). Apache Storm Project [Online]. Available: http://www.stormproject.net
L. Neumeyer, B. Robbins, A. Nair, et al., “S4: distributed stream computing platform,” in IEEE International Conference on Data Mining Workshops, Sydney, Australia, 2010, pp. 170–177. doi: 10.1109/ICDMW.2010.172.
SQLstrean. (2012). SQLstream s-Server [Online]. Available:http://www.sqlstream.com/blaze/s-server/
Apache. (2011). Apache Giraph [Online]. Available: http://giraph.apache.org/
Tableau. (2013). Tableau [Online]. Available: http://www.tableausoftware.com/
Talend. (2009). Talend Open Studio [Online]. Available: https://www.talend.com/
Aftab A. Chandio, Nikos Tziritas, Cheng-Zhong Xu, “Big-Data Processing Techniques and Their Challenges in Transport Domain”, DOI: 10.3969/j.issn.1673-5188.2015.01.007
Poornima Sharma,Varun Garg, Prof. Randeep Kaur, Prof. Satendra Sonare, “Big Data in Cloud Environment”, International Journal of Computer Sciences and Engineering, Volume-01, Issue-03, Page No (15-17), Nov -2013, E-ISSN:2347-2693.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors contributing to this journal agree to publish their articles under the Creative Commons Attribution 4.0 International License, allowing third parties to share their work (copy, distribute, transmit) and to adapt it, under the condition that the authors are given credit and that in the event of reuse or distribution, the terms of this license are made clear.
