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Abstract— OLAP queries perform analytical processing on enterprise warehouse data. These queries are implemented using aggregate as well as non-aggregate functions. Result extraction using OLAP queries involves traversal through huge number of   warehouse records. For repeated queries, processing time can be saved by storing queries along with its result and other parameters like timestamp, frequency, threshold in relational database MQDB. With periodic data warehouse refresh, incremental results for the frequent queries are processed using data marts and results are combined with existing results. This paper depicts the methodology to derive results based on different aggregate functions giving the effect of incremental data. Some aggregate functions may require other measures to be stored for compiling results.
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I.  Introduction 
For decision making in an enterprise, management performs analytical processing on large amount of warehouse data. Data analysis is done by OLAP (Online Analytical Processing) queries using various aggregate functions such as average/ mean, sum, count, minimum, maximum, variance, standard deviation.  Generating results using data warehouse is relatively time consuming as traversal through huge number of records is done. For frequent OLAP queries, query execution time can be reduced by storing  queries along with its results and  metadata information such as timestamp, frequency, threshold etc. [1][2][3].  When same query is fired next time, it fetches results from MQDB in case of no incremental updates [2].  This results into significant reduction in query result retrieval time.  In case of incremental updates, only incremental records from data warehouse are processed and existing results are combined with incremental results [3].  Authors have suggested using data marts [4] to store incremental data and process query incremental updates.
When query involves aggregate functions, it requires some processing to compute final result using existing and incremental results. The method of compiling aggregate results varies with the nature of function. Some functions need additional measures to be used in computing combined results. This paper depicts the process of deriving combined results using existing and incremental results for queries involving aggregate functions.
The paper is organized as follows: Section II deals with related literature.  Suggested methodology for deriving results is explained in Section III while implementation of the approach is illustrated with examples in section IV. Section V concludes the research work. 

II. Related LITERATURE 

Dimitri Theodoratos and Timos Sellis [5] state that high query performance and low view maintenance cost are in conflict with each other. High query performance can be obtained by storing in the data warehouse the results of all the queries of interest. Here, maintenance cost of materialized queries might be high. Authors suggested that by materializing appropriately selected set of views in the data warehouse, the total query processing cost and the view maintenance cost can be kept at an acceptable level. The authors discuss as how to  select such set of views where the solution is a negotiation between fully materializing all queries of interest  and keeping replicas of all base data needed for answering the queries on the other hand. They  formulated the problem by determining  set of views  for a given set of queries of interest against the data warehouse such that all queries can be answered using this set of view and the operational cost is minimal. The problem is modelled using a state space search algorithm after representing the views using multiquery graphs and with assumption that there are no space restrictions in data warehouse.

Author P.Karthik et. al [6]  discuss ways of tuning an SQL query  so that  the time consumed by the query during runtime is decreased. The optimizer predicts the cost of using alternative access method used for resolving a particular query using statistics on tables and indexes and finds the best query plan in terms of I/O cost. The authors highlighted certain rules for query tuning used in their project such as rewriting the query using UNION instead of OR, replacing relational operators using BETWEEN, using formulas without attributes, avoiding join if not necessary, avoiding DISTINCT keyword, same nested query and temporary relations if not necessary and breaking a long query into parts. Authors implemented the rules assuming non-parallel or non-distributed database environment where database is not geographically separated. 

Authors Patrick O'Neil and Dallan Quass [7] observed that OLAP queries with aggregates and grouping can be evaluated using indexing and clustering. They introduced a third index called Group set indexes using Bit-Sliced indexing  and Projection indexing. 

Ziyu Lin et. al [8] discuss  about the query contention and scalability issue which deploys real time data warehouse solutions. The contention between SELECT queries and multiple inserts causes limitations to the scalability of the data warehouse. The authors deal with this issue using multi-level cache and depicted architecture called “dynamic multi-level caches”. For any query arriving the system, it is redirected to the corresponding cache for data access depending on its requirements.  Though query load is  distributed  across multi-level cache instead of blocking one cache it has to be  updated with different length cycles between real time and 24 hours.
Surajit Chaudhuri [9] quoted that the two key components of query evaluation component are query optimizer and query execution engine. He states that execution of query optimizer is critical since throughput for execution plans may vary. To solve query optimization search problem, a search space, cost estimation technique and an enumeration algorithm for searching through execution space must be provided. He discusses the set of algebraic transformations to preserve the equivalence in an optimizer namely: commuting between operators, reduction of multi-block queries to single-block, using semi-join  techniques for optimizing multi-block queries. He discussed about the statistics and cost estimation for each plan in search space by using statistical summaries of data but restricted the  consideration for memory resource. Also, this optimizer technology is not discussed for Object oriented systems and database systems using multimedia and web context for fuzzy queries and decision support systems.

Prasan Roy et. al.  [10] highlighted that many times there are lot of common sub expressions in  complex queries.  Authors addressed this problem of optimizing queries with common subexpressions referred as multi-query optimization which is based on AND-OR DAG query representation. Greedy strategy picks the subexpression iteratively giving maximum benefit  i.e. reduction in cost if the subexpression is materialized and reused. Their algorithm is restricted for only single query with intra-query common subexpressions. They have not considered multi query optimization of  nested queries as well as parameterized queries having different parameter values. 

Ashish Gupta et. al [11] introduce generalized projections (GPs), an extension for eliminating duplicate projections. The approach extends algorithms for SQL queries using distinct projections to derive algorithms for queries using aggregations like sum, min, max, avg and count. They addressed a problem in data warehousing as how to answer an aggregate query using materialized aggregate views on base tables.  Authors derived a transformation rule by uniting with previous proposed transformation rules. The new rules includes coalescing of multiple aggregate computations into single computations, using arithmetic inequality selection conditions introducing and eliminating aggregate computations and pushing down aggregate computations of a join. In this approach authors did not consider correlated subqueries. Also they have considered aggregates where the aggregate value can be computed from aggregates over subsets. Example: average is calculated in terms of sum and count. 

Sara Cohen et. al [12] commented that evaluating  a view and then rewriting them will yield the same result as evaluating the original query. Their proposed approach is based on syntactic characterizations of the equivalence of disjunctive aggregate queries. For a specific operator, several types of queries using views as candidates for rewritings have been introduced.  Then the candidate is unfolded by replacing each occurrence of a view predicates along with its definition hence, obtaining a regular aggregate query. The candidate will have more complex operator than the specified operator. Authors considered unnested queries or views with union, or using operators like min, max, count and sum.  Their approach is limited to unnested queries and views are with union, and those employing operators like min, max, count and sum.

Jonathan Goldstein and Per-Ake Larson [13] commented that materialized views involving aggregate functions can improve query processing time. They   presented a fast and scalable algorithm limited to only SPJG views to determine if a part or all of a query can be computed from the materialized views. A transformation based optimizer generates all possible rewritings of a query expression, then estimating their costs, and chooses the one with the lowest cost. Rewritten query expressions are generated by applying local transformation rules on subexpressions of the query. By applying a rule  substitute expression is produced equivalent to original expression. One such transformation rule is view matching i.e. computing a subexpression from materialized views. 
III.  suggested methodology
Executed OLAP queries are stored in relational database MQDB (Materialized Query Database) along with other parameters like results, timestamp, frequency, threshold and number of records [1][2] [3].
For an equivalent query, incremental updates, if required, are processed using data marts.  Existing results are combined with incremental results to generate updated results. Result file and query metadata is updated.   

OLAP queries might implement aggregate functions. The behaviour of aggregate functions while compiling existing and incremental results varies with aggregate functions. Also, to regenerate aggregate measure using existing results and incremental results, one may require storing other measures as per need. 

The methods using which aggregate results can be computed are shown in Table 1.

Table 1 Methods for computing aggregate results
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IV. implementation
To understand the method of deriving aggregate results using incremental results, we consider an example of an organization providing education facilities all over India. Data for the example considered here is collected from http://censusindia.gov.in. 

Consider the following instances of OLAP query with reference  to the collected data.

Query 1:  Display  total number of graduate females for each state.

select dw_states.st_name, sum(dw_zones.graduate_f)

from dw_zones, dw_states

where dw_zones.st_code = dw_states.st_code

group by dw_zones.st_code

Query 2: List  average  number  of  males  and  females  pursuing  technical  diploma  course  for  different  age groups.

select dw_age.age_value , avg (dw_zones.f_diploma), avg (dw_zones.m_diploma) from dw_zones, dw_age

where dw_zones.age_id = dw_age.age_id

group by age_id

Query 3: Display the town and  the state  to which it belongs having minimum number of literate males and females.

select dw_states.st_name , min(dw_zones.literate_m), min(dw_zones.literate_f)

from dw_zones,  dw_states

where dw_zones.st_code = dw_states.st_code

group by dw_zones.st_code

Query 4: Find  maximum  number  of  illiterate  and  below primary level males and females for each state.
select dw_states.st_name,  max (dw_zones.m_illiterate), max (dw_zones.f_illiterate),  

max (dw_zone.m_belprimary), max (dw_zones.f_belprimary)

from dw_zones, dw_states

where dw_zones.st_code= dw_states.st_code

group by dw_zones.st_code;

Query 5: Count the number of towns considered for analysis for each state
select dw_states.st_name, count(dw_town.town_name) 

from dw_town, dw_states

where dwt_town.st_code=dw_states.st_code

group by dw_town.st_code

Query 6:  Find the deviation in number of females pursuing primary education for each state
select dw_states.st_name, stddev(dw_zones.primary_f)

from dw_zones, dw_states

where dw_zones.st_code = dw_states.st_code

group by dw_zones.st_code  

Query 7: Find the variance in number of below primary education for males in each town.
select dw_town.town_name, var(dw_zones.belprimary_m)

from dw_zones, dw_town

where dw_zones.town_code=dw_town.town_code

group by dw_zones.town_code
A.  Initialization
This phase generates identifiers for the tables, fields and aggregate functions. It is executed during application load time. Identifiers for tables and fields are application/ domain specific. Generation of identifiers are depicted in detail in [1] [2].

For the application discussed here, the identifiers defined are as follows:

i. Table identifiers (table_name, table_id): (dw_states, 01), (dw_town, 02), (dw_age, 03), (dw_zones, 04)

ii. Field identifiers For illustration we depict field identifier generation for table dw_states.

(field_name, field_id): (st_code, 01), (st_name, 02), (entry_date, 03)

iii. Function identifiers (func_name,  func_id): (sum, 01), (avg, 02), (min, 03), (max, 04), (count, 05), (stddev, 06), (var, 07), (group by, 08)
B. Storing queries 
Using the assigned identifiers as discussed in Initialization, the queries are stored in “Stored_query” table of MQDB as depicted in Table 2. Corresponding metadata information is stored in “Materialized_query” table of MQDB shown in Table 3. 

Table 2  “Stored_query” table of MQDB [1][2][3]
	sq_id
	query_id
	Table_id
	Field_id
	Func_id

	sq1
	q1
	04
	22
	01

	sq2
	q1
	01
	02
	00

	sq3
	q1
	04
	02
	08

	sq4
	q2
	03
	02
	00

	sq5
	q2
	04
	20
	02

	sq6
	q2
	04
	19
	02

	sq7
	q2
	04
	04
	08

	sq8
	q3
	04
	07
	03

	sq9
	q3
	04
	08
	03

	sq10
	q3
	01
	02
	00

	sq11
	q3
	04
	02
	08

	sq12
	q4
	04
	05
	04

	sq13
	q4
	04
	06
	04

	sq14
	q4
	04
	09
	04

	sq15
	q4
	04
	10
	04

	sq16
	q4
	01
	02
	00

	sq17
	q4
	04
	02
	08

	sq18
	q5
	02
	03
	05

	sq19
	q5
	01
	02
	00

	sq20
	q5
	02
	02
	08

	sq21
	q6
	04
	12
	06

	sq22
	q6
	01
	02
	00

	sq23
	q6
	04
	02
	08

	sq24
	q7
	04
	09
	07

	sq25
	q7
	02
	03
	00

	sq26
	q7
	04
	03
	08


Table 3  “Materialized_query” table of MQDB [1][2]
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C. Processing equivalent  queries with aggregate functions 

When a query is fired, it is first searched in “Stored_query” table of MQDB, for its equivalent query.  Process to determine equivalence between two queries is illustrated by the authors in [1][2][3].  For processing   incremental updates of the query, data mart [4] is used.  Existing results are combined with incremental results to generate updated results. Methods for   combining    existing results with incremental results for queries involving aggregate functions varies with the function as described in Table 1. 

We illustrate deriving aggregate results using existing and incremental results for Query 2 and Query 7.
Example 1: Compiling Average value for Query 2
Average value stored as existing result for Males and Females pursuing diploma belonging to age_id = ‘g1’  is 664.42 and 681.40 respectively. 
Incremental average value calculated using data mart for the same criteria  is 993.93 and 1112.83 respectively. 

Hence combined average calculated using method discussed in Table 1  is shown in Table 4.
Table 4 Combined average derived for Query 2

	Gender
	n1
	x̄1
	n2
	x̄2
	Combined average

	Males
	722
	664.42
	43
	993.93
	682.94

	Females
	722
	681.40
	43
	1112.83
	705.65


Here, we need to stored n1 for each record in result file for calculating combined average value. Result file for the query with additional attribute will be as shown in Table 5.
Table 5 Updated result file for Query 2 with additional attribute (n)
	Gender
	Average number pursuing diploma
	Number of records (n)

	Males
	682.94
	765

	Females
	705.65
	765


Where, 

Number of records (n) = total count of records considered for calculating combined average value (n1+ n2)

Example 2: Compiling Variance for Query 7
Variance calculated 38065.39 for  town name ‘Jaipur’  considering 30 entries is stored as existing result. Incremental variance value calculated considering 20 new entries for the same town from  data mart is 14242.25. Hence, deriving combined variance  is shown in Table 6.  

Table 6  Combined variance for Query 7
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Hence, for deriving combined results for aggregate functions, majorly for average, standard deviation and variance; additional measures are required to be stored. Count of records considered for calculating average value and average value for calculating combined average in case of variance or standard deviation needs to be stored in result file. In this case, query result file with additional attributes is shown in Table 7.
Table 7  Updated result file for Query 7 with additional attribute (n, x̄1) 
	Town name
	Variance for below primary male
	Number of records (n)
	Average value  (x̄1)

	Jaipur
	29419.24
	50
	279.436


Where, 

Number of records (n) = total count of records considered for calculating average value (n1+ n2)

Average value (x̄1) = Combined average calculated (x̄c) 

(x̄1 is updated with new combined average every time combined variance or combined standard deviation is calculated)
V. Conclusion 
Storing queries and then compiling existing and incremental results, eliminates the need to traverse through huge number of records in data warehouse. This significantly reduces query execution time for frequent OLAP queries. For deriving combined results related to aggregate functions especially in case of calculating average, standard deviation and variance, storing additional measures like count and average value in result file is required
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