
 © 2014, IJCSE All Rights Reserved 199

 International Journal of Computer Science and EngineeringInternational Journal of Computer Science and EngineeringInternational Journal of Computer Science and EngineeringInternational Journal of Computer Science and Engineering Open Access
Research Paper Volume-2, Issue-3 E-ISSN: 2347-2693

Generation of Testcases from UML Sequence Diagram and Detecting

Deadlocks using Loop Detection Algorithm

Amitashree Mallick
1*

, Namita Panda
2

and Arup Abhinna Acharya
3

1*
School of Computer Engineering, KIIT University, India, amita29dec@gmail.com

2
 School of Computer Engineering, KIIT University, India,npanda@kiit.ac.in

3
School of Computer Engineering, KIIT University, India, aacharya@kiit.ac.in

www.ijcseonline.org
Received: 11 March 2014 Revised: 14 March 2014 Accepted: 26 March 2014 Published: 31 March 2014

Abstract— In an environment where processes those execute concurrently, speeding up their computation is important. Deadlock

is a major issue that occurs during concurrent execution. In this paper, we present an approach to generate testcases from UML

sequence diagram for detecting deadlocks during the design phase. This will reduce the effort and cost involved to fix deadlocks

at a later stage. Our work begins with design of sequence diagram for the system, then converting it to intermediate graph where

deadlock points are marked and then traverse to get testcases. The testcases thus generated are suitable for detecting deadlocks.

Keywords— Software testing, Test cases,Sequence diagram, Concurrency, Deadlock

I. INTRODUCTION

Testing is the most important part of quality assurance in

software development life cycle. As the complexity and size

of software products grow, the time and effort required to do

effective testing increases. Studies indicate that more than

half of software development cost is devoted to testing[1]. If

the tests are in process before implementation, costs of

software development will be reduced.

Unified Modelling Language(UML) is the most dominant

standard language used in modelling the requirement and

considered an important source of information for testcase

design. A sequence diagram is one of the UML diagrams

that is helpful in modelling object interaction.

Concurrency is a property of system in which several

computations are executing simultaneously and also

interacting with each other. Testing a concurrent system is a

very difficult task because this type of system can reveal

different responses depending upon different concurrency

condition. A concurrent system may be implemented via

processes and/or threads. Due to concurrency a major

problem arises known as testcase explosion. Also

synchronization and deadlock create problems when

concurrently running objects want to interact with each

other.

Generation of testcases can be done manually by an

experienced test engineer or automatically by a testcase

generation tool if the required application knowledge is

sufficiently formalized. If the application is large and

complex then manual testing will require more time

compared to done automatically. Another problem in

testcase generation is we cannot test the testcases until they

are actually run.

This paper uses UML sequence diagram as design

specifications. Sequence Diagram can be useful because it

results in less number of test cases. The sequence diagram is

also useful in detecting scenario as well as interaction faults.

Our approach first transforms a sequence diagram to an

intermediate graph and then identifies the possible deadlock

points in it. Then the graph is traversed to generate testcases

using loop detection algorithm useful to detect deadlock. By

detecting deadlocks in the design phase of software

development process the cost of software development can

be reduced.

The rest of the paper is organised as follows: Section II

describes the background, Section III focuses on related

work, Section IV summarizes the proposed approach,

Section V highlights testcase generation, Section VI gives a

comparison with related work and finally section VII

presents the conclusion.

II. BACKGROUND

In this section, we describe the basic concepts that are used

in this paper on model based testing, UML 2.0 Sequence

diagrams, deadlocks, sequence diagram graph and testcases

that are essential in analysing the present method.

A. Model Based Testing

Model based testing consists of the requirement

specifications as input to generate test cases[4].Three main

reasons for using model based testing are:

(1) Traditional software testing techniques consider only

static view of code, which is not sufficient for testing

dynamic behaviour of object-oriented softwares ,

(2) Use of code to test an object-oriented software is a

complex and tedious task

(3)Model-based test case generation can be planned at an

early stage of the software development life cycle, allowing

software developer to carry out coding and testing in

parallel[3][7].Corresponding Author: Amitashree Mallick, amita29dec@gmail.com

 International Journal of Computer Sciences and Engineering Vol.-2(3), pp (199-203) March 2014 E-ISSN: 2347-293

 © 2014, IJCSE All Rights Reserved 200

B. Sequence Diagram

A sequence diagram(SD) is very useful in representing

sequence of actions that occur in the system over time. It

easily represents the invocation of methods from

each object. Sequence diagram consists of objects and

messages. Objects are represented using rectangular boxes

and messages using arrows[7]. In this paper we will use SD

to model our system.

C. Deadlock

A set of processes is deadlocked if each process in the set is

waiting for an event that only another process in the set can

cause. A Deadlock can be of two types:

Communication Deadlock: This occurs when process A is

trying to send a message to process B, process B trying to

send a message to process C which is turn tries to send a

message to A.

Resource deadlock: This occurs when processes try to have

exclusive access to resources e.g. devices, files, locks,

servers, etc..Resource deadlock can be represented by

resource allocation graph. If the graph contains a cycle then

it may have a deadlock.

III. RELATED WORK

Many testing works are based on UML models, proposing

concepts for generation of testcases and scenario coverage

based system testing. Those works are suitable for system

testing and detecting various faults but do not take into

consideration issues due to concurrency in communication

and deadlocks. Sarma et al[5] presented an efficient method

for testcase generation from UML 2.0 sequence diagrams by

converting to an intermediate graph. The testcases generated

from the graph are able to detect interaction and scenario

faults. Samuel et al[6] enlists the relationships that can exist

among messages and efficiently generate test sequences

from UML 2.0 sequence diagrams. This too converts the

sequence diagram to an intermediate graph whose nodes are

incorporated with message sequences. The graph is then

traversed to get the test sequences. Cartaxo et al[7] uses a

systematic procedure of functional testcase generation for

feature testing. The procedure is based on model based

testing techniques with testcases generated from UML SDs

translated into label transition systems. Feature testing is

important as costs to find bugs during the feature interaction

phase are higher since feature interaction testing phase

involves more than one feature. Nagarani et al[2] provides a

very good approach on automation of software testing

process using Coded UI(User Interface) tool. This method

will provide better utilization of resources and save time.

Wenming et al[10] proposes an integration of various testing

tools for system operation. The system also integrates test

data so that all independent test data are integrated into a

whole structure, easy to manage and maintain. Khandai et

al[8] proposes an approach for generating. testcases which

consists of transforming the sequence diagram into a

concurrent composite graph. This approach is effective in

controlling the testcase explosion problem and detecting

interaction, scenario, and composite faults in concurrent

systems. Patnaik et al[9] represents a deadlock situation in a

concurrent process using SD and also lays testcases for it. It

is relevant because detecting deadlocks in the design phase

will help reduce the effort which would have been otherwise

spent in the implementation phase to detect deadlock and

debug it.

IV. PROPOSED APPROACH

The block diagram of the proposed approach is shown in Fig

1.It starts by modelling a sequence diagram for the

application and follows through the steps to generate

testcases. Our aim is to generate testcases that can detect

deadlocks. So we have used UML 2.0 sequence diagram that

will help in representing concurrency and result in lesser

testcases. ’par’ combined fragment has been used in SD to

represent concurrent activity.

Fig 1: Block Diagram of proposed Approach

The approach consists of five steps. After representing

appropriate SD, an equivalent wait for graph is represented

which helps to identify the deadlock points. The wait for

graph is then traversed using a Tarjan’s cycle detection

algorithm[11] to get the cycles. Then the approach proceeds

towards generation of testcases. For this we find the

operation scenarios from SD and draw the sequence diagram

graph(SDG).SDG has a start state and two end states to mark

deadlock and non-deadlock state. The steps are explained in

later with example.

A. Step 1: Sequence Diagram

Sequence diagram used in our work is shown in Fig

2.Sequence Diagram consists of objects and messages.

Objects are represented using object names in rectangular

boxes which interact with other objects. All messages are

represented as simple messages as a arrow marked from

sender to receiver with individual message names. a, b, c, d

and e are objects.m1(),m2(),m3(),m4(),m5(),m6(),m7()

and m8() are messages.

Draw an

intermediate

graph

representing the

parallel activities

Testcases to

detect deadlock

Model the

System

using UML

Sequence

Diagram

Identify the possible

deadlock points

Traverse the graph

to generate

testcases

(deadlock: criteria)

using loop

detection algorithm

 International Journal of Computer Sciences and Engineering Vol.-2(3), pp (199-203) March 2014 E-ISSN: 2347-293

 © 2014, IJCSE All Rights Reserved 201

Fig 2: Sequence Diagram

Concurrent activity is shown using ’par’ combined fragment

in the sequence diagram(SD).The messages inside the

fragment m2(),m4(),m8()try to execute concurrently.

B. Step2: Wait for Graph

Deadlock is identified with the help of a wait for graph. It

consists of processes as vertices and messages as edges. Wait

for graph for the system is shown in Fig 3. Wait for graph is

a simple directed graph that shows possible deadlocks

between processes as cycles.

Fig. 2: Wait for Graph

In the graph an edge from ’a’ to ’b’ indicates ’a’ is waiting

for an event to be completed by process ’b’. As we have

discussed earlier a system contains a deadlock if it consists

of a cycle. In Fig 3 there are three cycles, a →b →c →a,

a →c →a and c →c. In Fig 2 message m2(),m4() and m8()

are executing concurrently. Processes a, b and c each wait to

perform events by other processes(its next node) which are

busy waiting for events to occur from another process(next

node) in cycle. These go into a hold and wait condition and

give a circular loop causing deadlock.

C. Step 3: Identifying all deadlock points

We use Tarjan’s algorithm[14] to find all deadlock paths in

the system from the wait for graph. This traversal algorithm

is based on depth first search. The vertices are indexed as

they are traversed by DFS procedure. While returning from

the recursion of DFS, every vertex V gets assigned a vertex

L as a representative. L is a vertex with the least index that

can be reach from V. Nodes with the same representative

assigned are located in the same strongly connected

component.

D. Step 4: Operation Scenarios

The next step is to derive the operation scenarios from SD.

The operation scenario is shown in Fig 4.

<scn1 <scn2 <scn3 <scn4 <scn5

State X State X State X State X State X

S1: (m3,c,a) S1: (m3,c,a) S5: (m8,c,c) S1: (m3,c,a) S1:(m3,c,a)

S2: (m1,a,b) S4: (m4,a,c) State Y> S2: (m1,a,b) State Z>

S3: (m2,b,c) State Y> S6: (m5,b,d)

State Y> S7: (m6,d,e)
 State Z>

Fig. 4: Operation Scenarios

There are 5 operation scenarios here. scn1...scn5 denotes

scenario number, state X is the starting state and state Y,

state Z are end states. si (i=1...7) is the state number. mj

(j=1...8) is the message between two objects. The procedure

for operation scenarios has been adopted from Sarma et

al[5].

E. Step5: Converting SD to SDG

To draw an SDG we have to note all the operation scenarios

and events that occur in it from start state to end state. The

SDG is shown in Fig 5.There is one start state(state X) and

two end states(state Y and Z).All scenarios that do not form

a loop end at state Y and others at Z. In other words end state

Z indicates a safe state and end state Y indicates a deadlock

state.

Fig 5: Sequence Diagram Graph

F. Step6: Generation of testcase

To generate testcases all paths from start node to end node

are enumerated and each path is considered a testcase. Our

test targets to detect concurrency fault called deadlock.

m8()

 International Journal of Computer Sciences and Engineering Vol.-2(3), pp (199-203) March 2014 E-ISSN: 2347-293

 © 2014, IJCSE All Rights Reserved 202

Traversal of SDG to generate all testcases is done using

testcase generation algorithm given below.

Algorithm: Testcase Generation

Input: Sequence Diagram Graph of Sequence Diagram

Output: Deadlock paths and test suite(T)

Steps:

1. TP[]=identify All Paths(STG) //Enumerate all Basic Paths

TP=TP[1],TP[2],...,TP[N] from s node to end node in STG

2. For each path TP[i]∈TP do

3. current node(CN)=S(start node)

4. preCondition=Precondition of scenario //Precondition is

stored in N

5. TCi= Φ//The testcase of scenarioi is initially empty.

6. while(CN≠FN)do //CN is current node, FN is the final

node, Path is i

7. eventCN=˂m,a,b,c> //Event corresponding to current

node .m() is invoked with a set of arguments a,b,c

8. if CN=Guard then

9. Select testcase

//TC={preCondition, Inputs, Outputs, postCondition}

10.Add TC to the testset TSi =TSi ∪TS

11.End if

12.If C≠Guard then

13.If Cvalue={ C1,C2,...,Cp }

TC={preCondition, Inputs, Outputs, postCondition}

The set of value of classes on the path Pi

14.Select testcase

TC={preCondition, Inputs, Outputs, postCondition}

15.Add TC to test set TCi , that is, TCi =TCi ∪ TC

16.End if

17.CN=next node //Move to the next node Nk on the path Pi

18.TCi=TCi∪TC

19. End while

20.Determine the final output and postConditioni for the scni

stored in final node.

21.TC={preCondition, Inputs, Outputs, PostCondition}

22.Add the testcase TC to the test set TS that is

TS←TS∪TC

23.End for

24.Return(TS)

25.Stop

Each path in the SDG is traversed to get a testcase. Traversal

is done from ’start’ node to ’end’ node. There are two states

Y and Z. State Y indicates path reaching it may lead to

deadlock and state Z indicates non-deadlock paths. Step 21

gives all the testcases corresponding to the scenario as a

whole. Testcases using the above algorithm is mentioned in

section V.

Following are the testcases that were finally derived using

the proposed approach.

1.Testcase=”Dummy Model”

2.Precondition:C is the initial state where execution states.

3.Testcases:Scenario 1

Input: message 3

Output: message 2

Postcondition: Deadlock state

4.Testcase:Scenario 2

Input: message 3

Output:message 4

Postcondition: Deadlock State

5.Testcase:Scenario 3

Input: message 8

Output: message 8

Postcondition: Deadlock State

4.Testcase:Scenario 4

Input: message 3

Output: message 6

Postcondition: Non-deadlocked Path

5.Testcase: Scenario 5

Input: message 7

Output: message 7

Postcondition: Non-deadlocked state

 International Journal of Computer Sciences and Engineering Vol.-2(3), pp (199-203) March 2014 E-ISSN: 2347-293

 © 2014, IJCSE All Rights Reserved 203

V. COMPARISION WITH RELATED WORK

From the related work we come to realise that there are

many efficient methods for testcase generation from UML

SDs[5][7][8][9] and automation testing[2][10].The method

proposed in [5] is an efficient method for testcase generation

but doesn’t take into consideration concurrency faults

although it detects interaction and scenario faults. In [6] it

presents a very good procedure for test sequence generation

which is important for correct sequential execution of test

cases. Nagarani et al[5] also provides us a good concept on

how their developed tool is helpful in automating complex

software applications. Wenming et al[2] proposes another

concept on automation testing and how automation tools can

be integrated to easily manage and maintain the testing

process. In [8][9] they discuss on solving concurrency and

synchronization issues and generating testcases to detect

them early in the design phase.

VI. CONCLUSION

In this paper, we proposed a method for generating testcases

from UML sequence diagram. It mainly consisted of 3 steps

model UML sequence diagram, representing the sequence

diagram graph and traversing it to generate testcases that will

be able to detect deadlocks. The used example was a

generalised model that shows the test can exercise all paths

and has the ability to detect deadlocks. In future the paper

intends to use tools for automatically generating those

testcases and implement it in a real-time scenario. More

work needs to be done to combine other UML diagrams in

our method.

VII. BIBLIOGRAPHY

[1] R.V Binder, "Testing Object-Oriented Systems Models,

Patterns, and Tools, Object Technology Series". Addision Wesley,

Reading, Massachusetts, October 1999

[2] P. Nagarani I, R. Venkata Ramana Chary, "A Tool Based

Approach For Automation Of GUI Applications",ICCCNT’12

26th-28th July 2012, Coimbatore, India

[3] N. S. Dsouza, A. Pasala, A. Rickett and O. Estrada,"A code

based approach to generate functional test scenarios for testing of

re-hosted application", Short Papers of the 22nd IFIP ICTSS,

Alexandre Petrenko, Adenilso Simao, Jose Carlos Maldonado

(eds.), Nov. 08-10, 2010, Natal, Brazil

[4] Santosh Kumar Swain, Durga Prasad Mohapatra, and Rajib

Mall, "Test Case Generation Based on Use case and Sequence

Diagram", Journal of Object Technology, vol. 8,No. 3,May-June

2009,PP. 65-83

[5] Monalisa Sarma, Debasish Kundu, Rajib Mall, "Automatic Test

Case Generation from UML Sequence Diagrams".15th

International Conference on Advanced Computing and

Combinations,2007 IEEE

[6] Philip Samuel, Anju Teresa Joseph, "Test Sequence Generation

from UML Sequence Diagrams",2008 IEEE

[7] Emanuela G.Cartaxo, Francisco G.O.Neto and Patriticia

D.L.Machado,Test Case Generation by means of UML Sequence

Diagrams and Labelled Transition Systems, 2007 IEEE

[8] Monalisha Khandai,Arup Abhinna Acharya,Durga Prasad

Mohapatra, A Novel Approach of Test Case Generation for

Concurrent Systems Using UML Sequence Diagram978-1-4244-

8679-3,2011 IEEE

[9] Debashree Patnaik,Arup Abhinna Acharya, Durga Prasad

Mohapatra, Generation Of Test Cases Using UML Sequence

Diagram In A

System With Communication Deadlock, Journal of Computer

Science and Information Technologies, Vol. 2 (3) , 2011, 1187-

1190

[10] Guo Wenming, Fu Xiangling, Feng Jianmei, "A Data-driven

Software Testing Tools Integration System", School of Software

Engineering, Beijing University of Post and

Telecommunication,Beijing,P.R.China,2009

[11] Srinivasan Desican, Gopalaswamy Ramesh, Software Testing

principles and practices,3rd Edition, Pearson Publication

[12] Rajib Mall ,Software Testing principles and practices,3rd

Edition, Pearson Publication

[13] Srinivasan Desican, Gopalaswamy Ramesh, Fundamentals of

Software Engineering,3rd Edition, PHI Learning Private Limited

[14] Tarjan, R. E. ,Depth-first search and linear graph algorithms,

SIAM Journal on Computing 1 (2): 146160,1972

doi:10.1137/0201010

AUTHORS PROFILE

Amitashree Mallick is a student of Mtech in Computer

Science and Information Security, KIIT University,

Bhubaneswar, Odisha, INDIA. Her research area is

Automated Testing. She can be reached at

amita29dec@gmail.com

Namita Panda is an Assistant Professor in the School of

Computer Engineering, KIIT University, Bhubaneswar,

Odisha, INDIA. She received her Master’s degree from KIIT

University Bhubaneswar. Her research areas include Object

Oriented Software Testing, Parallel Processing and

Computer Architecture. She has published papers in national

and international level proceedings. She is having ten years

of teaching experience. She is a member of ISTE. She can be

reached at npandafcs@kiit.ac.in.

Arup Abhinna Acharya is an Assistant Professor and

research scholar in the School of Computer Engineering,

KIIT University, Bhubaneswar, Odisha, INDIA. He received

his Masters degree from KIIT University Bhubaneswar. His

research areas include Object Oriented Software Testing,

Software Cost Estimation, and Data mining. Many

publications are there to his credit in many International and

National level journal and proceedings. He is having eleven

years of teaching experience. He is a member of ISTE. He

can be reached at aacharyafcs@kiit.ac.in.

