€

AXJCSE International Journal of Computer Science and Engineering

Research Paper

Volume-2, Issue-3

Open Access
E-ISSN: 2347-2693

Generation of Testcases from UML Sequence Diagram and Detecting
Deadlocks using Loop Detection Algorithm

Amitashree Mallick'", Namita Panda” and Arup Abhinna Acharya3

"School of Computer Engineering, KIIT University, India, amita29dec @ gmail.com
? School of Computer Engineering, KIIT University, India,npanda @kiit.ac.in
ISchool of Computer Engineering, KIIT University, India, aacharya@kiit.ac.in

www.ijcseonline.org

Received: 11 March 2014 Revised: 14 March 2014

Accepted: 26 March 2014

Published: 31 March 2014

Abstract— In an environment where processes those execute concurrently, speeding up their computation is important. Deadlock
is a major issue that occurs during concurrent execution. In this paper, we present an approach to generate testcases from UML
sequence diagram for detecting deadlocks during the design phase. This will reduce the effort and cost involved to fix deadlocks
at a later stage. Our work begins with design of sequence diagram for the system, then converting it to intermediate graph where
deadlock points are marked and then traverse to get testcases. The testcases thus generated are suitable for detecting deadlocks.

Keywords— Software testing, Test cases,Sequence diagram, Concurrency, Deadlock

I. INTRODUCTION

Testing is the most important part of quality assurance in
software development life cycle. As the complexity and size
of software products grow, the time and effort required to do
effective testing increases. Studies indicate that more than
half of software development cost is devoted to testing[1]. If
the tests are in process before implementation, costs of
software development will be reduced.

Unified Modelling Language(UML) is the most dominant
standard language used in modelling the requirement and
considered an important source of information for testcase
design. A sequence diagram is one of the UML diagrams
that is helpful in modelling object interaction.

Concurrency is a property of system in which several
computations are executing simultaneously and also
interacting with each other. Testing a concurrent system is a
very difficult task because this type of system can reveal
different responses depending upon different concurrency
condition. A concurrent system may be implemented via
processes and/or threads. Due to concurrency a major
problem arises known as testcase explosion. Also
synchronization and deadlock create problems when
concurrently running objects want to interact with each
other.

Generation of testcases can be done manually by an
experienced test engineer or automatically by a testcase
generation tool if the required application knowledge is
sufficiently formalized. If the application is large and
complex then manual testing will require more time
compared to done automatically. Another problem in
testcase generation is we cannot test the testcases until they
are actually run.

This paper uses UML sequence diagram as design

Corresponding Author: Amitashree Mallick, amita29dec @ gmail.com

© 2014, IJCSE All Rights Reserved

specifications. Sequence Diagram can be useful because it
results in less number of test cases. The sequence diagram is
also useful in detecting scenario as well as interaction faults.
Our approach first transforms a sequence diagram to an
intermediate graph and then identifies the possible deadlock
points in it. Then the graph is traversed to generate testcases
using loop detection algorithm useful to detect deadlock. By
detecting deadlocks in the design phase of software
development process the cost of software development can
be reduced.

The rest of the paper is organised as follows: Section II
describes the background, Section III focuses on related
work, Section IV summarizes the proposed approach,
Section V highlights testcase generation, Section VI gives a
comparison with related work and finally section VII
presents the conclusion.

II. BACKGROUND

In this section, we describe the basic concepts that are used
in this paper on model based testing, UML 2.0 Sequence
diagrams, deadlocks, sequence diagram graph and testcases
that are essential in analysing the present method.

A. Model Based Testing

Model based testing consists of the requirement
specifications as input to generate test cases[4].Three main
reasons for using model based testing are:

(1) Traditional software testing techniques consider only
static view of code, which is not sufficient for testing
dynamic behaviour of object-oriented softwares ,

(2) Use of code to test an object-oriented software is a
complex and tedious task

(3)Model-based test case generation can be planned at an
early stage of the software development life cycle, allowing
software developer to carry out coding and testing in
parallel[3][7].

199

International Journal of Computer Sciences and Engineering

B. Sequence Diagram

A sequence diagram(SD) is very useful in representing
sequence of actions that occur in the system over time. It
easily represents the invocation of methods from

each object. Sequence diagram consists of objects and
messages. Objects are represented using rectangular boxes
and messages using arrows[7]. In this paper we will use SD
to model our system.

C. Deadlock

A set of processes is deadlocked if each process in the set is
waiting for an event that only another process in the set can
cause. A Deadlock can be of two types:

Communication Deadlock: This occurs when process A is
trying to send a message to process B, process B trying to
send a message to process C which is turn tries to send a
message to A.

Resource deadlock: This occurs when processes try to have
exclusive access to resources e.g. devices, files, locks,
servers, etc..Resource deadlock can be represented by
resource allocation graph. If the graph contains a cycle then
it may have a deadlock.

1. RELATED WORK

Many testing works are based on UML models, proposing
concepts for generation of testcases and scenario coverage
based system testing. Those works are suitable for system
testing and detecting various faults but do not take into
consideration issues due to concurrency in communication
and deadlocks. Sarma et al[5] presented an efficient method
for testcase generation from UML 2.0 sequence diagrams by
converting to an intermediate graph. The testcases generated
from the graph are able to detect interaction and scenario
faults. Samuel et al[6] enlists the relationships that can exist
among messages and efficiently generate test sequences
from UML 2.0 sequence diagrams. This too converts the
sequence diagram to an intermediate graph whose nodes are
incorporated with message sequences. The graph is then
traversed to get the test sequences. Cartaxo et al[7] uses a
systematic procedure of functional testcase generation for
feature testing. The procedure is based on model based
testing techniques with testcases generated from UML SDs
translated into label transition systems. Feature testing is
important as costs to find bugs during the feature interaction
phase are higher since feature interaction testing phase
involves more than one feature. Nagarani et al[2] provides a
very good approach on automation of software testing
process using Coded UlI(User Interface) tool. This method
will provide better utilization of resources and save time.
Wenming et al[10] proposes an integration of various testing
tools for system operation. The system also integrates test
data so that all independent test data are integrated into a
whole structure, easy to manage and maintain. Khandai et
al[8] proposes an approach for generating. testcases which
consists of transforming the sequence diagram into a
concurrent composite graph. This approach is effective in
controlling the testcase explosion problem and detecting

f&] CSE ©2014, IICSE All Rights Reserved

Vol.-2(3), pp (199-203) March 2014 E-ISSN: 2347-293

interaction, scenario, and composite faults in concurrent
systems. Patnaik et al[9] represents a deadlock situation in a
concurrent process using SD and also lays testcases for it. It
is relevant because detecting deadlocks in the design phase
will help reduce the effort which would have been otherwise
spent in the implementation phase to detect deadlock and
debug it.

IV. PROPOSED APPROACH

The block diagram of the proposed approach is shown in Fig
1.It starts by modelling a sequence diagram for the
application and follows through the steps to generate
testcases. Our aim is to generate testcases that can detect
deadlocks. So we have used UML 2.0 sequence diagram that
will help in representing concurrency and result in lesser
testcases. par’ combined fragment has been used in SD to
represent concurrent activity.

Identify the possible
deadlock points

A

4

Model the Draw an Traverse the graph
System intermediate to generate
using UML > graph testcase§ .
Sequence representing the (deadl(.)ck: criteria)
Diagram parallel activities using loop
detection algorithm

A 4

Testcases to
detect deadlock

Fig 1: Block Diagram of proposed Approach

The approach consists of five steps. After representing
appropriate SD, an equivalent wait for graph is represented
which helps to identify the deadlock points. The wait for
graph is then traversed using a Tarjan’s cycle detection
algorithm[11] to get the cycles. Then the approach proceeds
towards generation of testcases. For this we find the
operation scenarios from SD and draw the sequence diagram
graph(SDG).SDG has a start state and two end states to mark
deadlock and non-deadlock state. The steps are explained in
later with example.

A. Step 1: Sequence Diagram

Sequence diagram used in our work is shown in Fig
2.Sequence Diagram consists of objects and messages.
Objects are represented using object names in rectangular
boxes which interact with other objects. All messages are
represented as simple messages as a arrow marked from
sender to receiver with individual message names. a, b, ¢, d
and e are objects.m1(),m2(),m3(),m4(),m5(),m6(),m7()
and m8() are messages.

200

International Journal of Computer Sciences and Engineering

Object a Object b Object ¢ Object d Object e
o 1:m3()
2. mi() _L .
Par 3:m2(} !
4 m4() ‘ 5: m8()

6: mSOJ:LJ

=i 7:m6(l
S:r:n7() —‘
U

Fig 2: Sequence Diagram

Concurrent activity is shown using “par’ combined fragment
in the sequence diagram(SD).The messages inside the
fragment m2(),m4(),m8()try to execute concurrently.

B. Step2: Wait for Graph

Deadlock is identified with the help of a wait for graph. It
consists of processes as vertices and messages as edges. Wait
for graph for the system is shown in Fig 3. Wait for graph is
a simple directed graph that shows possible deadlocks
between processes as cycles.

m3()

m8() m7()

Fig. 2: Wait for Graph

In the graph an edge from ’a’ to ’b’ indicates ’a’ is waiting
for an event to be completed by process 'b’. As we have
discussed earlier a system contains a deadlock if it consists
of a cycle. In Fig 3 there are three cycles, a —b —c —a,

a —c —a and ¢ —c. In Fig 2 message m2(),m4() and m8()
are executing concurrently. Processes a, b and ¢ each wait to
perform events by other processes(its next node) which are
busy waiting for events to occur from another process(next
node) in cycle. These go into a hold and wait condition and
give a circular loop causing deadlock.

C. Step 3: Identifying all deadlock points
We use Tarjan’s algorithm[14] to find all deadlock paths in

@
;’&] CSE ©2014, IICSE All Rights Reserved

Vol.-2(3), pp (199-203) March 2014 E-ISSN: 2347-293

the system from the wait for graph. This traversal algorithm
is based on depth first search. The vertices are indexed as
they are traversed by DFS procedure. While returning from
the recursion of DFS, every vertex V gets assigned a vertex
L as a representative. L is a vertex with the least index that
can be reach from V. Nodes with the same representative
assigned are located in the same strongly connected
component.

D. Step 4: Operation Scenarios
The next step is to derive the operation scenarios from SD.
The operation scenario is shown in Fig 4.

<scnl <scn2 <scn3 <scnd <scnS
State X State X State X State X State X

S1: (m3,c,a) Sl:(m3,c,a) S5:(m8,c,c) S1:(m3,c,a) Sl:(m3,c,a)
S2: (ml,a,b) S4:(md,a,c) State Y> S2: (ml,a,b) State Z>

S3: (m2,b,c) State Y> S6: (m5,b,d)
State Y> S7: (m6,d,e)
State Z>

Fig. 4: Operation Scenarios

There are 5 operation scenarios here. scnl...scnS denotes
scenario number, state X is the starting state and state Y,
state Z are end states. s; (i=1...7) is the state number. m,
(j=1...8) is the message between two objects. The procedure
for operation scenarios has been adopted from Sarma et
al[5].

E. Step5: Converting SD to SDG

To draw an SDG we have to note all the operation scenarios
and events that occur in it from start state to end state. The
SDG is shown in Fig 5.There is one start state(state X) and
two end states(state Y and Z).All scenarios that do not form
a loop end at state Y and others at Z. In other words end state
Z indicates a safe state and end state Y indicates a deadlock
state.

Fig 5: Sequence Diagram Graph

F. Step6: Generation of testcase

To generate testcases all paths from start node to end node
are enumerated and each path is considered a testcase. Our
test targets to detect concurrency fault called deadlock.

201

International Journal of Computer Sciences and Engineering

Traversal of SDG to generate all testcases is done using
testcase generation algorithm given below.

Algorithm: Testcase Generation

Input: Sequence Diagram Graph of Sequence Diagram
Output: Deadlock paths and test suite(T)

Steps:

1. TP[]=identify All Paths(STG) //Enumerate all Basic Paths
TP=TP[1],TP[2],...,TP[N] from s node to end node in STG
2. For each path TP[i] TP do

3. current node(CN)=S(start node)

4. preCondition=Precondition of scenario //Precondition is
stored in N

5. TC= ®//The testcase of scenario, is initially empty.

6. while(CN#FN)do //CN is current node, FN is the final
node, Path is i

7. evente=<m,a,b,c> //Event corresponding to current
node .m() is invoked with a set of arguments a,b,c

8. if CN=Guard then

9. Select testcase

//ITC={preCondition, Inputs, Outputs, postCondition}
10.Add TC to the testset TS,=TS; UTS

11.End if

12.If C#£Guard then

13.If Cyae=1{ C1,C2,....Cp}

TC={preCondition, Inputs, Outputs, postCondition}

The set of value of classes on the path Pi

14.Select testcase

TC= {preCondition, Inputs, Outputs, postCondition}
15.Add TC to test set TC;, that is, TC;=TC, U TC

16.End if

17.CN=next node //Move to the next node N, on the path P;
18.TC=TC,UTC

19. End while

20.Determine the final output and postCondition; for the scn;

stored in final node.
21.TC={preCondition, Inputs, Outputs, PostCondition}

22.Add the testcase TC to the test set TS that is

@
f&] CSE ©2014, IICSE All Rights Reserved

Vol.-2(3), pp (199-203) March 2014 E-ISSN: 2347-293

TS<TSUTC
23.End for

24 Return(TS)
25.Stop

Each path in the SDG is traversed to get a testcase. Traversal
is done from ’start’ node to end’ node. There are two states
Y and Z. State Y indicates path reaching it may lead to
deadlock and state Z indicates non-deadlock paths. Step 21
gives all the testcases corresponding to the scenario as a
whole. Testcases using the above algorithm is mentioned in
section V.

Following are the testcases that were finally derived using
the proposed approach.

1.Testcase="Dummy Model”

2.Precondition:C is the initial state where execution states.

3.Testcases:Scenario 1
Input: message 3
Output: message 2

Postcondition: Deadlock state

4.Testcase:Scenario 2
Input: message 3
Output:message 4

Postcondition: Deadlock State

5.Testcase:Scenario 3
Input: message 8
Output: message 8

Postcondition: Deadlock State

4.Testcase:Scenario 4
Input: message 3
Output: message 6

Postcondition: Non-deadlocked Path

5.Testcase: Scenario 5
Input: message 7
Output: message 7

Postcondition: Non-deadlocked state

202

International Journal of Computer Sciences and Engineering

V. COMPARISION WITH RELATED WORK

From the related work we come to realise that there are
many efficient methods for testcase generation from UML
SDs[5][7][8]1[9] and automation testing[2][10].The method
proposed in [5] is an efficient method for testcase generation
but doesn’t take into consideration concurrency faults
although it detects interaction and scenario faults. In [6] it
presents a very good procedure for test sequence generation
which is important for correct sequential execution of test
cases. Nagarani et al[5] also provides us a good concept on
how their developed tool is helpful in automating complex
software applications. Wenming et al[2] proposes another
concept on automation testing and how automation tools can
be integrated to easily manage and maintain the testing
process. In [8][9] they discuss on solving concurrency and
synchronization issues and generating testcases to detect
them early in the design phase.

VI. CONCLUSION

In this paper, we proposed a method for generating testcases

from UML sequence diagram. It mainly consisted of 3 steps
model UML sequence diagram, representing the sequence
diagram graph and traversing it to generate testcases that will
be able to detect deadlocks. The used example was a
generalised model that shows the test can exercise all paths
and has the ability to detect deadlocks. In future the paper
intends to use tools for automatically generating those
testcases and implement it in a real-time scenario. More
work needs to be done to combine other UML diagrams in
our method.

VII. BIBLIOGRAPHY

[1] R.V Binder, "Testing Object-Oriented Systems Models,
Patterns, and Tools, Object Technology Series". Addision Wesley,
Reading, Massachusetts, October 1999

[2] P. Nagarani I, R. Venkata Ramana Chary, "A Tool Based
Approach For Automation Of GUI Applications",JCCCNT’12
26th-28th July 2012, Coimbatore, India

[3] N. S. Dsouza, A. Pasala, A. Rickett and O. Estrada,"A code
based approach to generate functional test scenarios for testing of
re-hosted application", Short Papers of the 22nd IFIP ICTSS,
Alexandre Petrenko, Adenilso Simao, Jose Carlos Maldonado
(eds.), Nov. 08-10, 2010, Natal, Brazil

[4] Santosh Kumar Swain, Durga Prasad Mohapatra, and Rajib
Mall, "Test Case Generation Based on Use case and Sequence
Diagram", Journal of Object Technology, vol. 8,No. 3,May-June
2009,PP. 65-83

[5] Monalisa Sarma, Debasish Kundu, Rajib Mall, "Automatic Test
Case Generation from UML Sequence Diagrams".15th
International ~ Conference on Advanced Computing and
Combinations,2007 IEEE

[6] Philip Samuel, Anju Teresa Joseph, "Test Sequence Generation
from UML Sequence Diagrams",2008 IEEE

@
f&] CSE ©2014, IICSE All Rights Reserved

Vol.-2(3), pp (199-203) March 2014 E-ISSN: 2347-293

[7] Emanuela G.Cartaxo, Francisco G.O.Neto and Patriticia
D.L.Machado,Test Case Generation by means of UML Sequence
Diagrams and Labelled Transition Systems, 2007 IEEE

[8] Monalisha Khandai,Arup Abhinna Acharya,Durga Prasad
Mohapatra, A Novel Approach of Test Case Generation for
Concurrent Systems Using UML Sequence Diagram978-1-4244-
8679-3,2011 IEEE

[9] Debashree Patnaik,Arup Abhinna Acharya, Durga Prasad
Mohapatra, Generation Of Test Cases Using UML Sequence
Diagram In A

System With Communication Deadlock, Journal of Computer
Science and Information Technologies, Vol. 2 (3) , 2011, 1187-
1190

[10] Guo Wenming, Fu Xiangling, Feng Jianmei, "A Data-driven
Software Testing Tools Integration System", School of Software
Engineering, Beijing University of Post and
Telecommunication,Beijing,P.R.China,2009

[11] Srinivasan Desican, Gopalaswamy Ramesh, Software Testing
principles and practices,3rd Edition, Pearson Publication

[12] Rajib Mall ,Software Testing principles and practices,3rd
Edition, Pearson Publication

[13] Srinivasan Desican, Gopalaswamy Ramesh, Fundamentals of
Software Engineering,3rd Edition, PHI Learning Private Limited
[14] Tarjan, R. E. ,Depth-first search and linear graph algorithms,
SIAM Journal on Computing 1 (2): 146160,1972
doi:10.1137/0201010

AUTHORS PROFILE

Amitashree Mallick is a student of Mtech in Computer
Science and Information Security, KIIT University,
Bhubaneswar, Odisha, INDIA. Her research area is
Automated Testing. She can be reached at
amita29dec @ gmail.com

Namita Panda is an Assistant Professor in the School of
Computer Engineering, KIIT University, Bhubaneswar,
Odisha, INDIA. She received her Master’s degree from KIIT
University Bhubaneswar. Her research areas include Object
Oriented Software Testing, Parallel Processing and
Computer Architecture. She has published papers in national
and international level proceedings. She is having ten years
of teaching experience. She is a member of ISTE. She can be
reached at npandafcs @kiit.ac.in.

Arup Abhinna Acharya is an Assistant Professor and
research scholar in the School of Computer Engineering,
KIIT University, Bhubaneswar, Odisha, INDIA. He received
his Masters degree from KIIT University Bhubaneswar. His
research areas include Object Oriented Software Testing,
Software Cost Estimation, and Data mining. Many
publications are there to his credit in many International and
National level journal and proceedings. He is having eleven
years of teaching experience. He is a member of ISTE. He
can be reached at aacharyafcs @kiit.ac.in.

203

