
 © 2014, IJCSE All Rights Reserved 144

 International Journal of Computer Science and EngineeringInternational Journal of Computer Science and EngineeringInternational Journal of Computer Science and EngineeringInternational Journal of Computer Science and Engineering Open Access
Research Paper Volume-2, Issue-3 E-ISSN: 2347-2693

An Approach to Design Personalized Focused Crawler

Hardik P. Trivedi
1*

, Gaurav N. Daxini
2
, Jignesh A. Oswal

3
, Vinay D. Gor

4
, Swati Mali

5

Student, BE Computers, K. J. Somaiya College of Engineering, Mumbai, India
 1*,2,3,4

Assistant Professor, M Tech Computers, K. J. Somaiya College of Engineering, Mumbai, India
 5

www.ijcseonline.org

Received: 1 March 2014 Revised: 14 March 2014 Accepted: 26 March 2014 Published: 31 March 2014

Abstract— The amount of data and its dynamicity makes it impossible to crawl the World Wide Web (WWW) completely. It’s a

challenge in front of crawlers to crawl only the relevant pages from this information explosion. Thus a focused crawler solves this

issue of relevancy to a certain level, by focusing on web pages for some given topic or a set of topics. Also a focused crawler with

a page change detection policy can help in narrowing down the search to only newer pages, and thus eliminates risk of redundancy

and missing updated data. This paper proposes a policy for design of a focused crawler with web page change detection policy.

Keywords— Web Crawler, Focused Crawler, World Wide Web(WWW), Content Analysis, Link Scoring, Change Detection.

I. INTRODUCTION

A web crawler is an automated program that methodically

scans WWW and downloads pages that can be reached via

links. With the exponential growth of the web, fetching

information about a particular topic is very important. A

focused crawler is one that attempts to download only those

web pages that are relevant to a predefined topic or set of

topics instead of crawling the entire WWW. In order to

determine whether a web page is relevant or not, focused

crawler uses various classification techniques. The web is

dynamic and it keeps on changing, so it is important to keep

track of web pages that change very frequently.

All the search engines track the users’ digital footprints and

use the data for user profiling, analysis and personalization.

Also, most of the results are based on in general user

preferences, rather than being very personalized. The

motivation behind developing a Personalized Focused

Crawler is to provide targeted information to user i.e.

providing information based on user’s interest solely. Along

with this feature, this application also focuses on user’s

privacy, for instance user details and their log activities are

not forwarded to any third party applications.

This paper is organized in four sections with introduction

preceding the literature review in section II. In section III,

we propose our approach for Personalized Focused

crawling. We follow this by Conclusion in section IV and

the last part contains Acknowledgement.

II. LITERATURE REVIEW

There are various kinds of crawler architectures as in,

parallel crawler, distributed crawler, intelligent crawlers,

etc. Amongst all, the common issues are information

retrieval and result ranking as per the relevance.

Hardik Trivedi, hardiktrivedi0612@gmail.com

Basic Working

A crawler initially starts with a set of seed URLs. It fetches

the first page from crawl queue and checks whether it is

relevant or not based on its relevance score with respect to

search string provided by the user. If that page is relevant it

is stored into a database. Then URLs from that page are

extracted and inserted into crawl queue. Now the crawler

fetches another page from crawl queue and repeats the

process.

Relevance Calculation

There are two approaches through which relevancy of a

page can be calculated.

1) Content Analysis: For a given page, title-text is more

important and descriptive than the body-text. Thus title-text

should have higher weight than the body-text. The weight

of topic words [1,4,7] in different positions calculated as:-

Wk = ct * fk for title text and

Wk = cb * fk for body text,

where ct and cb are meta and body coefficients respectively.

We assume ct=2 and cb=1. Wk is the weight of a topic word

k and fk is the frequency of word k in the related text.

This weight variable is used to calculate the page relevance

with cosine similarity measure as follows [1]:-

Cosine(d1,d2)=(∑w1i * w2i)/√((∑w1i
2
)* (∑w2i

2
))

Here, di = (wi1+wi2+……..+wij) where wij represents the

weight assigned to term tj in document di. If the retrieved

page is similar to the query terms given in the topic words

weight table, then it is called relevant, otherwise irrelevant.

2) Link Scoring: In link scoring for web pages, the

crawler also checks the links included in irrelevant pages

and it keeps on crawling through them up to a certain

threshold. Then, the crawler calculates link scores using the

following equation and decides whether to fetch pages

 International Journal of Computer Sciences and Engineering Vol.-2(3), pp (144-147) March 2014 E-ISSN: 2347-293

 © 2014, IJCSE All Rights Reserved

specified by links or not. The link score can be calculated as

[1,4]:

LinkScore(u) = URLTextScore(u) + AnchorTextScore(u) +

NumberOfParentPages(u) + [Relevance(p1) +

Relevance(p2)+….+Relevance(pn)].

Thus crawler spends less time on irrelevant pages and does

not miss relevant pages, which are children of an irrelevant

page.

In a crawling process, the effectiveness of the focused

crawler does not just rely on the maximum amount of

relevant pages to be fetched but it also depends on the speed

of the crawling process. The speed of a crawler depends on

the number of relevant URLs inserted into the URL queue.

Therefore, a mechanism, that we call URL optimization, is

required for the crawler to select links that are more likely

to be relevant. The URL optimization enables the removal

of certain links whose link scores are below a predefined

threshold point. For URL optimization, we used two

different link score evaluation methods for relevant pages.

• Same as above equation which is used for

irrelevant pages.

• Naive Bayes (NB) classifier to compute link

scores[1,5].

Change Detection

Change detection for a web crawler is the technique by

which the web crawler decides which web pages to re-

crawl, by detecting the changes that have incurred in the

web pages. There are two approaches through which

changes in a page can be detected.

1) Freshness Tuning: Freshness Tuning[2] provides four

categories of crawl behaviors. To apply a crawl behavior,

specify URL patterns for the behavior.

• Crawl Frequently[2]: Use Crawl Frequently

patterns for URLs that are dynamic and change

frequently. Any URL that matches one of the

Crawl Frequently patterns is scheduled to be re-

crawled after a certain period based on frequency

of updating.

• Crawl Infrequently[2]: Use Crawl Infrequently

Patterns for URLs that are relatively static and do

not change frequently. Any URL that matches one

of the Crawl Infrequently patterns is not crawled

very frequently, regardless of its page relevance or

how frequently it changes.

• Always Force Re-crawl[2]: Use Always Force Re-

crawl patterns to prevent the crawler from crawling

a URL from cache.

• Re-crawl URL Patterns [2]: Use Re-crawl URL

Patterns to submit a URL to be re-crawled. URLs

that you enter here are re-crawled as soon as

possible.

2) Dom Tree: A clear way to decrease the load time of

a site is to decrease the file size of the HTML

documents[8]. And one of the methods to do this is by

creating a DOM tree. In this method, the HTML pages are

transformed into XML files so that their later access

becomes faster. Also another advantage of the DOM Tree

method[3,6] is during the process of re-crawling, the

matching of two web pages for similarity becomes very

easy. This method works in two steps. In the first step

document tree is generated for the downloaded web page

while in the second step, level by level comparison between

the trees is performed. The downloaded page is stored in the

repository in search/insert fashion as given below[3]:-

• Search the downloaded document in the repository.

• If the document is found then compare both the

versions of the document for structural changes

using level by level comparison of their respective

document tree.

• Else store the document in the repository.

III. PROPOSED SYSTEM

This paper proposes an approach for a multi-user personal

focused web crawler with the facility of detecting the

changes in the search result page since the last access.

Basic Working

The main crawler logic will get triggered, when the user

provides the search string. A crawler initially has a crawl

queue that contains set of seed URLs.

The seed URL can be provided in two ways:

• Pre-defined seeds based on user preferences.

• Seeds that the user provides.

The crawler program will fetch the first page from crawl

queue and check whether it is relevant or not based on its

relevance score with respect to search string provided by the

user. If that page is relevant, then only is it stored into

database. Then URLs from that page are extracted and

inserted into crawl queue. Now crawler fetches another

page from crawl queue and repeats the process.

The system is further divided into two modules:-

• Relevance calculation to retrieve relevant pages.

• Change Detection to detect any changes in content

of pages.

145

 International Journal of Computer Sciences and Engineering Vol.-2(3), pp (144-147) March 2014 E-ISSN: 2347-293

 © 2014, IJCSE All Rights Reserved

Relevance Calculation

Whenever an input string has been entered by the user, the

crawler must provide the links that are related to it. To do

so, the crawler must start from a seed page and then select

the corresponding outgoing links from it and then check

whether a link selected is relevant or not.

Here in this system, relevancy of a page is calculated

according to Word Frequency i.e. the number of times the

search string is repeated in the web page. Word Frequency

is counted and the links are sorted in descending order of

count and results to the user are displayed according to it.

Following is the pseudo code for calculating word

frequency:

1. Extract page source.

2. while (current_line!= EOF) // scanning each line

3. {

4. if(current_line contains search_string)

5. {

6. word_frequency++;

7. }

8. }

 Change Detection

To check whether the page has been changed or not, we

compare the checksum of old page stored in database with

the checksum of new page. If checksums are same then

there is no change in the page, if checksums are different

then we assume that there has been some change in the page

and we must re-crawl that page.

To compute checksum:

Checksum (P) = ASCIISumOfPageContent /

DistinctCharacterCount.

Algorithm

1. set of seed URLs is given as input to the crawler.

2. input search string provided by user.

3. select the seed pages based on user preferences and

search string.

4. insert the seed pages into crawl queue of URLs.

5. while the crawl queue is not empty

6. {

7. get the first URL from the list.

8. Calculate word frequency based on search string

provided

9. if page is relevant

10. {

11. insert current page details into corresponding user

database

12. move the page to the already searched list i.e. (visited

list).

13. fetch all links present in that page

14. while the page contains another link(linktobeinserted),

15. {

16. validate the linktobeinserted

17. if the linktobeinserted is present in visitedlist.

18. {

19. discard the link.

20. }

21. else

22. {

23. add it to the inserted list.

24. }

25. }

26. }

27. }

Architecture

Fig.1: Crawler Architecture.

IV. CONCLUSION

This paper provides a method to develop a personalized

web crawler. This web crawler is personalized by providing

results and suggestions based upon the user profile, user

defined seeds or links that have been visited by the user.

Here, relevancy of a page is calculated using word

Releva

nt?

Enter Search String

Start Crawling

Select Seed

Calculate Page

Relevancy

Fetch Page

Already

Crawled

?

Insert Page into Database

and Fetch Links From it.

Insert Fetched Links into Queue

Queue

Empty?

End Crawling

Calculate Checksum

For Change Detection

Database

Crawl Queue

Discard link

Yes

No

No

No

146

Yes

Yes

 International Journal of Computer Sciences and Engineering Vol.-2(3), pp (144-147) March 2014 E-ISSN: 2347-293

 © 2014, IJCSE All Rights Reserved

frequency method. Now for every crawler, it is challenging

to provide updated information regularly to user. Thus it is

necessary to re-crawl pages that are changing very

frequently. In this paper we have discussed the change

detection method based on the content of web pages.

Future work includes improving the crawler efficiency to

speed up the crawling process. A major scope for future

work is to have extensive tests with a large volume of web

pages and perform change detection of pages which include

graphical information.

ACKNOWLEDGMENT

The research presented in this paper would not have been

possible without the kind support and help of Prof. Swati

Mali Deshpande (K. J. Somaiya College of Engineering).

We also wish to thank all the other anonymous contributors

for their valuable guidance and support.

REFERENCES

[1] Mahdi Bazarganigilani, Ali Syed and Sandid Burki, “Focused

web crawling using decay concept and genetic

programming”, published in International Journal of Data

Mining & Knowledge Management Process (IJDKP), Vol.1,

No.1, Page no(1-12), January 2011.

[2] 3Swati Mali and B B Meshram, “Focused Web Crawler with

Page Change Detection Policy”, published in International

Journal of Computer Applications (IJCA) proceedings on

International Conference and workshop on Emerging Trends

in Technology (ICWET), No 9 Article 9, Page No 51-56,

2011.

[3] 4DivakarYadav, AK Sharma, Sonia Sanchez-Cuadrado, Jorge

Morato, “an approach to design incremental parallel

webcrawler”, published in Journal of Theoretical and Applied

Information Technology, Volume 43 No 1, Page no:(8-29),

15 September 2012.

[4] 6Anshika Pal, Deepak Tomar and S.C. Shrivastava,

“Effective Focused Crawling Based on Content and Link

Structure Analysis”, published in (IJCSIS) International

Journal of Computer Science and Information Security, Vol.

2, no. 1, Page No: (1-5), June 2009.

[5] 7Ioannis Avraam and Ioanni Anagnostopoulos, “A

Comparison over Focused Web Crawling Strategies”,

published in Panhellenic Conference on Informatics(IEEE),

Print ISBN 978-1-61284-962-1,Page No: (245-249),

September 2011.

[6] 9Weicheng Ma, Xiuxia Chen and Wenqian Shang,

“Advanced deep web crawler based on Dom”, published in

IEEE Fifth International Joint Conference on Computational

Sciences and Optimization, print ISBN 978-1-4673-1365-0,

Page No: (605-609), June 2012

[7] Mejdl S. Safran, Abdullah Althagafi and Dunren Che,

”Improving Relevance Prediction for Focused Web

Crawlers”, published in IEEE/ACIS 11th International

Conference on Computer and Information Science, print

ISBN 978-1-4673-1536-4, page no: (161-166), May 2012.

[8] Jatinder Manhas, “A Study of Factors Affecting Websites

Page Loading Speed for Efficient Web Performance”,

published in International Journal of Computer Sciences and

Engineering (IJCSE), Vol-1, Issue-3, Nov 2013.

AUTHORS’ PROFILES

Hardik Trivedi is currently a

student of K. J. Somaiya College

Of Engineering, Computer branch,

Mumbai, India.

Gaurav Daxini is currently a

student of K. J. Somaiya College

Of Engineering, Computer branch,

Mumbai, India.

Jignesh Oswal is currently a student

of K. J. Somaiya College Of

Engineering, Computer branch,

Mumbai, India.

Vinay Gor is currently a student of

K. J. Somaiya College Of

Engineering, Computer branch,

Mumbai, India.

Ms. Swati Mali is working as Asst.

Professor in the department of

Computer Engineering, at K. J.

Somaiya College of Engineering,

Vidyavihar, Mumbai. She holds an

M.tech degree from VJTI, Mumbai.

147

