o
/&]CSE International Journal of Computer Science and Engineering [pen Access

Research Paper Volume-2, Issue-3 E-ISSN: 2347-2693

An Approach to Design Personalized Focused Crawler
Hardik P. Trivedil*, Gaurav N. Daxiniz, Jignesh A. Oswal’ , Vinay D. G0r4, Swati Mali’

Student, BE Computers, K. J. Somaiya College of Engineering, Mumbai, India'"*"*

Assistant Professor, M Tech Computers, K. J. Somaiya College of Engineering, Mumbai, India’
www.ijcseonline.org

Received: 1 March 2014 Revised: 14 March 2014 Accepted: 26 March 2014 Published: 31 March 2014

Abstract— The amount of data and its dynamicity makes it impossible to crawl the World Wide Web (WWW) completely. It’s a
challenge in front of crawlers to crawl only the relevant pages from this information explosion. Thus a focused crawler solves this
issue of relevancy to a certain level, by focusing on web pages for some given topic or a set of topics. Also a focused crawler with
a page change detection policy can help in narrowing down the search to only newer pages, and thus eliminates risk of redundancy
and missing updated data. This paper proposes a policy for design of a focused crawler with web page change detection policy.

Keywords— Web Crawler, Focused Crawler, World Wide Web(WWW), Content Analysis, Link Scoring, Change Detection.

I. INTRODUCTION

A web crawler is an automated program that methodically
scans WWW and downloads pages that can be reached via
links. With the exponential growth of the web, fetching
information about a particular topic is very important. A
focused crawler is one that attempts to download only those
web pages that are relevant to a predefined topic or set of
topics instead of crawling the entire WWW. In order to
determine whether a web page is relevant or not, focused
crawler uses various classification techniques. The web is
dynamic and it keeps on changing, so it is important to keep
track of web pages that change very frequently.

All the search engines track the users’ digital footprints and
use the data for user profiling, analysis and personalization.
Also, most of the results are based on in general user
preferences, rather than being very personalized. The
motivation behind developing a Personalized Focused
Crawler is to provide targeted information to user i.e.
providing information based on user’s interest solely. Along
with this feature, this application also focuses on user’s
privacy, for instance user details and their log activities are
not forwarded to any third party applications.

This paper is organized in four sections with introduction
preceding the literature review in section II. In section III,
we propose our approach for Personalized Focused
crawling. We follow this by Conclusion in section IV and
the last part contains Acknowledgement.

II. LITERATURE REVIEW

There are various kinds of crawler architectures as in,
parallel crawler, distributed crawler, intelligent crawlers,
etc. Amongst all, the common issues are information
retrieval and result ranking as per the relevance.

Hardik Trivedi, hardiktrivediO612 @ gmail.com

© 2014, IJCSE All Rights Reserved

Basic Working

A crawler initially starts with a set of seed URLSs. It fetches
the first page from crawl queue and checks whether it is
relevant or not based on its relevance score with respect to
search string provided by the user. If that page is relevant it
is stored into a database. Then URLs from that page are
extracted and inserted into crawl queue. Now the crawler
fetches another page from crawl queue and repeats the
process.

Relevance Calculation

There are two approaches through which relevancy of a
page can be calculated.

1) Content Analysis: For a given page, title-text is more
important and descriptive than the body-text. Thus title-text
should have higher weight than the body-text. The weight
of topic words [1,4,7] in different positions calculated as:-

Wk = ct * fk for title text and
Wk = cb * tk for body text,

where ct and cb are meta and body coefficients respectively.
We assume ct=2 and cb=1. Wk is the weight of a topic word
k and fk is the frequency of word k in the related text.

This weight variable is used to calculate the page relevance
with cosine similarity measure as follows [1]:-

Cosine(d;,d2)=(Xw; * wo)N(ETwii)* (Twai))

Here, d; = (W;j+wjp+........ +w;) where w; represents the
weight assigned to term ¢j in document d;. If the retrieved
page is similar to the query terms given in the topic words
weight table, then it is called relevant, otherwise irrelevant.

2) Link Scoring: In link scoring for web pages, the
crawler also checks the links included in irrelevant pages
and it keeps on crawling through them up to a certain
threshold. Then, the crawler calculates link scores using the
following equation and decides whether to fetch pages

144

International Journal of Computer Sciences and Engineering

specified by links or not. The link score can be calculated as
[1.4]:

LinkScore(u) = URLTextScore(u) + AnchorTextScore(u) +
NumberOfParentPages(u) + [Relevance(p;) +

Relevance(p,)+....+Relevance(p,)].

Thus crawler spends less time on irrelevant pages and does
not miss relevant pages, which are children of an irrelevant

page.

In a crawling process, the effectiveness of the focused
crawler does not just rely on the maximum amount of
relevant pages to be fetched but it also depends on the speed
of the crawling process. The speed of a crawler depends on
the number of relevant URLs inserted into the URL queue.
Therefore, a mechanism, that we call URL optimization, is
required for the crawler to select links that are more likely
to be relevant. The URL optimization enables the removal
of certain links whose link scores are below a predefined
threshold point. For URL optimization, we used two
different link score evaluation methods for relevant pages.

e Same as above equation which is used for

irrelevant pages.
e Naive Bayes (NB) classifier to compute link

scores[1,5].

Change Detection

Change detection for a web crawler is the technique by
which the web crawler decides which web pages to re-
crawl, by detecting the changes that have incurred in the
web pages. There are two approaches through which
changes in a page can be detected.

1) Freshness Tuning: Freshness Tuning[2] provides four
categories of crawl behaviors. To apply a crawl behavior,
specify URL patterns for the behavior.

e Crawl Frequently[2]: Use Crawl Frequently
patterns for URLs that are dynamic and change
frequently. Any URL that matches one of the
Crawl Frequently patterns is scheduled to be re-
crawled after a certain period based on frequency
of updating.

e Crawl Infrequently[2]: Use Crawl Infrequently
Patterns for URLSs that are relatively static and do
not change frequently. Any URL that matches one
of the Crawl Infrequently patterns is not crawled
very frequently, regardless of its page relevance or
how frequently it changes.

@
f&] CSE ©2014, IICSE All Rights Reserved

Vol.-2(3), pp (144-147) March 2014 E-ISSN: 2347-293

e Always Force Re-crawl[2]: Use Always Force Re-
crawl patterns to prevent the crawler from crawling
a URL from cache.

e Re-crawl URL Patterns [2]: Use Re-crawl URL
Patterns to submit a URL to be re-crawled. URLSs
that you enter here are re-crawled as soon as
possible.

2) Dom Tree: A clear way to decrease the load time of
a site is to decrease the file size of the HTML
documents[8]. And one of the methods to do this is by
creating a DOM tree. In this method, the HTML pages are
transformed into XML files so that their later access
becomes faster. Also another advantage of the DOM Tree
method[3,6] is during the process of re-crawling, the
matching of two web pages for similarity becomes very
easy. This method works in two steps. In the first step
document tree is generated for the downloaded web page
while in the second step, level by level comparison between
the trees is performed. The downloaded page is stored in the
repository in search/insert fashion as given below[3]:-

e Search the downloaded document in the repository.

e If the document is found then compare both the
versions of the document for structural changes
using level by level comparison of their respective
document tree.

e Else store the document in the repository.

III. PROPOSED SYSTEM

This paper proposes an approach for a multi-user personal
focused web crawler with the facility of detecting the
changes in the search result page since the last access.

Basic Working

The main crawler logic will get triggered, when the user
provides the search string. A crawler initially has a crawl
queue that contains set of seed URLs.

The seed URL can be provided in two ways:

e Pre-defined seeds based on user preferences.
e Seeds that the user provides.

The crawler program will fetch the first page from crawl
queue and check whether it is relevant or not based on its
relevance score with respect to search string provided by the
user. If that page is relevant, then only is it stored into
database. Then URLs from that page are extracted and
inserted into crawl queue. Now crawler fetches another
page from crawl queue and repeats the process.

The system is further divided into two modules:-

e Relevance calculation to retrieve relevant pages.

e Change Detection to detect any changes in content
of pages.

145

International Journal of Computer Sciences and Engineering

Relevance Calculation

Whenever an input string has been entered by the user, the
crawler must provide the links that are related to it. To do
so0, the crawler must start from a seed page and then select
the corresponding outgoing links from it and then check
whether a link selected is relevant or not.

Here in this system, relevancy of a page is calculated
according to Word Frequency i.e. the number of times the
search string is repeated in the web page. Word Frequency
is counted and the links are sorted in descending order of
count and results to the user are displayed according to it.
Following is the pseudo code for calculating word
frequency:

1. Extract page source.

2. while (current_line!= EOF) // scanning each line
3.1

4. if(current_line contains search_string)
5. {

6 word_frequency++;

7 }

8. }

Change Detection

To check whether the page has been changed or not, we
compare the checksum of old page stored in database with
the checksum of new page. If checksums are same then
there is no change in the page, if checksums are different
then we assume that there has been some change in the page
and we must re-crawl that page.

To compute checksum:
Checksum (P) =
DistinctCharacterCount.

ASCIISumOfPageContent /

Algorithm

1. set of seed URLs is given as input to the crawler.

2. input search string provided by user.

3. select the seed pages based on user preferences and
search string.

4. insert the seed pages into crawl queue of URLs.

5. while the crawl queue is not empty

6. {

7. get the first URL from the list.

8. Calculate word frequency based on search string
provided

9. if page is relevant

10. {

11. insert current page details into corresponding user
database

12. move the page to the already searched list i.e. (visited
list).

13. fetch all links present in that page

14. while the page contains another link(linktobeinserted),
15. {

16. validate the linktobeinserted

@
f&] CSE ©2014, IICSE All Rights Reserved

Vol.-2(3), pp (144-147) March 2014 E-ISSN: 2347-293

17. if the linktobeinserted is present in visitedlist.
18. {

19. discard the link.

20. }

21. else

22.

23. add it to the inserted list.

24.}

25.}
26. }
27.}

Architecture

[Enter Search String]

Already

Crawled

Calculate Page
Relevancy

[Calculate Checksum]

For Chanee Detection

Insert Page into Database]

and Fetch Links From it.

\

[Insert Fetched Links into Queue]

End Crawling

Fig.1: Crawler Architecture.

IV. CONCLUSION

This paper provides a method to develop a personalized
web crawler. This web crawler is personalized by providing
results and suggestions based upon the user profile, user
defined seeds or links that have been visited by the user.
Here, relevancy of a page is calculated using word

146

International Journal of Computer Sciences and Engineering

frequency method. Now for every crawler, it is challenging
to provide updated information regularly to user. Thus it is
necessary to re-crawl pages that are changing very
frequently. In this paper we have discussed the change
detection method based on the content of web pages.

Future work includes improving the crawler efficiency to
speed up the crawling process. A major scope for future
work is to have extensive tests with a large volume of web
pages and perform change detection of pages which include
graphical information.

ACKNOWLEDGMENT

The research presented in this paper would not have been
possible without the kind support and help of Prof. Swati
Mali Deshpande (K. J. Somaiya College of Engineering).
We also wish to thank all the other anonymous contributors
for their valuable guidance and support.

REFERENCES

[1] Mahdi Bazarganigilani, Ali Syed and Sandid Burki, “Focused
web crawling using decay concept and genetic
programming”, published in International Journal of Data
Mining & Knowledge Management Process (IJDKP), Vol.1,
No.1, Page no(1-12), January 2011.

[2] 3Swati Mali and B B Meshram, “Focused Web Crawler with
Page Change Detection Policy”, published in International
Journal of Computer Applications (IJCA) proceedings on
International Conference and workshop on Emerging Trends
in Technology ICWET), No 9 Article 9, Page No 51-56,
2011.

[3] 4DivakarYadav, AK Sharma, Sonia Sanchez-Cuadrado, Jorge
Morato, “an approach to design incremental parallel
webcrawler”, published in Journal of Theoretical and Applied
Information Technology, Volume 43 No 1, Page no:(8-29),
15 September 2012.

[4] 6Anshika Pal, Deepak Tomar and S.C. Shrivastava,
“Effective Focused Crawling Based on Content and Link
Structure Analysis”, published in (IJCSIS) International
Journal of Computer Science and Information Security, Vol.
2, no. 1, Page No: (1-5), June 2009.

[5] 7loannis Avraam and Ioanni Anagnostopoulos, “A
Comparison over Focused Web Crawling Strategies”,
published in Panhellenic Conference on Informatics(IEEE),
Print ISBN 978-1-61284-962-1,Page No: (245-249),
September 2011.

[6] 9Weicheng Ma, Xiuxia Chen and Wengian Shang,
“Advanced deep web crawler based on Dom”, published in
IEEE Fifth International Joint Conference on Computational
Sciences and Optimization, print ISBN 978-1-4673-1365-0,
Page No: (605-609), June 2012

[71 Mejdl S. Safran, Abdullah Althagafi and Dunren Che,
“Improving Relevance Prediction for Focused Web
Crawlers”, published in IEEE/ACIS 11th International
Conference on Computer and Information Science, print
ISBN 978-1-4673-1536-4, page no: (161-166), May 2012.

[8] Jatinder Manhas, “A Study of Factors Affecting Websites
Page Loading Speed for Efficient Web Performance”,
published in International Journal of Computer Sciences and
Engineering (IICSE), Vol-1, Issue-3, Nov 2013.

@
,@] CSE ©2014, IICSE All Rights Reserved

Vol.-2(3), pp (144-147) March 2014 E-ISSN: 2347-293
AUTHORS’ PROFILES

Hardik Trivedi is currently a
student of K. J. Somaiya College -
Of Engineering, Computer branch, =

Mumbai, India.

Gaurav Daxini is currently a
student of K. J. Somaiya College
Of Engineering, Computer branch,
Mumbai, India.

Jignesh Oswal is currently a student
of K. J. Somaiya College Of
Engineering, Computer branch,
Mumbai, India.

Vinay Gor is currently a student of
K. J. Somaiya College Of
Engineering, Computer branch,
Mumbai, India.

Ms. Swati Mali is working as Asst.
Professor in the department of
Computer Engineering, at K. J.
Somaiya College of Engineering,
Vidyavihar, Mumbai. She holds an
M.tech degree from VITI, Mumbai.

147

