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Abstract: Knowledge distillation (KD) is a machine learning technique where a compact student model is trained by a larger
teacher model to create efficient, high-performance models suitable for devices with limited computational resources. The student
learns by mimicking the teacher’s nuanced predictions, known as “’soft targets”, which provide a richer learning signal than
traditional ground-truth labels. Methods are categorized by the source of knowledge—such as the teacher’s final outputs (response-
based), intermediate features (feature-based), or the relationships between data points (relation-based)—and by the training
strategy, including offline, online, and self-distillation schemes. This review focuses on the application of KD to 2D and 3D
LiDAR data for tasks like object detection and semantic segmentation in autonomous systems. In this domain, knowledge
distillation is critical for developing lightweight models that can run in real-time, enabling cross-modal learning from expensive
LiDAR to cheaper sensors, and addressing inherent challenges of point cloud data such as sparsity and sensor-specific domain

gaps.
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ore | Features oftne devices. While frequently categorized as a form of model
' compression, knowledge distillation is fundamentally a
knowledge transfer process. This distinction is critical, as
traditional model compression techniques like pruning or
quantization modify an existing model, whereas distillation
involves training an entirely new student model from the
ground up using the teacher as a guide. This paradigm allows
for significant architectural flexibility, as the student and
teacher do not need to be homogeneous. The core of the
distillation process represents a paradigm shift from
conventional supervised learning. Instead of learning only
from ground-truth hard labels, the student model is trained to
match the nuanced predictions of the teacher. This concept was
formalized by [1], who introduced the idea of dark knowledge
represented by the rich information encoded in the teacher’s
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1. Introduction

Knowledge Distillation (KD), also known as model

distillation, is a sophisticated machine learning technique
centered on transferring knowledge from a large, complex, and
often cumbersome model, referred to as the teacher, to a
smaller, more compact model, the student. The fundamental
objective is to train this student model to not only perform a
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full probability distribution across all classes, not just the
single correct answer. By learning from these soft targets, the
student can learn a more generalized and robust function, as it
captures how the teacher perceives similarities and
relationships within the data space.
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The initial concept, rooted in earlier work on model
compression by [2], established response-based distillation,
where the student mimics the teacher’s final output layer.
While simple and effective, this approach overlooks the wealth
of information in a teacher’s intermediate layers. This
limitation led to the development of feature-based distillation,
which transfers knowledge from the teacher’s hidden layers. A
pioneering method in this area was [3], which used hints from
a teacher’s intermediate feature maps to train thinner but
deeper student networks. This demonstrated that guiding the
student’s feature extraction process directly, could
significantly improve performance. Subsequent feature-based
methods [3, 4] have explored distilling various aspects of
feature maps, including attention maps, activation boundaries,
and neuron selectivity patterns, to provide more
comprehensive guidance to the student.

Further evolution led to relation-based distillation, which
posits that the relationships between features or data samples
constitute a higher form of knowledge. The work on Relational
Knowledge Distillation [5] was instrumental, introducing
distance-wise and angle-wise losses to compel the student to
preserve the structural relationships between data points found
in the teacher’s embedding space. This approach proved highly
effective, particularly for 2D metric learning tasks, where
student models were sometimes able to outperform their
teachers. Other methods have since explored transferring
relational knowledge using graph-based representations or by
modeling the similarity between feature maps.

Relation Based

[ Feature Based ] [ Response Based ]

Figure 1. Knowledge sources in distillation. Response-based: the student
mimics teacher soft targets at the output head. Feature-based: the student
matches selected intermediate feature maps. Relation-based: the student
preserves structural relations (e.g., affinities) computed from features across
samples or regions.

This review examines the evolution of knowledge distillation
techniques as applied to LiDAR data, from foundational
concepts to domain-specific and cross-modal applications.

1.1 Contributions
This survey makes the following contributions:

1.  We introduce a unified taxonomy for KD in LiDAR that
jointly covers knowledge sources (response-based,
feature-based, relation-based), training schemes (offline,
online, self), data representations (point cloud, BEV,
RV/projections), and modality paths (intra- vs cross-
modal), and we map existing methods onto this space;
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2. We provide the first focused synthesis of KD for 2D
range (single-plane LiDAR) perception, summarizing
architectures and datasets and proposing practical KD
recipes tailored to this setting;

3.  We analyze LiDAR-specific design patterns, challenges,
and failure modes across representations—sparsity,
occlusion, beam/domain gaps, compression, and weather;

4. We outline forward-looking directions, including
foundation-model  teachers, temporal/world-model
distillation, robustness-aware and planning-aware KD.

Compared to prior general surveys on knowledge distillation
[6], which are modality-agnostic and largely centered on 2D
vision and classification, our contribution is domain-specific:
we extend existing taxonomies with two LiDAR-centric axes:
the data representation (point cloud, BEV, range view, 2D
range) and the modality path (intra- vs cross-modal), and we
systematically map LiDAR KD methods into this multi-
dimensional design space. We provide, to our knowledge, the
first focused synthesis of knowledge distillation for 2D range
(single-plane LiDAR) perception, including detectors,
datasets, and practical recipes. We analyze LiDAR-specific
design patterns and failure modes—sparsity, beam/domain
gaps, compression, and weather—and connect them to
concrete KD mechanisms and engineering guidelines. We
curate recent LiDAR-focused KD algorithms for detection,
segmentation, and mapping across BEV, point-cloud, and
projected representations, which are only marginally covered
or not covered at all in general KD surveys.

1.2 Search Methodology

To identify the articles for this review, the research
methodology centered on a systematic search of academic
databases using structured queries. The search strategy was
formulated to specifically target the intersection of sensor
technology, a core machine learning technique, and key
application areas. We detail here the methodology used to
collect and organize the literature surveyed in this work. Our
aim was to cover research at the intersection of knowledge
distillation (KD) and LiDAR-based perception, including both
intra-modal distillation and cross-modal transfer where
LiDAR is either the teacher or the student modality.

To this end, we queried several major digital libraries and

search engines—IEEE Xplore, ACM Digital Library,

SpringerLink, Elsevier ScienceDirect, arXiv, and Google

Scholar—for works published between January 2015 and

March 2025. This time window spans the period after the

popularization of modern KD for deep networks and the

emergence of large-scale 3D LiDAR benchmarks. We used

combinations of three groups of keywords:

1. sensor/data terms such as “LiDAR”, “point cloud”,
“bird’s-eye view”, “range view”, “2D range”;

2. distillation terms such as “knowledge distillation”,
“model distillation”, “teacher student”; and

3. task terms such as “3D object detection”, “semantic

LR T3

segmentation”, “mapping”, and “autonomous driving”.

Typical query patterns included, for example, “LiDAR AND
knowledge distillation”, “point cloud AND distillation”, and
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“bird’s-eye view AND knowledge distillation”, with syntax

adapted to each database (title/abstract search where

supported). From the resulting set of candidate papers, we
applied the following inclusion criteria. A work was retained
if it

1. explicitly employed a teacher—student training scheme
that can be interpreted as KD (offline, online, or
self-distillation),

2. involved LiDAR or LiDAR-derived representations
(native point clouds, BEV grids, range/front views, or
raw 2D scans) either as the primary input to the student
or as the target modality of cross-modal KD, and

3. addressed a perception or mapping task relevant to
autonomous systems (e.g., 3D/BEV object detection,
LiDAR semantic or instance segmentation, traversable
region detection, or semantic mapping).

We excluded works that used LiDAR but did not apply any
form of KD, general KD methods with no 3D or LiDAR
component (except for a small number of foundational KD
papers used for background), and non-archival or incomplete
materials. Screening was performed in two stages: initial
filtering based on title and abstract, followed by full-text
inspection to verify the actual use of KD, the role of LiDAR,
and the specific task. When multiple versions of the same work
existed (e.g., arXiv preprint and later conference paper), we
kept the most complete peer-reviewed version. Each selected
paper was then manually categorized along the five axes of our
unified taxonomy (Fig. 2): knowledge source (response-,
feature-, or relation-based, or combinations thereof),
distillation scheme (offline, online, self-distillation), data
representation (point cloud, BEV, range/front view, or raw 2D
range), modality path (intra-modal vs cross-modal), and task
type (object detection, semantic segmentation, mapping, etc.).
This classification was based on the methodological
description and loss formulations in each paper and is
summarized in our overview tables (Tables 1-7).

The remainder of this paper is organized as follows. Section 1
introduces knowledge distillation (KD), positions it within
autonomous perception, states our contributions, and outlines
the search methodology (Fig. 2). Section 2 reviews 2D range
data and LiDAR representations—raw polar scans, Cartesian
point clouds, bird’s-eye view (BEV), and range view (RV)—
including practical processing implications and key datasets
(DROW, JRDB, FROG). Section 3 develops the taxonomy of
knowledge sources—response-, feature-, and relation-based—
anchored by an overview (Fig. 1), detailed schematics (Figs.
3-5), and a summary table (Table 2). Section 4 presents
distillation schemes—offline, online, and self-distillation—
with conceptual diagrams (Figs. 6-8) and a consolidated
comparison (Table 3). Section 5 surveys algorithms and
applications across representations: BEV (cross-/intra-modal
transfer and alignment), native point clouds (local
geometry/topology and robustness), and projected 2D views
(range images), with organization by representation (Table 1)
and modality path (Table 4). Section 6 concludes with a
synthesis of challenges and forward-looking directions,
including foundation-model teachers, temporal/world-model
distillation, and robustness- and planning-aware KD.
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VI. Results
Comparison

Sources
1. Response-Based . Offline-Distillation
2. Feature-Based 2. Online-Distillation
3. Similarity-Based . Self-Distillation

Knowledge
Distillation

IV. Modality

. Mapping
_______________________________ 2. Detection
1. Intra-Modal 3. Semantic
2. Cross-Modal 1. Point-Cloud
2. Bird’s eye view/projection
3. Hybrid

segmentation
4. Tracking
5. Occupancy

Figure 2. Unified taxonomy of knowledge distillation for LIDAR perception.
Methods are organized along five axes: (1) knowledge source (response,
feature, relation), (2) scheme (offline, online, self), (3) data representation
(point cloud, BEV, range view), (4) modality path (intra-modal, cross-
modal), and (5) task (object detection, semantic segmentation).
Representative works are mapped to this space.

2. 2D Range Data

2D range data is a fundamental type of environmental
perception data used extensively in robotics and autonomous
systems. It consists of a set of distance measurements captured
on a single, two-dimensional plane, effectively creating a 2D
”slice” of the surrounding environment. This data is crucial for
core robotic tasks such as obstacle detection, localization, and
navigation.

The most common source of 2D range data is the 2D LiDAR
(Light Detection and Ranging) sensor. This device operates by
emitting a rotating laser beam. When the beam strikes an
object, it reflects to the sensor. By measuring the time it takes
for the light to travel to the object and return (time-of-flight),
the sensor calculates the precise distance to that point. As the
laser sweeps across a horizontal plane, it collects thousands of
these distance measurements at discrete angular increments,
typically generating a full 360-degree view [7].

The widespread adoption of 2D LiDAR sensors in robotics [8]
is driven by a compelling blend of cost-effectiveness and
robust performance. Their affordability compared to 3D
counterparts has made them a standard, economical choice for
a vast array of applications, from industrial automated guided
vehicles (AGVs) to commercial and even hobbyist robots. In
terms of performance, they deliver highly accurate distance
measurements over long ranges, often proving superior to
other low-cost sensors. A significant advantage over cameras
is their lighting invariance; as active sensors providing their
own illumination, they function reliably in conditions ranging
from bright sunlight to complete darkness. Furthermore, a
single 2D LiDAR can offer comprehensive 360-degree
coverage, providing a wide field of view that would otherwise
require a more complex and costly multi-camera setup to
replicate. The way 2D range data is structured for processing
by algorithms, especially deep learning models, is a critical
consideration. The structure follows:

1. Raw Data (Polar Coordinates): In many robotics
frameworks like the Robot Operating System (ROS), 2D
LiDAR data is provided as a LaserScan message. This is
essentially an array of range values (distances), where each
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element’s index corresponds to a specific angle. This native
polar coordinate format (range, angle) is an ordered
structure that some neural networks can process efficiently.

2. Point Cloud (Cartesian Coordinates): The raw polar data
is often converted into a 2D point cloud using trigonometry
to get a set of Cartesian coordinates. While geometrically
intuitive, this representation is an unordered set of points.
This irregularity and sparsity make it incompatible with
standard Convolutional Neural Networks (CNNs) and
require specialized architectures.

3. Projected 2D Views: To leverage the power and efficiency
of 2D CNNs, a common strategy is to project the point
cloud data into an image-like grid format. The two most
prevalent projections are: Bird’s-Eye-View (BEV), Range
View (RV).

BEV is a top-down projection of the points onto a 2D grid. This
view preserves the physical dimensions and spatial layout of
objects on the ground, making it ideal for navigation and path
planning. However, it can lose vertical information. RV is a
projection onto a spherical or cylindrical plane, where the axes
represent the laser’s angles. This format is compact, dense, and
preserves the sensor’s perspective, including occlusion
information. Its main drawback is the potential distortion of
object shapes and sizes. Beyond just distance, many LiDAR
sensors also return an intensity value for each point. This value
measures the reflectivity of the surface the laser hit. For
example, a reflective road sign will have a much higher
intensity than dark asphalt. This intensity information provides
powerful semantic cues that go beyond pure geometry.
Including intensity as an additional data channel has been
shown to be crucial for improving the performance of
perception tasks like semantic segmentation, as it helps models
distinguish between objects made of different materials. In
(Table 1) we give an overview of existing work using specific
data structures.

While 2D range data remains a cost-effective and widely used
sensor modality for many mobile and industrial robots, it has
been largely superseded by 3D LiDAR in the context of
advanced autonomous driving research. This shift in focus is

Table 1. Classification of LIDAR data representation
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[14] MMDistill [24] Self-Distillation
for Robust Lidar

Segmentation

[15] Distillation [25] Image-to-Lidar

from 3D to BEV Self-Supervised

[16] SimDistill Distillation

[17] TIGDistill- [26] Weak-to-Strong
BEV 3D Object Detection
[18] CRKD [27] Sunshine to

Rainstorm: Cross
Weather KD
[28] PartDistill

BEV Point Clouds Raw 2D Range
(Bird’s-Eye-View) Data
[9] 3D-to-2D [19] PointDistiller [29] DR-SPAAM

Distillation for
Indoor Scene
Parsing

[10] Lidar
Distillation

[30] Li2Former
[20] Topology
Guided KD

[11] DistilBEV [21] Point-to-Voxel | [31,32] DROW

KD Dataset

[12] UniDistill [22] Adversarial
Learning on 3D

Point Clouds

[33] JRDB Dataset

[13] BEV-LGKD [23] Perturbed Self-

Distillation

[34] FROG Dataset
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reflected in the available public datasets, with most large-scale
benchmarks being built around 3D LiDAR sensors for
complex driving scenarios [35]. Consequently, the body of
research on knowledge distillation has predominantly
concentrated on 3D point cloud data, whether for object
detection or semantic segmentation. As a result, there is a
comparative scarcity of academic papers that specifically
address the application of knowledge distillation to native 2D
range data. The recent introduction of what is described as the
first public semantic dataset for 2D LiDAR underscores that
this is an emerging area, suggesting that dedicated research
into distilling knowledge for these more resource-constrained
systems is still in its nascent stages.

The field of 2D LiDAR data has seen a significant evolution,
largely propelled by advancements in deep learning
architectures and the availability of robust benchmarking
datasets. The DR-SPAAM [29], which introduced an
innovative spatial-attention and auto-regressive model to solve
challenges in temporal data fusion, enables real-time
performance on resource-constrained hardware. The latest
advancement is represented by Li2Former [36], a Transformer-
based architecture that achieves superior accuracy by modeling
global context throughout the entire laser scan. The
development and validation of these detectors have been made
possible by a set of popular and increasingly challenging
datasets. These include the original DROW dataset [31, 32],
which catalyzed early research; the large-scale, multimodal
JRDB (JackRabbot Dataset) [33], which offers immense
complexity with its rich sensor data and annotations for actions
and social groups and the FROG dataset [34], a modern
benchmark specifically designed with dense annotations and
crowded public scenarios to overcome the limitations of earlier
datasets.

3. Source Theory

The paper [6] classifies these distillation sources into three
well-established categories:

1. Response-based Distillation: This method, also known as
logit-based knowledge distillation, uses the outputs of the
model’s last layer, known as logits, as the source of
knowledge. The student model is trained to mimic these
final predictions from the teacher.
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2. Feature-based Distillation: This approach utilizes the
representations from the intermediate layers of the
teacher network as the source of knowledge, providing
the student with step-by-step information that leads to the
final prediction.

3. Relation-based Distillation: This form of distillation,
newly named similarity-based knowledge distillation,
transfers structural knowledge and relationships learned
by the teacher, such as the pairwise similarities between
features, instances, or classes, rather than the exact
feature values themselves.

Knowledge distillation encompasses a variety of techniques
for transferring knowledge from a large, complex teacher
model to a smaller, more efficient student model. These
methods can be broadly categorized based on the type of
knowledge being transferred. The most straightforward
approach is response-based distillation (logit-Based), where
the student model is trained to mimic the final output
predictions, or logits, of the teacher. This method leverages the
teacher’s softened probability distribution over the classes,
which provides more information than just the ground-truth
labels.

3.1 Response-Based

Modern response-based knowledge distillation techniques, as
illustrated in (Figure 3) have evolved significantly beyond the
foundational concept of mimicking a teacher model’s final
output distribution, or logits. Define teacher and student logits

as zT, z5, temperature 7, soft target p5 = softmax(z5/t). The
student KD objective balances a hard and a soft term as:

Lgp = 2t*KL(p"||p*),and
L=aLe(y,p%) + (1 —a)lgp (M

A prominent recent approach is the decoupling of the
distillation loss, which most existing methods aim to do. This
separates the knowledge from the target class and non-target
classes, as proposed in methods like Decoupled Knowledge
Distillation (DKD) [37], to improve student learning. DKD
separates positive and negative examples, by adjusting the
loss:

LPKP = Qs - KLY IP3) + Aneg (B3 1155) @

where p,, is the target-class probability and p,, sums over non-
target classes. The T, S superscript denote probabilities coming
from the teacher and the student network respectively.

Another key area of advancement is logit normalization, which
refines the teacher’s raw output before transfer. Instead of
using a constant temperature to soften all predictions, methods
like [38] propose customizing the temperature for each sample
based on its logit distribution characteristics. Similarly, [39]
posits that the magnitude of the teacher’s confidence is not
always necessary and works to reduce the teacher-student gap.
Other techniques focus on logit softening or smoothing. For
example, some methods perturb the teacher’s logits with noise
[40] or use an attention module to soften them before
distillation [41] to act as a regularizer. While these logit-based
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methods are simple and effective, their application is limited
to supervised learning and can be challenging when the teacher
and student have different architectures. This often necessitates
including feature-based or similarity-based knowledge to
facilitate more effective knowledge transfer.

Response-based knowledge distillation serves as a
foundational strategy for transferring information in LiDAR
perception, focusing on training a student model to mimic the
final output logits, or soft targets, of a more powerful teacher.
This core concept is thoroughly explored in general
frameworks like the one detailed in [42] where the student
learns from the distillation of knowledge of the pivotal position
logit. A powerful application of this technique is in cross-
modal learning, where works such as [11] use the final output
of a LiDAR teacher to train a camera-only student in a unified
bird’s-eye-view space. To better capture the teacher’s
uncertainties and refine the learning signal, more advanced
methods have been developed; for instance, [43] models the
teacher outputs imperfections using a cross-modal label guided
distillation. This principle extends directly to other dense
prediction tasks, with frameworks like [42] applying logit-
mimicking to train efficient and accurate point cloud
segmentation networks.

TEACHER

LOSS
FUNCTION

STUDENT

Figure 3. Process of Response-Based Knowledge Distillation. The Student
model learns by mimicking the final output logits (soft targets) generated by
a Teacher model. This transfer typically uses a Kullback-Leibler (KL)
divergence loss between the Teacher's and Student's softened predictions,
augmented with a standard cross-entropy loss against ground-truth labels.

3.2 Feature-Based

Feature-based knowledge distillation, shown in (Figure 4) has
emerged as a powerful paradigm, utilizing the rich, multi-level
representations from a teacher model’s intermediate layers as
a valuable source of knowledge. The generic form of Feature-
based knowledge distillation is the following:

Leae = ) will s (F) = 5P, @

leL

where F[,F; are aligned features at layer land ¢r, s re
learned of fixed transforms for alignment.

This approach provides the student with more detailed, step-
by-step information than relying solely on the final output. The
concept was pioneered in [50], which proposed guiding a
student network by providing hints from the teacher’s hidden
layers.

This foundational work was followed by a variety of influential
methods. For instance, [44] introduced Attention Transfer
(AT), which compels the student to mimic the teacher’s
attention maps derived from feature channels. Other works
took different approaches, such as [45], which focused on
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transferring the boundaries formed by the teacher’s neurons
rather than the feature values themselves.

Some early works explored different knowledge sources, such
as [46], which matched the distributions of neuron selectivity
patterns, and [47], which transferred the factors of features
instead of the features themselves. The field saw a significant
advancement with [48], which re-evaluated many assumptions
and proposed distilling the pre-activation feature maps for
more effective transfer. Techniques also became more
granular, as seen in [49], where a softmax function is applied
to the channels of feature maps to match the resulting
distributions between the teacher and student.

More recently, research has focused heavily on the
transformation function that aligns student and teacher
characteristics. For example, [50] randomly masks pixels in the
student’s feature map and uses convolutional layers to
reconstruct them to match the teacher’s corresponding
features. This idea was later simplified in [51], which
demonstrated that a simple Multi-Layer Perceptron (MLP) can
effectively transform the student’s features without needing a
masking strategy. State-of-the-art approaches have introduced
novel transformation mechanisms; [52] uniquely treats the
student’s features as a noisy version of the teacher’s and trains
a diffusion model to ”denoise” them into alignment. Other
innovative approaches include [53], which decomposes feature
loss into separate magnitude and angular difference terms, and
[23], which transfers knowledge by distilling features in the
frequency domain.

Finally, [4] uses an attention mechanism to refine the feature
maps of both the teacher and the student prior to distillation,
ensuring that the transfer focuses on the most discriminative
regions. Cross-layer strategies have also been explored, such
as in [54, 55], where features from a student layer are matched
not only to the corresponding teacher layer but also to all
preceding teacher layers.

TEACHER :l LOGITS I
LOSS
FUNCTION

STUDENT :l LOGITS I

Figure 4. Feature-based knowledge distillation. The student is supervised to
mimic the teacher’s intermediate representations at selected layers, using
lightweight alignment modules to match dimensions; only the student
receives gradients.

Feature-based knowledge distillation for LiDAR data has
evolved to transfer highly complex geometric and structural
information from teacher to student models. This is
accomplished through a variety of sophisticated techniques
that go beyond simple feature mimicry. For instance, some
frameworks focus on distilling fine-grained local geometric
structures directly from the point cloud to ensure the student
understands detailed shapes, as demonstrated in works like
[56]. In parallel, other methods, such as those described in [20]

© 2025, IJCSE All Rights Reserved
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focus on ensuring the student preserves the teacher’s broader
understanding of the overall shape and structure in the data. To
provide more comprehensive guidance, knowledge can be
transferred at multiple granularities, with approaches like [57]
distilling information at both the fine-grained point level and
the coarser voxel level simultaneously. The mechanism for
enforcing this similarity can also vary; for example, [22] uses
adversarial learning to align feature maps by training
discriminators to make the student’s and teacher’s features
indistinguishable.

3.3 Relation-Based

A third major type is relation-based distillation [55], depicted
in (Figure 5), which focuses on relationships between different
data points or layers. Rather than matching individual outputs
or features, this approach encourages the student to learn the
structural similarities and differences between samples, as
perceived by the teacher. As a generic form relation-based
knowledge distillation can be defined as:

(@(FT, . FD), (S, ., F)) “)

(X ,0Xn)EX_N

where (x;, ..., x,,) are tuples of data examples, (Fy, ... ) are
teacher features, (F;,...,Fy) are student features, 1 is a
relation function and [ is a loss function that penalizes the
differences between teacher and student.

The student might be trained to preserve the pairwise distances
or the relational graph structure of the teacher’s feature
embeddings. Relation based knowledge distillation, also called
similarity-based distillation, transfers higher-order structural
knowledge by focusing on relationships within the teacher’s
representations rather than the raw values themselves. These
techniques operate at various levels of abstraction. Some
methods focus on internal feature relationships; pioneering
work like [58] computed a “Flow of Solution Procedure” by
taking the inner product of features between layers, while more
specific approaches like [59] create and distill a channel
correlation matrix. This idea was advanced in [60], which
minimizes the distance between the teacher and student
channel correlation maps. Beyond internal features, other
methods distill instance-level similarities between different
data samples. For example, [5] transfers knowledge of the
distance and angle correlations between sample characteristics,
and [61] distills the correlation of samples within a batch. This
concept was extended in [62], which utilizes a memory bank
to consider global relations between samples beyond just the
current batch. At a higher level of abstraction, class-level
similarity methods distill the relationships between class
representations. DSD [63] distills the pairwise similarity of
classes from the logits, while the popular [64] significantly
enhances student performance by distilling both inter- and
intra-class similarities. Finally, other techniques capture
spatial similarity; for instance, [65] was one of the first to
propose pooling features into different regions and distilling
the similarity relationships between them. This principle has
been adapted to LiDAR perception through various
mechanisms. For example, in [66] the student is trained to
mimic the teacher’s attention maps, thereby learning which
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parts of a scene the teacher considers most important in relation
to others. More explicit structural representations are also
used; frameworks like [19] model the scene as a graph to
transfer the complex relationships between different objects or
regions.

The scope of these relationships can vary, with methods in
papers such as [21] focusing on preserving the similarity
structure between different data using affinity distillation.
Ultimately, these techniques can capture very high-level
information, as demonstrated in [67] which transfers both the
geometric structure and the semantic relationships. In (Table
2) we provide a comprehensive classification of state-of-the-
art knowledge distillation methods relevant to LiDAR data
application.

4. Scheme Theory

The strategy governing the interaction between the teacher and
student during the training process is known as the distillation
scheme. The choice of scheme is a critical architectural
decision that depends on factors like the availability of a pre-
trained teacher and the desired flexibility of the training

process.
=777 Relati
, Relations
teitos
v
LOSS
FUNCTION
r 3
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Figure 5. Relation-based knowledge distillation. The student is trained to
preserve the structural relationships captured by the teacher—such as
pairwise affinities, distances, or graph relations—across features or instances,
rather than matching raw feature values.

4.1 Offline-distillation
Offline distillation (Figure 6) is the most traditional and widely
used scheme. It is a two-stage process:
1. A large, powerful teacher model is first fully pre-trained
on a large dataset until it reaches convergence.
2. The weights of this pre-trained teacher are then frozen. In
a separate, subsequent stage, the smaller student model is
trained to mimic the outputs of this static teacher.

This approach is straightforward and effective, but it has a key
limitation: it requires a powerful, pre-trained teacher to be
available from the outset.

The performance of the students is fundamentally capped by
the quality of the pre-trained teacher. This scheme is most
common when the student architecture is a simplified version
of the teacher, for example, a network with fewer layers, fewer
channels per layer, or a quantized version where the numerical
precision of the parameters is reduced.

The transfer between models in offline knowledge distillation
can be cross-modal, leveraging powerful models from other
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Table 2. Classification by Knowledge Source

Response-based

Feature-Based

Relation-based

[37] Decoupled

[3] FitNets: Hints

[58] A Gift from

Knowledge for Thin Deep Nets | Knowledge
Distillation (DKD) Distillation
[38] NormKD: [59] Exploring

Normalized Logits

[4] Attention

Inter-Channel

for KD Transfer: Correlation for
Distillation of KD
Activation
Boundaries

[39] SphericalKD [48] A [60] Channel
Comprehensive Correlation
Overhaul of Distillation

Feature Distillation

[40] Distilling
Knowledge from
Noisy Teachers

[49] Channel-wise
Knowledge
Distillation

[5] Relational
Knowledge
Distillation

[41] Student-
Friendly Knowledge
Distillation

[50] Masked Gene-
rative Distillation

[61] Similarity-
Preserving Know-
ledge Distillation

[42] Efficient 3D
Object Detection
with KD

[51] Simple
Framework via
Channel-wise
Transformation

[68] Cross-Image
Relational
Knowledge
Distillation

[11] DistillBEV
[43] LabelDistill

[52] Knowledge
Diffusion for
Distillation

[4] Attention-
Guided Feature
Distillation

[20] Topology-
Guided KD

[57] Multi-to-
Single Knowledge
Distillation

[22] Adversarial
Learning on 3D
Point Clouds

[63] Double
Similarity
Distillation (DSD)
[64] Distillation
from a Stronger
Teacher

[65] Structured
Knowledge
Distillation

[19] PointDistiller

[21] Point-to-
Voxel Knowledge
Distillation

[67] High-Order
Structural Relation
Distillation

domains like vision, or intra-modal, using a larger LiDAR
model to teach a smaller one. An example of cross-modal
distillation is presented in [11], where a LiDAR-based teacher
model guides a multi-camera student by aligning features in
the Bird’s-Eye-View (BEV) space. Similarly, the [69]
framework uses a pre-trained image network to supervise a
point cloud network by establishing correspondences in both
image-plane and bird’s-eye views. The paper [25] proposes
using a self-supervised image model to teach a 3D LiDAR
model, using super-pixels to pool and match features from both
modalities without requiring manual annotations. Intra-modal
approaches are also common; for instance, [70] transfers
knowledge from an accurate two-stage 3D detector to a faster
one-stage detector. For segmentation tasks, [21] distills
knowledge from an over-parameterized teacher to a slim
student network by measuring semantic similarity at both point
and voxel levels. Another approach, detailed in [15],
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effectively transfers rich geometric information from a 3D
voxel-based model to a more efficient BEV-based model.

4.2 Online-distillation

In contrast to the sequential nature of offline distillation, online
distillation (Figure 7) trains the teacher and student models
simultaneously in an end-to-end process. In this paradigm,
there is no need for a pre-trained teacher. Instead, a cohort of
models (which can be of the same or different architectures)
are trained together, and they learn from each other throughout
the training process. Each model in the ensemble acts as both
a teacher for the others and a student learning from collective
knowledge. This approach is more flexible, avoids the two-
stage training bottleneck, and is particularly useful when a
powerful pre-trained teacher is not available or is too costly to
create. Online knowledge distillation methods for LIiDAR data
involve the simultaneous, collaborative training of teacher and
student models, where knowledge is transferred dynamically
rather than from a fixed, pre-trained expert. A prominent
example is found in [71], which proposes an online Camera-
to-LiDAR distillation scheme. In this framework, an auxiliary
camera-based network provides rich semantic cues to the
primary LiDAR model during training through both feature-
level and logit-level distillation, but is completely discarded
during inference to maintain efficiency. Similarly, the [72]
framework utilizes an auxiliary modal fusion and multi-scale
fusion-to-single knowledge distillation (MSFSKD)” approach
where richer semantic and structural information from multi-
modal data is distilled online to a pure 3D network.

-M Student

Figure 6. Offline knowledge distillation scheme. A pre-trained teacher is
frozen, and a compact student is trained in a second stage to mimic the
teacher via response-, feature-, or relation-based losses alongside the task
loss. The setup supports intra-modal (LiDAR to LiDAR) and cross-modal
transfer (e.g., LIDAR to camera in BEV or image to LiDAR via
correspondence); only the student receives gradients.

4.3 Self-distillation

Self-distillation (Figure 8) is a fascinating special case of
online distillation where a single network architecture acts as
both the teacher and the student. This seemingly paradoxical
setup is instantiated in several ways. A common approach is to
use the deeper, more semantically rich layers of a network as a
teacher to provide supervision for the shallower layers of the
same network. This acts as a powerful form of intra-model
regularization, encouraging consistency across the network’s
depth and often leading to improved generalization and
performance without the need for any external teacher model.
It is a computationally efficient way to boost a model’s
performance by leveraging its own internal knowledge.

Teacher Online Distillation Student

Figure 7. Online knowledge distillation. Multiple models are co-trained
without a pre-trained teacher; each act as both teacher and student by
exchanging soft targets and/or intermediate features. Auxiliary branches
(e.g., from another modality) provide guidance during training and are
discarded at inference.
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Table 3. Classification by Distillation Scheme

Offline-Distillation Online- Self-Distillation
Distillation
[11] DistilBEV [71] Lidar2Map | [24] Self-
Distillation for
Robust Lidar
Segmentation

[69] HVDistill [72] 2DPass
[23] Perturbed Self-

Distillation

[49] Image-to-Lidar
Self-Supervised
Distillation

[70] Diversity KD for
3D Object

[21] Point-to-Voxel
KD

[15] Knowledge
Distillation from 3D to
BEV

The paper [24] presents such a framework where a student
model is guided by a teacher of the same architecture. The
teacher’s weights are an exponential moving average of the
student’s, and it is strengthened with Test-Time Augmentation
(TTA) to generate more reliable soft labels for the student to
learn from. Another approach, detailed in [23], creates an
auxiliary “perturbed branch” by applying transformations to
the input point cloud and trains the model to enforce predictive
consistency between the original and perturbed branches,
thereby generating its own supervision signal. Furthermore,
process-based online methods like the Mean Teacher approach
have been applied to tasks like LIDAR-Radar segmentation,
where the teacher model’s stability is enhanced by being an
exponential moving average of the student model’s
parameters, improving robustness against missing modalities.
In (Table 3) we summarize important KD methods for LIDAR
data, categorized by their distillation scheme.

Teacher / ’

Student

Figure 8. Self-distillation. A single architecture serves as both teacher and
student: the teacher is an exponential moving average (EMA) of the student
and produces soft targets (optionally with test-time augmentation), while the

student is trained with a mix of task loss, distillation loss, and prediction-

consistency across perturbed inputs; only the student is used at inference.

5. Algorithms

5.1 Bird’s eye view

In the realm of 2D range data, knowledge distillation has been
applied to various perception tasks to enhance model
efficiency and performance. For instance, in [9] a framework
was introduced to transfer 3D features from point clouds to
improve 2D networks for indoor scene parsing using a feature-
based, semantic-aware adversarial loss, enabling the 2D
network to infer simulated 3D features from 2D images
without requiring 3D data during inference. Similarly, [10]
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utilizes knowledge distillation to bridge the domain gap
between different LiDAR beams for 3D object detection by
performing mimicking operations on dense Bird’s Eye View
(BEV) features.

Knowledge distillation in Bird’s-Eye-View (BEV) has become
a pivotal technique for enhancing 3D perception in
autonomous driving, primarily by transferring knowledge from
geometrically precise LIDAR sensors to cost-effective camera-
based systems. The BEV space acts as a unified representation
where features from different modalities can be aligned,
though this process is challenged by feature distribution
discrepancies. Seminal works like [11] established a
foundational approach where a camera-based student model is
trained to imitate the BEV features of a powerful LiDAR-
based teacher, using balancing strategies to focus on crucial
foreground objects. This concept was generalized in [12]
which supports multiple distillation paths (e.g., LiDAR-to-
camera, fusion-to-camera) and employs sparse distillation on
key foreground points to mitigate the negative impact of
misaligned background information. Other methods have
introduced specialized techniques to tackle specific challenges;
for instance, [13] uses raw LiDAR points to generate
foreground masks that guide the distillation between camera-
based models, effectively filtering out irrelevant background
noise. Similarly, the [14] framework enhances performance by
incorporating a geometric compensation module alongside
BEV and response distillation to reduce the modality gap. The
versatility of BEV as a distillation space is further highlighted
in [15] which successfully transfers rich structural knowledge
from complex 3D voxel-based models to more efficient BEV-
based students for segmentation tasks. To further minimize the
modality gap, [16] proposes a student with a simulated multi-
modal architecture to better mimic a fusion-based teacher. The
[14] framework introduces a two-stage process that includes a
geometric compensation module to reduce the modality gap,
followed by both BEV feature and response distillation.
Further refining the process, [17] focuses on transferring high-
level semantics by learning the inner geometry of objects
rather than performing strict feature mimicry. The BEV space
also facilitates knowledge transfer between different sensor
suites, as demonstrated in [ 18] which improves a camera-radar
student by distilling knowledge from a LiDAR-camera teacher.
These diverse methods underscore the role of BEV as a
canonical space for creating robust, efficient, and accurate
perception models for autonomous driving.

5.2 PointCloud

Knowledge distillation for 3D point clouds requires
specialized frameworks that address the data’s inherent
sparsity, irregularity, and unstructured nature, which render
direct application of 2D image-based methods ineffective. To
overcome these challenges, research has shifted from simple
feature mimicry to transferring higher-order structural and
geometric knowledge. For instance, [19] introduces a method
to distill local geometric structures using dynamic graph
convolution, complemented by a reweighted learning strategy
to focus on information-rich points and voxels. Similarly, [20]
leverages topological data analysis to ensure the student model
preserves the essential geometric structures of the teacher.
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Another key approach, detailed in [21] transfers knowledge at
multiple granularity by distilling both fine-grained point wise
and coarse-grained voxel wise outputs, and uniquely captures
relational knowledge through inter-point and inter-voxel
affinity distillation. Beyond offline teacher-student setups,
other paradigms have been explored. The paper [22] proposes
PointKAD, which uses discriminators to align feature maps
and logits between models. Self-distillation has also proven
effective. [23] enforces predictive consistency between
original and augmented point clouds to create supervisory
signals in data-scarce scenarios, while [24] improves model
robustness by using a time-averaged version of the student
model as its own teacher, enhanced with test-time
augmentation. Furthermore, cross-modal techniques such as
[25] leverage powerful, pre-trained 2D vision models like
CLIP to enrich 3D representations without requiring 3D labels.
Other notable methods include [73] which uses a channel-wise
autoencoder. Beyond cross-modal transfer, KD is instrumental
in improving the robustness of LiDAR-only detectors. The
inherent sparsity of point clouds and frequent occlusions can
cause models to miss objects or inaccurately estimate their
properties. To mitigate this, [26] introduces an innovative
approach where a teacher model is trained on object-complete
point clouds, which are generated by aggregating scans over
time to fill in missing data. The knowledge from this strong
teacher is then distilled into a student model that operates on
sparse, single-frame LiDAR data, significantly improving its
ability to handle occlusions.

Lidar data, generated by laser pulses measuring time-of-flight,
forms discrete 3D point clouds that present unique challenges
for deep learning models. These challenges stem from the
data’s inherent properties, including non-uniform point
distribution with ”’scanning holes” and ”’scanning lines,” as
detailed in [75]. The data also exhibits 1D curve-like
structures, as explored in [75], and contains scanning
anomalies like “reflection noise” and ”ghosts”. Furthermore,
Lidar point clouds are intrinsically sparse, particularly at
longer ranges, and possess an irregular structure, making them
difficult for traditional convolutional networks to process
efficiently. The computational cost of 3D operations, the
complexity of data annotation, and a significant “domain gap”
across different LIDAR sensors further add to the difficulties,
as highlighted in [62] and [68]. The presence of crucial
reflectance information, which can be lost during compression,
is another challenge, leading to solutions like [76]. Domain
adaptation is another critical challenge, as performance can
degrade when a model is deployed with a different LiDAR
sensor or in different weather conditions than it was trained on.
[27] directly addresses this by using a teacher trained in clear
weather to guide a student operating in adverse conditions,
aligning instance features through density and shape similarity
metrics. To address the multifaceted challenges of point
clouds, some methods combine different forms of knowledge.
The framework presented in [77] leverages both fine-grained
point-level knowledge and more abstract, structural voxel-
level knowledge, providing a more holistic supervisory signal
for the student model. The work [57] proposes a framework
where a teacher model, having access to multiple, aggregated
scans of a scene, distills its comprehensive understanding to a
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student that processes only a single scan. This is achieved
through a combination of feature-level, logit-level, and
instance-aware similarity distillation, allowing the student to
perform well even with less input information. Work [78]
leverages powerful, pre-trained vision models by distilling
their rich, general-purpose knowledge into a point cloud
segmentation network, circumventing the need for dense 3D
labels. Taking this a step further, [71] distills knowledge from
a vision-language model, enabling a 3D network to understand
and segment fine-grained object parts based on textual
descriptions.

5.3 Projected 2D views

Knowledge distillation applied to projected 2D views of
LiDAR data represents a crucial strategy for balancing
computational efficiency with high performance, particularly
for deployment on resource-constrained hardware. This
approach first converts sparse, unstructured 3D point clouds
into dense, regular 2D representations like spherical range
images, which can be processed by highly optimized 2D
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transferring knowledge from powerful 2D foundation models
to the 3D domain. Frameworks like [25] and [83] use
projections to create correspondences between image pixels
and 3D points, enabling distillation from models like CLIP
without 3D labels. The paper [84] utilizes a front-view
projection to enable a teacher-student exchange between 2D
and 3D modalities. This principle is also used to bridge sensor
gaps, as shown in [10] which distills knowledge from high-
resolution to low-resolution LiDAR sensors, a process often
facilitated by their 2D projected representations. Finally,
works like [85] and [69] focus on improving the projection step
itself within the distillation pipeline to better align features
across modalities.

5.4 Results and Discussion

Table 5. Representative quantitative comparison of key knowledge
distillation methods for LIDAR-centric 3D object detection and mapping. For
each method, we list representation and modality path, dataset, task, and the
approximate gain A = (Student + KD) — Student. Values are approximated,
aggregated from the original papers.

CNNs. However, this projection is a lossy process that can Method Rel’r_ese“' Dataset Task A ]
cause distortion and information loss, especially for small or tation (metric)
distant objects. To mitigate this, knowledge distillation is [42] PC/intra Waymo, | 3D OD 23
employed to transfer rich, high-fidelity knowledge from a (LI_DAR_' KITT mAP
powerful teacher model—often one that processes full 3D LID.A R)
data—to a lightweight student model operating on the 2D (701 PC/intra Waymo, 3D OD >4
.. (LiDAR— KITTI mAP
projection. LiDAR)
. o . . [10] BEV/intra KITTI 3D OD 34
A prime example is in semantic segmentation, where (Hi— mAP
foundational models like [79] and [80] established the viability Lo beam)
of using range images. Building on this, the work [81] [26] PClintra Waymo, 3D OD 356
o (Agg— KITTI- mAP
Intra MO(Tliﬁ)le - ClaSSIﬁcCat;grslsb}ll\/Il\ﬁflﬁl Single) like
[70] Diversity KD for 3D [11] DistilBEV (] BEV/cross “{";‘se““’ 3D OD 3/':‘1)
Object Detection (LIDAR—~ aymo m
Cam)
[21] Point-to-Voxel KD [69] HVDistill [43] BEV/eross | nuScenes | 3D OD 23
(LiDAR— mAP
[15] Knowledge Distillation | [25] Image-to Lidar Self- Cam)
from 3D to BEV Supervised Distillation [14] BEV/cross nuScenes 3D OD 3-4
(LiDAR— mAP
[10] Lidar Distillation [12] UniDistill Cam)
[13] BEV-LGKD [16] BEV/cross nuScenes 3D OD 3-4
[26] Weak-to-Strong 3D (Fusion— mAP
Object Detection Cam)
[42] Efficient 3D Object [18] CRKD [17] BEV/cross nuScenes 3D OD 2-3
Detection with KD [61 PartDistill (LiDAR—~ mAP
[24] Self-Distillation for [71] LiDAR2Map Cam)
Robust Lidar Segmentation [72] 2DPass [18] BEV/cross nuScenes 3D OD 23
[23] Perturbed Self- [78] Segment Any Point Cloud (LiDAR+ mAP
Distillation Sequences Cam —
Cam+Radar)
introduced a soft-label distillation method (SLKD) to [67] BEV/cross KITTI, 3D OD 3.5
effectively train an efficient student network for off-road (LiDAR— nuScenes mAP
segmentation on range images. This paradigm also extends to Mono)
cross-modal and cross-representation scenarios. For instance, [71] BEV/cross nuScenes- | Semantic 2-4
[15] explicitly distills knowledge from a complex 3D voxel- (Cam— like mapping mIOU
based teacher to a real-time BEV-based student. Similarly, [82] LiDAR,
creates a pseudo-LiDAR representation from images, which is online KD)
then enhanced by a teacher trained on real LiDAR data.
Furthermore, 2D projections serve as a critical bridge for
© 2025, IJCSE All Rights Reserved 84
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To make the surveyed methods more accessible to
practitioners, we complement the qualitative discussion in this
section with three summary tables that organize LiDAR KD
approaches by representation, modality path, and task, and
report representative quantitative gains. We also include the
datasets used in each respective paper: Waymo [82], KITTI
[26], nuScenes [86], ShapeNetPart [42], NYUv2 [87], SUN-
RGBD [88].

(Table 5) focuses on 3D object detection and semantic
mapping. It collects both intra-modal LiDAR-to-LiDAR KD
and cross-modal BEV KD, together with their main datasets
(Waymo, KITTI, nuScenes), metrics (3D mAP, NDS), and
approximate improvements of the student over its non-distilled
baseline.

(Table 6) focuses on 3D / BEV semantic segmentation and
related 3D tasks. It includes intra-modal LiDAR segmentation
KD as well as cross-modal segmentation KD from images or
foundation models. For each method we report the main
dataset, metric, and representative gains.

Finally, (Table 7) targets 2D range views and other 2D
projections of LIDAR data, which are particularly relevant for
resource-constrained platforms. It summarizes KD methods
that operate on projected representations.

Although this work is a survey and does not introduce a new
model with its own experimental results, the methods we
review report relatively consistent empirical trends across
datasets and tasks. In 3D object detection on benchmarks such
as KITTI, Waymo, and nuScenes, intra-modal distillation
([42], [70], [10]) typically yields gains of approximately 2—4
mAP over non-distilled baselines, with larger improvements
(up to about 5—6 mAP) observed when the teacher has access
to richer information such as multi-frame aggregation or
denser beams [26]. Cross-modal BEV distillation from LiDAR
or fusion teachers to camera-only students ([11], [14], [16],
[12]) shows similar relative improvements, usually in the range
of 2—4 mAP, which is notable given that the students operate
on cheaper sensors and often have stricter runtime budgets. For
LiDAR semantic segmentation, both point-cloud and
BEV-based KD methods ([21], [15], [24], [23]) report
improvements on the order of 2—5 mloU on SemanticKITTI,
nuScenes lidarseg, and related datasets, with self-distillation
and weak-label settings particularly benefiting from the extra
regularization and soft supervision.

Across representations and modality paths, several qualitative
patterns emerge. First, feature- and relation-based KD tend to
provide the largest benefits in LIDAR settings, especially when
the teacher and student operate on different resolutions or
views (e.g., [21], [18]). Purely response-based KD remains
simple and effective but often underutilizes geometric and
structural cues that are critical for sparse point clouds. Second,
cross-modal BEV distillation has become a practical
mechanism to transfer geometric reliability from LiDAR to
camera-only or camera-radar systems while preserving
real-time performance, suggesting that BEV is an effective
common space for multi-sensor KD. Third, methods targeting
robustness, such as cross-weather KD [27], cross-sensor/beam
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distillation [10], and self-distillation for noisy or compressed
point clouds [24], [76]—consistently reduce performance gaps
under adverse conditions, even when absolute gains on
standard benchmarks are modest. Finally, although only a few
works explicitly address 2D range LiDAR with KD ([81] and
related detectors on DROW, JRDB, FROG), they indicate that
similar trends hold: compact models operating on single-plane
scans can recover several points of F1/IoU when guided by
stronger teachers, which is important for resource-constrained

Table 6. Representative quantitative comparison of knowledge distillation
methods for LIDAR-centric 3D/BEV semantic segmentation and related 3D
tasks. We report approximate the gain on the main metric reported in each
work. Cross-modal methods (image/vision-model teachers to LIDAR) and
self-distillation approaches are included to illustrate their benefit in low-label
and robustness settings. Values are approximated, aggregated from the
original papers.

Method | Represen- Dataset Task A
tation (metric)
[21] PC/intra Sem. KITTI, Segm. 4.4
(LiDAR— nuScenes mIOU
LiDAR)
[24] PC/intra nuScenes Segm. 2.2
(LiDAR— lidarseg mIOU
LiDAR)
[23] BEV/intra Sem. KITTI, Segm. 3-5
(Hi—~ nuScenes mIOU
Lo beam)
[15] PC/intra Sem. KITTI, Segm. 3-4
(Agg— nuScenes (weak) mIOU
Single)
[72] BEV/cross Sem. KITTI, Segm. 3-4
(LiDAR— nuScenes mIOU
Cam)
[25] BEV/cross nuScenes, Segm. 3-5
(LiDAR—~ Waymo (downs.) mIOU
Cam)
9] BEV/cross KITTI, Seq. +10
(LiDAR— nuScenes, Segm. mIOU
Cam)
[28] BEV/cross | ShapeNetPart Part 5-10
(Fusion— Segm. mIOU
Cam)
[19] BEV/cross KITTI, 3D OD 3-5
(LiDAR— nuScenes (struct. mAP
Cam) KD)
[20] BEV/cross KITTI Det./ 2-4
(LiDAR+ nuScenes Segm. mAP,
Cam— mIOU
Cam
+Radar)
[57] BEV/cross Sem. KITTI, Segm. 3-4
(LiDAR— nuScenes mlOU
Mono)
[22] BEV/cross Class., det. Class./ 2-4
(Cam— datasets Det. Acc.,
LiDAR, mAP
online KD)
[56] PC/intra Cross-view Loc. 3-7
(self, datasets Recall
geom.)
[9] 2D/cross NYUv2, Indoor 2-4
(3D— SUN-RGBD segm. mIOU
2D)
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mobile robots. From a practical standpoint, these results
suggest several design guidelines.

For detection and segmentation on native point clouds,
combining point- and voxel-level supervision with relational
or affinity losses tends to yield more robust gains than logit
matching alone. For cross-modal transfer, careful spatial
alignment in BEV and the use of foreground-aware or
uncertainty-aware distillation are crucial to avoid negative
transfer from misaligned background regions. For projected
views (range images and 2D scans), using a 3D teacher or
multi-frame teacher to compensate for projection and sparsity
artefacts appears particularly effective. Overall, the empirical
evidence across the surveyed literature supports the central
message of this paper: knowledge distillation is a consistently
beneficial tool for trading teacher complexity for student
efficiency in LiDAR perception, typically recovering several
points of accuracy or robustness while enabling deployment on
real-time, resource-constrained autonomous platforms.

Table 7. Representative quantitative comparison of knowledge distillation
methods that operate on 2D range views or other 2D projections of LIDAR
data. We report the main representation and modality path, dataset, task and

the student with KD improvement in metric. Values are approximated,
aggregated from the original papers.

Method | Represen- Dataset Task A
tation (metric)
[9] 2D image/ NYUv2, Indoor 2-4
cross(3D— SUN- sem. mIOU
2D) RGBD segm.
(RGB)

[81] 2D range Off-road Det. 3-5
view/intra LiDAR IOU/F1
(LiDAR— scans

LiDAR)

[84] 2D front- Synthetic + Ob;. 3-6
view /cross real video | discovery | FI1/AR
2D+ 3D) scenes

[85] 2D proj. nuScenes, Det., 2-4

(image/RV)/ Waymo segm. mlOU
Cross

6. Conclusion

This review has systematically charted the landscape of
knowledge distillation as applied to LIDAR data, revealing it
as a critical enabling technology for deploying advanced 3D
perception in resource-constrained autonomous systems. We
have categorized the field along two primary axes: the
distillation scheme—offline, online, and self-distillation—
which dictates the training paradigm, and the source of
knowledge—response, feature, and relation-based—which
defines the nature of the information being transferred. Our
analysis across different data representations—native point
clouds, Bird’s-Eye-View (BEV) grids, and projected 2D
views—demonstrates a clear evolutionary path.

The field has progressed from direct mimicry of final
predictions to sophisticated methods that transfer nuanced,
high-order structural and geometric knowledge, which is
essential for handling the unique sparsity and irregularity of
point cloud data.
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A key synthesis from this review is the emergence of
specialized techniques tailored to each data representation. For
native point clouds, the most effective methods have moved
beyond simple feature matching to focus on distilling local
geometric structures and relational affinities, thereby
respecting the data’s unstructured nature. For cross-modal
applications, the BEV representation has become the ”lingua
franca,” providing a unified space to bridge the significant
modality gap between geometrically precise LiDAR and
semantically rich cameras. Meanwhile, for highly efficient
systems, distillation applied to 2D projections serves as a vital
tool to compensate for the inherent information loss, pushing
the accuracy-efficiency frontier.

Looking forward, the field faces several grand challenges that
will define the next generation of research. The persistent
modality gap, even within unified spaces like BEV, requires
more advanced feature alignment and normalization
techniques to be fully overcome. More critically, the
community must move beyond perception-level metrics and
embrace end-to-end, closed-loop evaluation in high-fidelity
simulators to assess the true impact of distillation on driving
safety and planning performance. This will necessitate the
development of hardware-aware and planning-aware
distillation frameworks that optimize for the entire
autonomous stack.

Perhaps the most transformative trajectory lies in expanding
the source of knowledge beyond specialized sensor models.
The nascent trend of distilling from large-scale, pre-trained
foundation models, such as Vision-Language Models, signals
a paradigm shift from transferring perceptual patterns to
transferring abstract, conceptual, and even predictive world
knowledge. The goal will be to distill comprehensive,
generative world models into efficient, real-time agents
capable of proactive and robust decision-making.

In conclusion, knowledge distillation is no longer just a tool
for model compression; it is a fundamental methodology for
knowledge transfer that will be central to building the next
generation of intelligent, safe, and scalable autonomous
systems.
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