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Abstract: Knowledge distillation (KD) is a machine learning technique where a compact student model is trained by a larger 

teacher model to create efficient, high-performance models suitable for devices with limited computational resources. The student 

learns by mimicking the teacher’s nuanced predictions, known as ”soft targets”, which provide a richer learning signal than 

traditional ground-truth labels. Methods are categorized by the source of knowledge—such as the teacher’s final outputs (response-

based), intermediate features (feature-based), or the relationships between data points (relation-based)—and by the training 

strategy, including offline, online, and self-distillation schemes. This review focuses on the application of KD to 2D and 3D 

LiDAR data for tasks like object detection and semantic segmentation in autonomous systems. In this domain, knowledge 

distillation is critical for developing lightweight models that can run in real-time, enabling cross-modal learning from expensive 

LiDAR to cheaper sensors, and addressing inherent challenges of point cloud data such as sparsity and sensor-specific domain 

gaps. 
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1. Introduction  
 

Knowledge Distillation (KD), also known as model 

distillation, is a sophisticated machine learning technique 

centered on transferring knowledge from a large, complex, and 

often cumbersome model, referred to as the teacher, to a 

smaller, more compact model, the student. The fundamental 

objective is to train this student model to not only perform a 

specific task but to mimic the behavior and replicate the high 

performance of the teacher, thereby creating a lightweight yet 

powerful model suitable for deployment in environments with 

constrained computational resources, such as mobile or edge 

devices. While frequently categorized as a form of model 

compression, knowledge distillation is fundamentally a 

knowledge transfer process. This distinction is critical, as 

traditional model compression techniques like pruning or 

quantization modify an existing model, whereas distillation 

involves training an entirely new student model from the 

ground up using the teacher as a guide. This paradigm allows 

for significant architectural flexibility, as the student and 

teacher do not need to be homogeneous. The core of the 

distillation process represents a paradigm shift from 

conventional supervised learning. Instead of learning only 

from ground-truth hard labels, the student model is trained to 

match the nuanced predictions of the teacher. This concept was 

formalized by [1], who introduced the idea of dark knowledge 

represented by the rich information encoded in the teacher’s 

full probability distribution across all classes, not just the 

single correct answer. By learning from these soft targets, the 

student can learn a more generalized and robust function, as it 

captures how the teacher perceives similarities and 

relationships within the data space.  
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The initial concept, rooted in earlier work on model 

compression by [2], established response-based distillation, 

where the student mimics the teacher’s final output layer. 

While simple and effective, this approach overlooks the wealth 

of information in a teacher’s intermediate layers. This 

limitation led to the development of feature-based distillation, 

which transfers knowledge from the teacher’s hidden layers. A 

pioneering method in this area was [3], which used hints from 

a teacher’s intermediate feature maps to train thinner but 

deeper student networks. This demonstrated that guiding the 

student’s feature extraction process directly, could 

significantly improve performance. Subsequent feature-based 

methods [3, 4] have explored distilling various aspects of 

feature maps, including attention maps, activation boundaries, 

and neuron selectivity patterns, to provide more 

comprehensive guidance to the student. 

 

Further evolution led to relation-based distillation, which 

posits that the relationships between features or data samples 

constitute a higher form of knowledge. The work on Relational 

Knowledge Distillation [5] was instrumental, introducing 

distance-wise and angle-wise losses to compel the student to 

preserve the structural relationships between data points found 

in the teacher’s embedding space. This approach proved highly 

effective, particularly for 2D metric learning tasks, where 

student models were sometimes able to outperform their 

teachers. Other methods have since explored transferring 

relational knowledge using graph-based representations or by 

modeling the similarity between feature maps. 

 

Figure 1. Knowledge sources in distillation. Response-based: the student 
mimics teacher soft targets at the output head. Feature-based: the student 

matches selected intermediate feature maps. Relation-based: the student 

preserves structural relations (e.g., affinities) computed from features across 
samples or regions. 

 

This review examines the evolution of knowledge distillation 

techniques as applied to LiDAR data, from foundational 

concepts to domain-specific and cross-modal applications. 

 

1.1 Contributions 

This survey makes the following contributions: 

1. We introduce a unified taxonomy for KD in LiDAR that 

jointly covers knowledge sources (response-based, 

feature-based, relation-based), training schemes (offline, 

online, self), data representations (point cloud, BEV, 

RV/projections), and modality paths (intra- vs cross-

modal), and we map existing methods onto this space; 

2. We provide the first focused synthesis of KD for 2D 

range (single-plane LiDAR) perception, summarizing 

architectures and datasets and proposing practical KD 

recipes tailored to this setting; 

3. We analyze LiDAR-specific design patterns, challenges, 

and failure modes across representations—sparsity, 

occlusion, beam/domain gaps, compression, and weather; 

4. We outline forward-looking directions, including 

foundation-model teachers, temporal/world-model 

distillation, robustness-aware and planning-aware KD. 

 

Compared to prior general surveys on knowledge distillation 

[6], which are modality-agnostic and largely centered on 2D 

vision and classification, our contribution is domain-specific: 

we extend existing taxonomies with two LiDAR-centric axes: 

the data representation (point cloud, BEV, range view, 2D 

range) and the modality path (intra- vs cross-modal), and we 

systematically map LiDAR KD methods into this multi-

dimensional design space. We provide, to our knowledge, the 

first focused synthesis of knowledge distillation for 2D range 

(single-plane LiDAR) perception, including detectors, 

datasets, and practical recipes. We analyze LiDAR-specific 

design patterns and failure modes—sparsity, beam/domain 

gaps, compression, and weather—and connect them to 

concrete KD mechanisms and engineering guidelines. We 

curate recent LiDAR-focused KD algorithms for detection, 

segmentation, and mapping across BEV, point-cloud, and 

projected representations, which are only marginally covered 

or not covered at all in general KD surveys. 

 

1.2 Search Methodology 

To identify the articles for this review, the research 

methodology centered on a systematic search of academic 

databases using structured queries. The search strategy was 

formulated to specifically target the intersection of sensor 

technology, a core machine learning technique, and key 

application areas. We detail here the methodology used to 

collect and organize the literature surveyed in this work. Our 

aim was to cover research at the intersection of knowledge 

distillation (KD) and LiDAR‑based perception, including both 

intra‑modal distillation and cross‑modal transfer where 

LiDAR is either the teacher or the student modality.  

 

To this end, we queried several major digital libraries and 

search engines—IEEE Xplore, ACM Digital Library, 

SpringerLink, Elsevier ScienceDirect, arXiv, and Google 

Scholar—for works published between January 2015 and 

March 2025. This time window spans the period after the 

popularization of modern KD for deep networks and the 

emergence of large‑scale 3D LiDAR benchmarks. We used 

combinations of three groups of keywords: 

1. sensor/data terms such as “LiDAR”, “point cloud”, 

“bird’s‑eye view”, “range view”, “2D range”; 

2. distillation terms such as “knowledge distillation”, 

“model distillation”, “teacher student”; and 

3. task terms such as “3D object detection”, “semantic 

segmentation”, “mapping”, and “autonomous driving”. 

 

Typical query patterns included, for example, “LiDAR AND 

knowledge distillation”, “point cloud AND distillation”, and 
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“bird’s‑eye view AND knowledge distillation”, with syntax 

adapted to each database (title/abstract search where 

supported). From the resulting set of candidate papers, we 

applied the following inclusion criteria. A work was retained 

if it 

1. explicitly employed a teacher–student training scheme 

that can be interpreted as KD (offline, online, or 

self‑distillation), 

2. involved LiDAR or LiDAR‑derived representations 

(native point clouds, BEV grids, range/front views, or 

raw 2D scans) either as the primary input to the student 

or as the target modality of cross‑modal KD, and 

3. addressed a perception or mapping task relevant to 

autonomous systems (e.g., 3D/BEV object detection, 

LiDAR semantic or instance segmentation, traversable 

region detection, or semantic mapping). 

 

We excluded works that used LiDAR but did not apply any 

form of KD, general KD methods with no 3D or LiDAR 

component (except for a small number of foundational KD 

papers used for background), and non‑archival or incomplete 

materials. Screening was performed in two stages: initial 

filtering based on title and abstract, followed by full‑text 

inspection to verify the actual use of KD, the role of LiDAR, 

and the specific task. When multiple versions of the same work 

existed (e.g., arXiv preprint and later conference paper), we 

kept the most complete peer‑reviewed version. Each selected 

paper was then manually categorized along the five axes of our 

unified taxonomy (Fig. 2): knowledge source (response‑, 

feature‑, or relation‑based, or combinations thereof), 

distillation scheme (offline, online, self‑distillation), data 

representation (point cloud, BEV, range/front view, or raw 2D 

range), modality path (intra‑modal vs cross‑modal), and task 

type (object detection, semantic segmentation, mapping, etc.).  

This classification was based on the methodological 

description and loss formulations in each paper and is 

summarized in our overview tables (Tables 1–7). 

 

The remainder of this paper is organized as follows. Section 1 

introduces knowledge distillation (KD), positions it within 

autonomous perception, states our contributions, and outlines 

the search methodology (Fig. 2). Section 2 reviews 2D range 

data and LiDAR representations—raw polar scans, Cartesian 

point clouds, bird’s-eye view (BEV), and range view (RV)—

including practical processing implications and key datasets 

(DROW, JRDB, FROG). Section 3 develops the taxonomy of 

knowledge sources—response-, feature-, and relation-based—

anchored by an overview (Fig. 1), detailed schematics (Figs. 

3–5), and a summary table (Table 2). Section 4 presents 

distillation schemes—offline, online, and self-distillation—

with conceptual diagrams (Figs. 6–8) and a consolidated 

comparison (Table 3). Section 5 surveys algorithms and 

applications across representations: BEV (cross-/intra-modal 

transfer and alignment), native point clouds (local 

geometry/topology and robustness), and projected 2D views 

(range images), with organization by representation (Table 1) 

and modality path (Table 4). Section 6 concludes with a 

synthesis of challenges and forward-looking directions, 

including foundation-model teachers, temporal/world-model 

distillation, and robustness- and planning-aware KD. 

Figure 2.  Unified taxonomy of knowledge distillation for LiDAR perception. 

Methods are organized along five axes: (1) knowledge source (response, 
feature, relation), (2) scheme (offline, online, self), (3) data representation 

(point cloud, BEV, range view), (4) modality path (intra-modal, cross-

modal), and (5) task (object detection, semantic segmentation). 

Representative works are mapped to this space. 
 

2. 2D Range Data 

2D range data is a fundamental type of environmental 

perception data used extensively in robotics and autonomous 

systems. It consists of a set of distance measurements captured 

on a single, two-dimensional plane, effectively creating a 2D 

”slice” of the surrounding environment. This data is crucial for 

core robotic tasks such as obstacle detection, localization, and 

navigation. 

 

The most common source of 2D range data is the 2D LiDAR 

(Light Detection and Ranging) sensor. This device operates by 

emitting a rotating laser beam. When the beam strikes an 

object, it reflects to the sensor. By measuring the time it takes 

for the light to travel to the object and return (time-of-flight), 

the sensor calculates the precise distance to that point. As the 

laser sweeps across a horizontal plane, it collects thousands of 

these distance measurements at discrete angular increments, 

typically generating a full 360-degree view [7]. 

 

The widespread adoption of 2D LiDAR sensors in robotics [8] 

is driven by a compelling blend of cost-effectiveness and 

robust performance. Their affordability compared to 3D 

counterparts has made them a standard, economical choice for 

a vast array of applications, from industrial automated guided 

vehicles (AGVs) to commercial and even hobbyist robots. In 

terms of performance, they deliver highly accurate distance 

measurements over long ranges, often proving superior to 

other low-cost sensors. A significant advantage over cameras 

is their lighting invariance; as active sensors providing their 

own illumination, they function reliably in conditions ranging 

from bright sunlight to complete darkness. Furthermore, a 

single 2D LiDAR can offer comprehensive 360-degree 

coverage, providing a wide field of view that would otherwise 

require a more complex and costly multi-camera setup to 

replicate. The way 2D range data is structured for processing 

by algorithms, especially deep learning models, is a critical 

consideration. The structure follows: 

1. Raw Data (Polar Coordinates): In many robotics 

frameworks like the Robot Operating System (ROS), 2D 

LiDAR data is provided as a LaserScan message. This is 

essentially an array of range values (distances), where each 
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element’s index corresponds to a specific angle. This native 

polar coordinate format (range, angle) is an ordered 

structure that some neural networks can process efficiently. 

2. Point Cloud (Cartesian Coordinates): The raw polar data 

is often converted into a 2D point cloud using trigonometry 

to get a set of Cartesian coordinates. While geometrically 

intuitive, this representation is an unordered set of points. 

This irregularity and sparsity make it incompatible with 

standard Convolutional Neural Networks (CNNs) and 

require specialized architectures. 

3. Projected 2D Views: To leverage the power and efficiency 

of 2D CNNs, a common strategy is to project the point 

cloud data into an image-like grid format. The two most 

prevalent projections are: Bird’s-Eye-View (BEV), Range 

View (RV). 

 

BEV is a top-down projection of the points onto a 2D grid. This 

view preserves the physical dimensions and spatial layout of 

objects on the ground, making it ideal for navigation and path 

planning. However, it can lose vertical information. RV is a 

projection onto a spherical or cylindrical plane, where the axes 

represent the laser’s angles. This format is compact, dense, and 

preserves the sensor’s perspective, including occlusion 

information. Its main drawback is the potential distortion of 

object shapes and sizes. Beyond just distance, many LiDAR 

sensors also return an intensity value for each point. This value 

measures the reflectivity of the surface the laser hit. For 

example, a reflective road sign will have a much higher 

intensity than dark asphalt. This intensity information provides 

powerful semantic cues that go beyond pure geometry. 

Including intensity as an additional data channel has been 

shown to be crucial for improving the performance of 

perception tasks like semantic segmentation, as it helps models 

distinguish between objects made of different materials. In 

(Table 1) we give an overview of existing work using specific 

data structures. 

 

While 2D range data remains a cost-effective and widely used 

sensor modality for many mobile and industrial robots, it has 

been largely superseded by 3D LiDAR in the context of 

advanced autonomous driving research. This shift in focus is  
 

Table 1. Classification of LiDAR data representation 

BEV                              

(Bird’s-Eye-View) 

Point Clouds Raw 2D Range 

Data  

[9] 3D-to-2D 

Distillation for 

Indoor Scene 

Parsing 

[19] PointDistiller [29] DR-SPAAM 

[10] Lidar 

Distillation 

 

[20] Topology 

Guided KD 

 

[30] Li2Former 

[11] DistillBEV [21] Point-to-Voxel 

KD 

 

[31, 32] DROW 

Dataset 

[12] UniDistill [22] Adversarial 

Learning on 3D 

Point Clouds 

 

[33] JRDB Dataset 

[13] BEV-LGKD [23] Perturbed Self-

Distillation 

[34] FROG Dataset 

 

[14] MMDistill [24] Self-Distillation 

for Robust Lidar 

Segmentation 

 

 

[15] Distillation 

from 3D to BEV 

[16] SimDistill 

[17] TIGDistill-

BEV 

[18] CRKD 

[25] Image-to-Lidar 

Self-Supervised 

Distillation 

[26] Weak-to-Strong 

3D Object Detection 

[27] Sunshine to 

Rainstorm: Cross 

Weather KD 

[28] PartDistill 

 

 

 

reflected in the available public datasets, with most large-scale 

benchmarks being built around 3D LiDAR sensors for 

complex driving scenarios [35]. Consequently, the body of 

research on knowledge distillation has predominantly 

concentrated on 3D point cloud data, whether for object 

detection or semantic segmentation. As a result, there is a 

comparative scarcity of academic papers that specifically 

address the application of knowledge distillation to native 2D 

range data. The recent introduction of what is described as the 

first public semantic dataset for 2D LiDAR underscores that 

this is an emerging area, suggesting that dedicated research 

into distilling knowledge for these more resource-constrained 

systems is still in its nascent stages. 

 

The field of 2D LiDAR data has seen a significant evolution, 

largely propelled by advancements in deep learning 

architectures and the availability of robust benchmarking 

datasets. The DR-SPAAM [29], which introduced an 

innovative spatial-attention and auto-regressive model to solve 

challenges in temporal data fusion, enables real-time 

performance on resource-constrained hardware. The latest 

advancement is represented by Li2Former [36], a Transformer-

based architecture that achieves superior accuracy by modeling 

global context throughout the entire laser scan. The 

development and validation of these detectors have been made 

possible by a set of popular and increasingly challenging 

datasets. These include the original DROW dataset [31, 32], 

which catalyzed early research; the large-scale, multimodal 

JRDB (JackRabbot Dataset) [33], which offers immense 

complexity with its rich sensor data and annotations for actions 

and social groups and the FROG dataset [34], a modern 

benchmark specifically designed with dense annotations and 

crowded public scenarios to overcome the limitations of earlier 

datasets. 

 

3. Source Theory 

 

The paper [6] classifies these distillation sources into three 

well-established categories: 

1. Response-based Distillation: This method, also known as 

logit-based knowledge distillation, uses the outputs of the 

model’s last layer, known as logits, as the source of 

knowledge. The student model is trained to mimic these 

final predictions from the teacher. 
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2. Feature-based Distillation: This approach utilizes the 

representations from the intermediate layers of the 

teacher network as the source of knowledge, providing 

the student with step-by-step information that leads to the 

final prediction. 

3. Relation-based Distillation: This form of distillation, 

newly named similarity-based knowledge distillation, 

transfers structural knowledge and relationships learned 

by the teacher, such as the pairwise similarities between 

features, instances, or classes, rather than the exact 

feature values themselves. 

 

Knowledge distillation encompasses a variety of techniques 

for transferring knowledge from a large, complex teacher 

model to a smaller, more efficient student model. These 

methods can be broadly categorized based on the type of 

knowledge being transferred. The most straightforward 

approach is response-based distillation (logit-Based), where 

the student model is trained to mimic the final output 

predictions, or logits, of the teacher. This method leverages the 

teacher’s softened probability distribution over the classes, 

which provides more information than just the ground-truth 

labels. 

 

3.1 Response-Based 

Modern response-based knowledge distillation techniques, as 

illustrated in (Figure 3) have evolved significantly beyond the 

foundational concept of mimicking a teacher model’s final 

output distribution, or logits. Define teacher and student logits 

as 𝑧𝑇 , 𝑧𝑆, temperature 𝜏, soft target 𝑝𝑆 = softmax(𝑧𝑆/𝜏). The 

student KD objective balances a hard and a soft term as: 

 

 

A prominent recent approach is the decoupling of the 

distillation loss, which most existing methods aim to do. This 

separates the knowledge from the target class and non-target 

classes, as proposed in methods like Decoupled Knowledge 

Distillation (DKD) [37], to improve student learning. DKD 

separates positive and negative examples, by adjusting the 

loss: 

 

where 𝑝𝑦 is the target-class probability and 𝑝̂𝑦
  sums over non-

target classes. The 𝑇, 𝑆 superscript denote probabilities coming 

from the teacher and the student network respectively. 

 

Another key area of advancement is logit normalization, which 

refines the teacher’s raw output before transfer. Instead of 

using a constant temperature to soften all predictions, methods 

like [38] propose customizing the temperature for each sample 

based on its logit distribution characteristics. Similarly, [39] 

posits that the magnitude of the teacher’s confidence is not 

always necessary and works to reduce the teacher-student gap. 

Other techniques focus on logit softening or smoothing. For 

example, some methods perturb the teacher’s logits with noise 

[40] or use an attention module to soften them before 

distillation [41] to act as a regularizer. While these logit-based 

methods are simple and effective, their application is limited 

to supervised learning and can be challenging when the teacher 

and student have different architectures. This often necessitates 

including feature-based or similarity-based knowledge to 

facilitate more effective knowledge transfer. 

 

Response-based knowledge distillation serves as a 

foundational strategy for transferring information in LiDAR 

perception, focusing on training a student model to mimic the 

final output logits, or soft targets, of a more powerful teacher. 

This core concept is thoroughly explored in general 

frameworks like the one detailed in [42] where the student 

learns from the distillation of knowledge of the pivotal position 

logit. A powerful application of this technique is in cross-

modal learning, where works such as [11] use the final output 

of a LiDAR teacher to train a camera-only student in a unified 

bird’s-eye-view space. To better capture the teacher’s 

uncertainties and refine the learning signal, more advanced 

methods have been developed; for instance, [43] models the 

teacher outputs imperfections using a cross-modal label guided 

distillation. This principle extends directly to other dense 

prediction tasks, with frameworks like [42] applying logit-

mimicking to train efficient and accurate point cloud 

segmentation networks. 

 

Figure 3. Process of Response-Based Knowledge Distillation. The Student 

model learns by mimicking the final output logits (soft targets) generated by 
a Teacher model. This transfer typically uses a Kullback-Leibler (KL) 

divergence loss between the Teacher's and Student's softened predictions, 

augmented with a standard cross-entropy loss against ground-truth labels. 
 

3.2 Feature-Based 

Feature-based knowledge distillation, shown in (Figure 4) has 

emerged as a powerful paradigm, utilizing the rich, multi-level 

representations from a teacher model’s intermediate layers as 

a valuable source of knowledge. The generic form of Feature-

based knowledge distillation is the following: 

 

where 𝐹𝑙
𝑇 , 𝐹𝑙

𝑆 are aligned features at layer 𝑙 and 𝜙𝑇 , 𝜙𝑆 re 

learned of fixed transforms for alignment. 

This approach provides the student with more detailed, step-

by-step information than relying solely on the final output. The 

concept was pioneered in [50], which proposed guiding a 

student network by providing hints from the teacher’s hidden 

layers. 

 

This foundational work was followed by a variety of influential 

methods. For instance, [44] introduced Attention Transfer 

(AT), which compels the student to mimic the teacher’s 

attention maps derived from feature channels. Other works 

took different approaches, such as [45], which focused on 

    

       

       

      

      

    
        

𝐿𝐾𝐷 = 𝜆𝜏2𝐾𝐿(𝑝𝑇||𝑝𝑆), and  
𝐿 = 𝛼𝐿𝐶𝐸(𝑦, 𝑝𝑆) + (1 − 𝛼)𝐿𝐾𝐷 

 

                 (1) 

𝐿𝐷𝐾𝐷 =  𝜆𝑝𝑜𝑠 ⋅ 𝐾𝐿(𝑝𝑦
𝑇||𝑝𝑦

𝑆) + 𝜆𝑛𝑒𝑔(𝑝̂𝑦
𝑇||𝑝̂𝑦

𝑆)                  (2) 

𝐿𝑓𝑒𝑎𝑡 = ∑ 𝑤𝑙‖𝜙𝑇(𝐹𝑙
𝑇) − 𝜙𝑆(𝐹𝑙

𝑆)‖
𝑝

𝑙∈𝐿

 
               (3) 
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transferring the boundaries formed by the teacher’s neurons 

rather than the feature values themselves. 

 

Some early works explored different knowledge sources, such 

as [46], which matched the distributions of neuron selectivity 

patterns, and [47], which transferred the factors of features 

instead of the features themselves. The field saw a significant 

advancement with [48], which re-evaluated many assumptions 

and proposed distilling the pre-activation feature maps for 

more effective transfer. Techniques also became more 

granular, as seen in [49], where a softmax function is applied 

to the channels of feature maps to match the resulting 

distributions between the teacher and student. 

 

More recently, research has focused heavily on the 

transformation function that aligns student and teacher 

characteristics. For example, [50] randomly masks pixels in the 

student’s feature map and uses convolutional layers to 

reconstruct them to match the teacher’s corresponding 

features. This idea was later simplified in [51], which 

demonstrated that a simple Multi-Layer Perceptron (MLP) can 

effectively transform the student’s features without needing a 

masking strategy. State-of-the-art approaches have introduced 

novel transformation mechanisms; [52] uniquely treats the 

student’s features as a noisy version of the teacher’s and trains 

a diffusion model to ”denoise” them into alignment. Other 

innovative approaches include [53], which decomposes feature 

loss into separate magnitude and angular difference terms, and 

[23], which transfers knowledge by distilling features in the 

frequency domain. 

 

Finally, [4] uses an attention mechanism to refine the feature 

maps of both the teacher and the student prior to distillation, 

ensuring that the transfer focuses on the most discriminative 

regions. Cross-layer strategies have also been explored, such 

as in [54, 55], where features from a student layer are matched 

not only to the corresponding teacher layer but also to all 

preceding teacher layers. 

Figure 4. Feature-based knowledge distillation. The student is supervised to 

mimic the teacher’s intermediate representations at selected layers, using 

lightweight alignment modules to match dimensions; only the student 
receives gradients. 

 

Feature-based knowledge distillation for LiDAR data has 

evolved to transfer highly complex geometric and structural 

information from teacher to student models. This is 

accomplished through a variety of sophisticated techniques 

that go beyond simple feature mimicry. For instance, some 

frameworks focus on distilling fine-grained local geometric 

structures directly from the point cloud to ensure the student 

understands detailed shapes, as demonstrated in works like 

[56]. In parallel, other methods, such as those described in [20] 

focus on ensuring the student preserves the teacher’s broader 

understanding of the overall shape and structure in the data. To 

provide more comprehensive guidance, knowledge can be 

transferred at multiple granularities, with approaches like [57] 

distilling information at both the fine-grained point level and 

the coarser voxel level simultaneously. The mechanism for 

enforcing this similarity can also vary; for example, [22] uses 

adversarial learning to align feature maps by training 

discriminators to make the student’s and teacher’s features 

indistinguishable. 

 

3.3 Relation-Based 

A third major type is relation-based distillation [55], depicted 

in (Figure 5), which focuses on relationships between different 

data points or layers. Rather than matching individual outputs 

or features, this approach encourages the student to learn the 

structural similarities and differences between samples, as 

perceived by the teacher. As a generic form relation-based 

knowledge distillation can be defined as:  

 

where (𝑥𝑖 , … , 𝑥𝑛) are tuples of data examples, (𝐹1
𝑇 , … 𝐹𝑛

𝑇) are 

teacher features, (𝐹1
𝑆, … , 𝐹𝑁

𝑆) are student features, 𝜓 is a 

relation function and 𝑙 is a loss function that penalizes the 

differences between teacher and student. 

 

The student might be trained to preserve the pairwise distances 

or the relational graph structure of the teacher’s feature 

embeddings. Relation based knowledge distillation, also called 

similarity-based distillation, transfers higher-order structural 

knowledge by focusing on relationships within the teacher’s 

representations rather than the raw values themselves. These 

techniques operate at various levels of abstraction. Some 

methods focus on internal feature relationships; pioneering 

work like [58] computed a ”Flow of Solution Procedure” by 

taking the inner product of features between layers, while more 

specific approaches like [59] create and distill a channel 

correlation matrix. This idea was advanced in [60], which 

minimizes the distance between the teacher and student 

channel correlation maps. Beyond internal features, other 

methods distill instance-level similarities between different 

data samples. For example, [5] transfers knowledge of the 

distance and angle correlations between sample characteristics, 

and [61] distills the correlation of samples within a batch. This 

concept was extended in [62], which utilizes a memory bank 

to consider global relations between samples beyond just the 

current batch. At a higher level of abstraction, class-level 

similarity methods distill the relationships between class  

representations. DSD [63] distills the pairwise similarity of 

classes from the logits, while the popular [64] significantly 

enhances student performance by distilling both inter- and 

intra-class similarities. Finally, other techniques capture 

spatial similarity; for instance, [65] was one of the first to 

propose pooling features into different regions and distilling 

the similarity relationships between them. This principle has 

been adapted to LiDAR perception through various 

mechanisms. For example, in [66] the student is trained to 

mimic the teacher’s attention maps, thereby learning which 

    

       

       

      

      

    
        

∑ 𝑙((𝜓(𝐹1
𝑇 , … 𝐹𝑛

𝑇), 𝜓(𝐹1
𝑆, … , 𝐹𝑁

𝑆)))

(𝑥𝑖 ,…,𝑥𝑛)∈𝑋_𝑁 

                 (4) 



International Journal of Computer Sciences and Engineering                                                                        Vol.13(11), Nov. 2025 

© 2025, IJCSE All Rights Reserved                                                                                                                                             81 

parts of a scene the teacher considers most important in relation 

to others. More explicit structural representations are also 

used; frameworks like [19] model the scene as a graph to 

transfer the complex relationships between different objects or 

regions. 

 

The scope of these relationships can vary, with methods in 

papers such as [21] focusing on preserving the similarity 

structure between different data using affinity distillation. 

Ultimately, these techniques can capture very high-level 

information, as demonstrated in [67] which transfers both the 

geometric structure and the semantic relationships. In (Table 

2) we provide a comprehensive classification of state-of-the-

art knowledge distillation methods relevant to LiDAR data 

application. 

 

4. Scheme Theory 
 

The strategy governing the interaction between the teacher and 

student during the training process is known as the distillation 

scheme. The choice of scheme is a critical architectural 

decision that depends on factors like the availability of a pre-

trained teacher and the desired flexibility of the training 

process. 

Figure 5. Relation-based knowledge distillation. The student is trained to 
preserve the structural relationships captured by the teacher—such as 

pairwise affinities, distances, or graph relations—across features or instances, 

rather than matching raw feature values. 

 

4.1 Offline-distillation 

Offline distillation (Figure 6) is the most traditional and widely 

used scheme. It is a two-stage process: 

1. A large, powerful teacher model is first fully pre-trained 

on a large dataset until it reaches convergence. 

2. The weights of this pre-trained teacher are then frozen. In 

a separate, subsequent stage, the smaller student model is 

trained to mimic the outputs of this static teacher. 

 

This approach is straightforward and effective, but it has a key 

limitation: it requires a powerful, pre-trained teacher to be 

available from the outset. 

The performance of the students is fundamentally capped by 

the quality of the pre-trained teacher. This scheme is most 

common when the student architecture is a simplified version 

of the teacher, for example, a network with fewer layers, fewer 

channels per layer, or a quantized version where the numerical 

precision of the parameters is reduced. 

 

The transfer between models in offline knowledge distillation 

can be cross-modal, leveraging powerful models from other  
 

 

 

Table 2. Classification by Knowledge Source 

Response-based Feature-Based Relation-based  

[37] Decoupled 

Knowledge 

Distillation (DKD) 

[3] FitNets: Hints 

for Thin Deep Nets 

[58] A Gift from 

Knowledge 

Distillation 

[38] NormKD: 

Normalized Logits 

for KD 

 

[4] Attention 

Transfer: 

Distillation of 

Activation 

Boundaries 

 

[59] Exploring 

Inter-Channel 

Correlation for 

KD 

[39] SphericalKD 

 

 

[48] A 

Comprehensive 

Overhaul of 

Feature Distillation 

[60] Channel 

Correlation 

Distillation 

[40] Distilling 

Knowledge from 

Noisy Teachers 

 

[49] Channel-wise 

Knowledge 

Distillation 

[5] Relational 

Knowledge 

Distillation 

[41] Student-

Friendly Knowledge 

Distillation 

 

[50] Masked Gene-

rative Distillation 

 

[61] Similarity-

Preserving Know-

ledge Distillation 

[42] Efficient 3D 

Object Detection 

with KD 

[51] Simple 

Framework via 

Channel-wise 

Transformation 

[68] Cross-Image 

Relational 

Knowledge 

Distillation 

 

[11] DistillBEV 

[43] LabelDistill  

 

 

 

 

 

 

 

 

[52] Knowledge 

Diffusion for 

Distillation 

[4] Attention-

Guided Feature 

Distillation 

[20] Topology-

Guided KD 

[57] Multi-to-

Single Knowledge 

Distillation 

 

[22] Adversarial 

Learning on 3D 

Point Clouds 

 

[63] Double 

Similarity 

Distillation (DSD) 

[64] Distillation 

from a Stronger 

Teacher 

[65] Structured 

Knowledge 

Distillation 

[19] PointDistiller 

 

[21] Point-to-

Voxel Knowledge 

Distillation 

[67] High-Order 

Structural Relation 

Distillation 

 

domains like vision, or intra-modal, using a larger LiDAR 

model to teach a smaller one. An example of cross-modal 

distillation is presented in [11], where a LiDAR-based teacher 

model guides a multi-camera student by aligning features in 

the Bird’s-Eye-View (BEV) space. Similarly, the [69] 

framework uses a pre-trained image network to supervise a 

point cloud network by establishing correspondences in both 

image-plane and bird’s-eye views. The paper [25] proposes 

using a self-supervised image model to teach a 3D LiDAR 

model, using super-pixels to pool and match features from both 

modalities without requiring manual annotations. Intra-modal 

approaches are also common; for instance, [70] transfers 

knowledge from an accurate two-stage 3D detector to a faster 

one-stage detector. For segmentation tasks, [21] distills 

knowledge from an over-parameterized teacher to a slim 

student network by measuring semantic similarity at both point 

and voxel levels. Another approach, detailed in [15], 
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effectively transfers rich geometric information from a 3D 

voxel-based model to a more efficient BEV-based model. 

 

4.2 Online-distillation 

In contrast to the sequential nature of offline distillation, online 

distillation (Figure 7) trains the teacher and student models 

simultaneously in an end-to-end process. In this paradigm, 

there is no need for a pre-trained teacher. Instead, a cohort of 

models (which can be of the same or different architectures) 

are trained together, and they learn from each other throughout 

the training process. Each model in the ensemble acts as both 

a teacher for the others and a student learning from collective 

knowledge. This approach is more flexible, avoids the two-

stage training bottleneck, and is particularly useful when a 

powerful pre-trained teacher is not available or is too costly to 

create. Online knowledge distillation methods for LiDAR data 

involve the simultaneous, collaborative training of teacher and 

student models, where knowledge is transferred dynamically 

rather than from a fixed, pre-trained expert. A prominent 

example is found in [71], which proposes an online Camera-

to-LiDAR distillation scheme. In this framework, an auxiliary 

camera-based network provides rich semantic cues to the 

primary LiDAR model during training through both feature-

level and logit-level distillation, but is completely discarded 

during inference to maintain efficiency. Similarly, the [72] 

framework utilizes an ”auxiliary modal fusion and multi-scale 

fusion-to-single knowledge distillation (MSFSKD)” approach 

where richer semantic and structural information from multi-

modal data is distilled online to a pure 3D network. 

Figure 6. Offline knowledge distillation scheme. A pre-trained teacher is 
frozen, and a compact student is trained in a second stage to mimic the 

teacher via response-, feature-, or relation-based losses alongside the task 

loss. The setup supports intra-modal (LiDAR to LiDAR) and cross-modal 
transfer (e.g., LiDAR to camera in BEV or image to LiDAR via 

correspondence); only the student receives gradients. 
 

4.3 Self-distillation 

Self-distillation (Figure 8) is a fascinating special case of 

online distillation where a single network architecture acts as 

both the teacher and the student. This seemingly paradoxical 

setup is instantiated in several ways. A common approach is to 

use the deeper, more semantically rich layers of a network as a 

teacher to provide supervision for the shallower layers of the 

same network. This acts as a powerful form of intra-model 

regularization, encouraging consistency across the network’s 

depth and often leading to improved generalization and 

performance without the need for any external teacher model. 

It is a computationally efficient way to boost a model’s 

performance by leveraging its own internal knowledge. 

Figure 7. Online knowledge distillation. Multiple models are co-trained 

without a pre-trained teacher; each act as both teacher and student by 

exchanging soft targets and/or intermediate features. Auxiliary branches 
(e.g., from another modality) provide guidance during training and are 

discarded at inference. 

Table 3. Classification by Distillation Scheme 

Offline-Distillation Online-

Distillation 

Self-Distillation  

[11] DistillBEV [71] Lidar2Map [24] Self-

Distillation for 

Robust Lidar 

Segmentation 

[69] HVDistill [72] 2DPass  

[23] Perturbed Self-

Distillation 

[49] Image-to-Lidar 

Self-Supervised 

Distillation 

 

  

[70] Diversity KD for 

3D Object  

 

  

[21] Point-to-Voxel 

KD 

 

  

[15] Knowledge 

Distillation from 3D to 

BEV 

  

 

The paper [24] presents such a framework where a student 

model is guided by a teacher of the same architecture. The 

teacher’s weights are an exponential moving average of the 

student’s, and it is strengthened with Test-Time Augmentation 

(TTA) to generate more reliable soft labels for the student to 

learn from. Another approach, detailed in [23], creates an 

auxiliary ”perturbed branch” by applying transformations to 

the input point cloud and trains the model to enforce predictive 

consistency between the original and perturbed branches, 

thereby generating its own supervision signal. Furthermore, 

process-based online methods like the Mean Teacher approach 

have been applied to tasks like LiDAR-Radar segmentation, 

where the teacher model’s stability is enhanced by being an 

exponential moving average of the student model’s 

parameters, improving robustness against missing modalities. 

In (Table 3) we summarize important KD methods for LiDAR 

data, categorized by their distillation scheme.  

Figure 8. Self-distillation. A single architecture serves as both teacher and 

student: the teacher is an exponential moving average (EMA) of the student 
and produces soft targets (optionally with test-time augmentation), while the 

student is trained with a mix of task loss, distillation loss, and prediction-

consistency across perturbed inputs; only the student is used at inference. 

 

5. Algorithms 
 

5.1 Bird’s eye view 

In the realm of 2D range data, knowledge distillation has been 

applied to various perception tasks to enhance model 

efficiency and performance. For instance, in [9] a framework 

was introduced to transfer 3D features from point clouds to 

improve 2D networks for indoor scene parsing using a feature-

based, semantic-aware adversarial loss, enabling the 2D 

network to infer simulated 3D features from 2D images 

without requiring 3D data during inference. Similarly, [10] 
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utilizes knowledge distillation to bridge the domain gap 

between different LiDAR beams for 3D object detection by 

performing mimicking operations on dense Bird’s Eye View 

(BEV) features.  

 

Knowledge distillation in Bird’s-Eye-View (BEV) has become 

a pivotal technique for enhancing 3D perception in 

autonomous driving, primarily by transferring knowledge from 

geometrically precise LiDAR sensors to cost-effective camera-

based systems. The BEV space acts as a unified representation 

where features from different modalities can be aligned, 

though this process is challenged by feature distribution 

discrepancies. Seminal works like [11] established a 

foundational approach where a camera-based student model is 

trained to imitate the BEV features of a powerful LiDAR-

based teacher, using balancing strategies to focus on crucial 

foreground objects. This concept was generalized in [12] 

which supports multiple distillation paths (e.g., LiDAR-to-

camera, fusion-to-camera) and employs sparse distillation on 

key foreground points to mitigate the negative impact of 

misaligned background information. Other methods have 

introduced specialized techniques to tackle specific challenges; 

for instance, [13] uses raw LiDAR points to generate 

foreground masks that guide the distillation between camera-

based models, effectively filtering out irrelevant background 

noise. Similarly, the [14] framework enhances performance by 

incorporating a geometric compensation module alongside 

BEV and response distillation to reduce the modality gap. The 

versatility of BEV as a distillation space is further highlighted 

in [15] which successfully transfers rich structural knowledge 

from complex 3D voxel-based models to more efficient BEV-

based students for segmentation tasks. To further minimize the 

modality gap, [16] proposes a student with a simulated multi-

modal architecture to better mimic a fusion-based teacher. The 

[14] framework introduces a two-stage process that includes a 

geometric compensation module to reduce the modality gap, 

followed by both BEV feature and response distillation. 

Further refining the process, [17] focuses on transferring high-

level semantics by learning the inner geometry of objects 

rather than performing strict feature mimicry. The BEV space 

also facilitates knowledge transfer between different sensor 

suites, as demonstrated in [18] which improves a camera-radar 

student by distilling knowledge from a LiDAR-camera teacher. 

These diverse methods underscore the role of BEV as a 

canonical space for creating robust, efficient, and accurate 

perception models for autonomous driving. 

 

5.2 PointCloud 

Knowledge distillation for 3D point clouds requires 

specialized frameworks that address the data’s inherent 

sparsity, irregularity, and unstructured nature, which render 

direct application of 2D image-based methods ineffective. To 

overcome these challenges, research has shifted from simple 

feature mimicry to transferring higher-order structural and 

geometric knowledge. For instance, [19] introduces a method 

to distill local geometric structures using dynamic graph 

convolution, complemented by a reweighted learning strategy 

to focus on information-rich points and voxels. Similarly, [20] 

leverages topological data analysis to ensure the student model 

preserves the essential geometric structures of the teacher. 

Another key approach, detailed in [21] transfers knowledge at 

multiple granularity by distilling both fine-grained point wise 

and coarse-grained voxel wise outputs, and uniquely captures 

relational knowledge through inter-point and inter-voxel 

affinity distillation. Beyond offline teacher-student setups, 

other paradigms have been explored. The paper [22] proposes 

PointKAD, which uses discriminators to align feature maps 

and logits between models. Self-distillation has also proven 

effective. [23] enforces predictive consistency between 

original and augmented point clouds to create supervisory 

signals in data-scarce scenarios, while [24] improves model 

robustness by using a time-averaged version of the student 

model as its own teacher, enhanced with test-time 

augmentation. Furthermore, cross-modal techniques such as 

[25] leverage powerful, pre-trained 2D vision models like 

CLIP to enrich 3D representations without requiring 3D labels. 

Other notable methods include [73] which uses a channel-wise 

autoencoder. Beyond cross-modal transfer, KD is instrumental 

in improving the robustness of LiDAR-only detectors. The 

inherent sparsity of point clouds and frequent occlusions can 

cause models to miss objects or inaccurately estimate their 

properties. To mitigate this, [26] introduces an innovative 

approach where a teacher model is trained on object-complete 

point clouds, which are generated by aggregating scans over 

time to fill in missing data. The knowledge from this strong 

teacher is then distilled into a student model that operates on 

sparse, single-frame LiDAR data, significantly improving its 

ability to handle occlusions. 

 

Lidar data, generated by laser pulses measuring time-of-flight, 

forms discrete 3D point clouds that present unique challenges 

for deep learning models. These challenges stem from the 

data’s inherent properties, including non-uniform point 

distribution with ”scanning holes” and ”scanning lines,” as 

detailed in [75]. The data also exhibits 1D curve-like 

structures, as explored in [75], and contains scanning 

anomalies like ”reflection noise” and ”ghosts”. Furthermore, 

Lidar point clouds are intrinsically sparse, particularly at 

longer ranges, and possess an irregular structure, making them 

difficult for traditional convolutional networks to process 

efficiently. The computational cost of 3D operations, the 

complexity of data annotation, and a significant ”domain gap” 

across different LiDAR sensors further add to the difficulties, 

as highlighted in [62] and [68]. The presence of crucial 

reflectance information, which can be lost during compression, 

is another challenge, leading to solutions like [76]. Domain 

adaptation is another critical challenge, as performance can 

degrade when a model is deployed with a different LiDAR 

sensor or in different weather conditions than it was trained on. 

[27] directly addresses this by using a teacher trained in clear 

weather to guide a student operating in adverse conditions, 

aligning instance features through density and shape similarity 

metrics. To address the multifaceted challenges of point 

clouds, some methods combine different forms of knowledge. 

The framework presented in [77] leverages both fine-grained 

point-level knowledge and more abstract, structural voxel-

level knowledge, providing a more holistic supervisory signal 

for the student model. The work [57] proposes a framework 

where a teacher model, having access to multiple, aggregated 

scans of a scene, distills its comprehensive understanding to a 
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student that processes only a single scan. This is achieved 

through a combination of feature-level, logit-level, and 

instance-aware similarity distillation, allowing the student to 

perform well even with less input information. Work [78] 

leverages powerful, pre-trained vision models by distilling 

their rich, general-purpose knowledge into a point cloud 

segmentation network, circumventing the need for dense 3D 

labels. Taking this a step further, [71] distills knowledge from 

a vision-language model, enabling a 3D network to understand 

and segment fine-grained object parts based on textual 

descriptions. 

 

5.3 Projected 2D views 

Knowledge distillation applied to projected 2D views of 

LiDAR data represents a crucial strategy for balancing 

computational efficiency with high performance, particularly 

for deployment on resource-constrained hardware. This 

approach first converts sparse, unstructured 3D point clouds 

into dense, regular 2D representations like spherical range 

images, which can be processed by highly optimized 2D 

CNNs. However, this projection is a lossy process that can 

cause distortion and information loss, especially for small or 

distant objects. To mitigate this, knowledge distillation is 

employed to transfer rich, high-fidelity knowledge from a 

powerful teacher model—often one that processes full 3D 

data—to a lightweight student model operating on the 2D 

projection.  

 

A prime example is in semantic segmentation, where 

foundational models like [79] and [80] established the viability 

of using range images. Building on this, the work [81] 

 
Table 4. Classification by Model 

Intra-Model Cross-Model 

[70] Diversity KD for 3D 

Object Detection 

[11] DistillBEV 

 

[21] Point-to-Voxel KD 

 

[69] HVDistill 

 

[15] Knowledge Distillation 

from 3D to BEV 

 

[25] Image-to Lidar Self-

Supervised Distillation 

 

[10] Lidar Distillation 

 

[12] UniDistill 

 

[26] Weak-to-Strong 3D 

Object Detection 

[13] BEV-LGKD 

[42] Efficient 3D Object 

Detection with KD 

[24] Self-Distillation for 

Robust Lidar Segmentation 

[23] Perturbed Self-

Distillation 

[18] CRKD 

[61 PartDistill 

[71] LiDAR2Map 

[72] 2DPass 

[78] Segment Any Point Cloud 

Sequences 

 

introduced a soft-label distillation method (SLKD) to 

effectively train an efficient student network for off-road 

segmentation on range images. This paradigm also extends to 

cross-modal and cross-representation scenarios. For instance, 

[15] explicitly distills knowledge from a complex 3D voxel-

based teacher to a real-time BEV-based student. Similarly, [82] 

creates a pseudo-LiDAR representation from images, which is 

then enhanced by a teacher trained on real LiDAR data. 

Furthermore, 2D projections serve as a critical bridge for 

transferring knowledge from powerful 2D foundation models 

to the 3D domain. Frameworks like [25] and [83] use 

projections to create correspondences between image pixels 

and 3D points, enabling distillation from models like CLIP 

without 3D labels. The paper [84] utilizes a front-view 

projection to enable a teacher-student exchange between 2D 

and 3D modalities. This principle is also used to bridge sensor 

gaps, as shown in [10] which distills knowledge from high-

resolution to low-resolution LiDAR sensors, a process often 

facilitated by their 2D projected representations. Finally, 

works like [85] and [69] focus on improving the projection step 

itself within the distillation pipeline to better align features 

across modalities. 

 

5.4 Results and Discussion 
 

Table 5. Representative quantitative comparison of key knowledge 

distillation methods for LiDAR-centric 3D object detection and mapping. For 
each method, we list representation and modality path, dataset, task, and the 

approximate gain ∆ = (Student + KD) − Student. Values are approximated, 

aggregated from the original papers. 

Method Represen-

tation 

Dataset Task 𝚫 

(metric) 

[42] PC/intra 

(LiDAR→ 

LiDAR) 

Waymo, 

KITTI 

3D OD 2-3  

mAP 

[70] PC/intra 

(LiDAR→ 

LiDAR) 

Waymo, 

KITTI 

3D OD 2-4  

mAP 

[10] BEV/intra  

(Hi→ 

Lo beam) 

KITTI 3D OD 3-4  

mAP 

[26] PC/intra  

(Agg→ 

Single) 

Waymo, 

KITTI-

like 

3D OD 3-6  

mAP 

[11] BEV/cross 

(LiDAR→ 

Cam) 

nuScenes, 

Waymo 

3D OD 3-4  

mAP 

[43] BEV/cross 

(LiDAR→ 

Cam) 

nuScenes 3D OD 2-3  

mAP 

[14] BEV/cross 

(LiDAR→ 

Cam) 

nuScenes 3D OD 3-4  

mAP 

[16] BEV/cross 

(Fusion→ 

Cam) 

nuScenes 3D OD 3-4  

mAP 

[17] BEV/cross 

(LiDAR→ 

Cam) 

nuScenes 3D OD 2-3  

mAP 

[18] BEV/cross 

(LiDAR+ 

Cam →
Cam+Radar) 

nuScenes 3D OD 2-3  

mAP 

[67] BEV/cross 

(LiDAR→ 

Mono) 

KITTI, 

nuScenes 

3D OD 3-5  

mAP 

[71] BEV/cross 

(Cam→ 

LiDAR,  

online KD) 

nuScenes-

like 

Semantic 

mapping 

2-4  

mIOU 
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To make the surveyed methods more accessible to 

practitioners, we complement the qualitative discussion in this 

section with three summary tables that organize LiDAR KD 

approaches by representation, modality path, and task, and 

report representative quantitative gains. We also include the 

datasets used in each respective paper: Waymo [82], KITTI 

[26], nuScenes [86], ShapeNetPart [42], NYUv2 [87], SUN-

RGBD [88]. 

 

(Table 5) focuses on 3D object detection and semantic 

mapping. It collects both intra-modal LiDAR-to-LiDAR KD 

and cross-modal BEV KD, together with their main datasets 

(Waymo, KITTI, nuScenes), metrics (3D mAP, NDS), and 

approximate improvements of the student over its non-distilled 

baseline.  

 

(Table 6) focuses on 3D / BEV semantic segmentation and 

related 3D tasks. It includes intra-modal LiDAR segmentation 

KD as well as cross-modal segmentation KD from images or 

foundation models. For each method we report the main 

dataset, metric, and representative gains. 

 

Finally, (Table 7) targets 2D range views and other 2D 

projections of LiDAR data, which are particularly relevant for 

resource-constrained platforms. It summarizes KD methods 

that operate on projected representations.  

Although this work is a survey and does not introduce a new 

model with its own experimental results, the methods we 

review report relatively consistent empirical trends across 

datasets and tasks. In 3D object detection on benchmarks such 

as KITTI, Waymo, and nuScenes, intra‑modal distillation 

([42], [70], [10]) typically yields gains of approximately 2–4 

mAP over non‑distilled baselines, with larger improvements 

(up to about 5–6 mAP) observed when the teacher has access 

to richer information such as multi‑frame aggregation or 

denser beams [26]. Cross‑modal BEV distillation from LiDAR 

or fusion teachers to camera‑only students ([11], [14], [16], 

[12]) shows similar relative improvements, usually in the range 

of 2–4 mAP, which is notable given that the students operate 

on cheaper sensors and often have stricter runtime budgets. For 

LiDAR semantic segmentation, both point‑cloud and 

BEV‑based KD methods ([21], [15], [24], [23]) report 

improvements on the order of 2–5 mIoU on SemanticKITTI, 

nuScenes lidarseg, and related datasets, with self‑distillation 

and weak‑label settings particularly benefiting from the extra 

regularization and soft supervision.  

 

Across representations and modality paths, several qualitative 

patterns emerge. First, feature‑ and relation‑based KD tend to 

provide the largest benefits in LiDAR settings, especially when 

the teacher and student operate on different resolutions or 

views (e.g., [21], [18]). Purely response‑based KD remains 

simple and effective but often underutilizes geometric and 

structural cues that are critical for sparse point clouds. Second, 

cross‑modal BEV distillation has become a practical 

mechanism to transfer geometric reliability from LiDAR to 

camera‑only or camera‑radar systems while preserving 

real‑time performance, suggesting that BEV is an effective 

common space for multi‑sensor KD. Third, methods targeting 

robustness, such as cross‑weather KD [27], cross‑sensor/beam 

distillation [10], and self‑distillation for noisy or compressed 

point clouds [24], [76]—consistently reduce performance gaps 

under adverse conditions, even when absolute gains on 

standard benchmarks are modest. Finally, although only a few 

works explicitly address 2D range LiDAR with KD ([81] and 

related detectors on DROW, JRDB, FROG), they indicate that 

similar trends hold: compact models operating on single‑plane 

scans can recover several points of F1/IoU when guided by 

stronger teachers, which is important for resource‑constrained 
 

Table 6. Representative quantitative comparison of knowledge distillation 

methods for LiDAR-centric 3D/BEV semantic segmentation and related 3D 
tasks. We report approximate the gain on the main metric reported in each 

work. Cross-modal methods (image/vision-model teachers to LiDAR) and 

self-distillation approaches are included to illustrate their benefit in low-label 
and robustness settings. Values are approximated, aggregated from the 

original papers. 

Method Represen-

tation 

Dataset Task 𝚫 

(metric) 

[21] PC/intra 

(LiDAR→ 

LiDAR) 

Sem. KITTI, 

nuScenes 

Segm. 4.4  

mIOU 

[24] PC/intra 

(LiDAR→ 

LiDAR) 

nuScenes  

lidarseg 

Segm. 2.2  

mIOU 

[23] BEV/intra  

(Hi→ 

Lo beam) 

Sem. KITTI, 

nuScenes 

Segm. 3-5  

mIOU 

[15] PC/intra  

(Agg→  

Single) 

Sem. KITTI, 

nuScenes 

Segm.  

(weak) 

3-4 

mIOU 

[72] BEV/cross 

(LiDAR→ 

Cam) 

Sem. KITTI, 

nuScenes 

Segm. 3-4  

mIOU 

[25] BEV/cross 

(LiDAR→ 

Cam) 

nuScenes, 

Waymo 

Segm. 

(downs.) 

3-5 

mIOU 

[9] BEV/cross 

(LiDAR→ 

Cam) 

KITTI, 

nuScenes, 

Seq. 

Segm. 

+10 

mIOU 

[28] BEV/cross 

(Fusion→ 

Cam) 

ShapeNetPart Part 

Segm. 

5-10  

mIOU 

[19] BEV/cross 

(LiDAR→ 

Cam) 

KITTI,  

nuScenes 

3D OD 

(struct. 

KD) 

3-5 

mAP 

[20] BEV/cross 

(LiDAR+ 

Cam→ 

Cam 

 +Radar) 

KITTI 

nuScenes 

Det./ 

Segm. 

2-4  

mAP, 

mIOU 

[57] BEV/cross 

(LiDAR→ 

Mono) 

Sem. KITTI, 

nuScenes 

Segm. 3-4 

mIOU 

[22] BEV/cross 

(Cam→ 

LiDAR,  

online KD) 

Class., det. 

datasets 

Class./ 

Det. 

2-4  

Acc., 

mAP 

[56] PC/intra  

(self,  

geom.) 

cross-view 

datasets 

Loc. 3-7 

Recall 

[9] 2D/cross  

(3D→ 

2D) 

NYUv2, 

SUN-RGBD 

Indoor 

segm. 

2-4 

mIOU 
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mobile robots. From a practical standpoint, these results 

suggest several design guidelines. 

 

For detection and segmentation on native point clouds, 

combining point‑ and voxel‑level supervision with relational 

or affinity losses tends to yield more robust gains than logit 

matching alone. For cross‑modal transfer, careful spatial 

alignment in BEV and the use of foreground‑aware or 

uncertainty‑aware distillation are crucial to avoid negative 

transfer from misaligned background regions. For projected 

views (range images and 2D scans), using a 3D teacher or 

multi‑frame teacher to compensate for projection and sparsity 

artefacts appears particularly effective. Overall, the empirical 

evidence across the surveyed literature supports the central 

message of this paper: knowledge distillation is a consistently 

beneficial tool for trading teacher complexity for student 

efficiency in LiDAR perception, typically recovering several 

points of accuracy or robustness while enabling deployment on 

real‑time, resource‑constrained autonomous platforms. 

 
Table 7. Representative quantitative comparison of knowledge distillation 

methods that operate on 2D range views or other 2D projections of LiDAR 

data. We report the main representation and modality path, dataset, task and 
the student with KD improvement in metric. Values are approximated, 

aggregated from the original papers. 

Method Represen-

tation 

Dataset Task 𝚫 

(metric) 

[9] 2D image/ 

cross(3D→ 

2D) 

NYUv2, 

SUN-

RGBD 

Indoor 

sem. 

segm. 

(RGB) 

2-4 

mIOU 

[81] 2D range 

view/intra 

(LiDAR→ 

LiDAR) 

Off-road 

LiDAR 

scans 

Det. 3-5 

IOU/F1 

[84] 2D front-

view /cross 

(2D↔ 3D) 

Synthetic + 

real video 

scenes 

Obj. 

discovery 

3-6 

F1/AR 

[85] 2D proj. 

(image/RV)/ 

cross 

nuScenes, 

Waymo 

Det.,  

segm. 

2-4 

mIOU 

 

6. Conclusion 
 

This review has systematically charted the landscape of 

knowledge distillation as applied to LiDAR data, revealing it 

as a critical enabling technology for deploying advanced 3D  

perception in resource-constrained autonomous systems. We 

have categorized the field along two primary axes: the 

distillation scheme—offline, online, and self-distillation—

which dictates the training paradigm, and the source of 

knowledge—response, feature, and relation-based—which 

defines the nature of the information being transferred. Our 

analysis across different data representations—native point 

clouds, Bird’s-Eye-View (BEV) grids, and projected 2D 

views—demonstrates a clear evolutionary path. 

 

The field has progressed from direct mimicry of final 

predictions to sophisticated methods that transfer nuanced, 

high-order structural and geometric knowledge, which is 

essential for handling the unique sparsity and irregularity of 

point cloud data. 

A key synthesis from this review is the emergence of 

specialized techniques tailored to each data representation. For 

native point clouds, the most effective methods have moved 

beyond simple feature matching to focus on distilling local 

geometric structures and relational affinities, thereby 

respecting the data’s unstructured nature. For cross-modal 

applications, the BEV representation has become the ”lingua 

franca,” providing a unified space to bridge the significant 

modality gap between geometrically precise LiDAR and 

semantically rich cameras. Meanwhile, for highly efficient 

systems, distillation applied to 2D projections serves as a vital 

tool to compensate for the inherent information loss, pushing 

the accuracy-efficiency frontier. 

 

Looking forward, the field faces several grand challenges that 

will define the next generation of research. The persistent 

modality gap, even within unified spaces like BEV, requires 

more advanced feature alignment and normalization 

techniques to be fully overcome. More critically, the 

community must move beyond perception-level metrics and 

embrace end-to-end, closed-loop evaluation in high-fidelity 

simulators to assess the true impact of distillation on driving 

safety and planning performance. This will necessitate the 

development of hardware-aware and planning-aware 

distillation frameworks that optimize for the entire 

autonomous stack. 

 

Perhaps the most transformative trajectory lies in expanding 

the source of knowledge beyond specialized sensor models. 

The nascent trend of distilling from large-scale, pre-trained 

foundation models, such as Vision-Language Models, signals 

a paradigm shift from transferring perceptual patterns to 

transferring abstract, conceptual, and even predictive world 

knowledge. The goal will be to distill comprehensive, 

generative world models into efficient, real-time agents 

capable of proactive and robust decision-making.  

 

In conclusion, knowledge distillation is no longer just a tool 

for model compression; it is a fundamental methodology for 

knowledge transfer that will be central to building the next 

generation of intelligent, safe, and scalable autonomous 

systems. 
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