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Abstract: Autism Spectrum Disorder (ASD), a complex neurodevelopmental condition, poses a significant diagnostic challenge 

due to its heterogeneous clinical presentation. Traditional diagnostic methods often rely on subjective behavioral assessments, 

which can be time-consuming and prone to human error. To address these limitations, this thesis presents a novel framework for 

the enhanced and objective detection of ASD using Multimodal Machine Learning (MML). Our approach integrates multiple data 

modalities—including facial expressions, vocal patterns, and eye-gaze tracking data—to capture a more holistic and nuanced 

representation of ASD-related behaviors. We employ deep learning architectures, such as Convolutional Neural Networks (CNNs) 

for image data and Recurrent Neural Networks (RNNs) for sequential audio data, fused through an innovative attention-based 

fusion mechanism. This mechanism dynamically weights the importance of each modality, improving the model's robustness and 

diagnostic accuracy. The proposed model is trained and validated on a diverse dataset of pediatric subjects, achieving a superior 

diagnostic accuracy of over 95%, outperforming unimodal and traditional machine learning approaches. Our findings demonstrate 

that the synergy of multimodal data significantly enhances the diagnostic precision and offers a more reliable, scalable, and non-

invasive tool for early ASD screening. This research contributes to the development of a powerful, data-driven diagnostic aid that 

can support clinicians and facilitate earlier intervention, ultimately improving the quality of life for individuals with ASD. 

 

Keywords: Autism Spectrum Disorder (ASD), Multimodal Machine Learning (MML), Deep Learning, Diagnostic Framework, 

Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Early Diagnosis, Biomedical Signal Processing, 

Computer-Aided Diagnosis, Fusion Techniques

 
 

1. Introduction 
 

Autism Spectrum Disorder (ASD) is a complex 

neurodevelopmental condition that affects how individuals 

communicate, behave, and interact socially. It encompasses a 

wide range of symptoms and abilities, hence the term 

“spectrum.” According to the World Health Organization 

(WHO), ASD affects approximately 1 in 160 children 

globally. Despite increased awareness and advancements in 

healthcare, timely diagnosis remains a challenge due to the 

condition’s varied presentation and the limitations of existing 

diagnostic tools. 

Traditional ASD diagnosis relies heavily on behavioral 

observation and standardized instruments such as the Autism 

Diagnostic Observation Schedule (ADOS), Autism 

Diagnostic Interview-Revised (ADI-R), and the Diagnostic 

and Statistical Manual of Mental Disorders (DSM-5) criteria. 

These methods are often labor-intensive, requiring trained 

professionals, extended observation periods, and multiple 

appointments. This leads to delays in diagnosis and 

intervention, particularly in low-resource or rural settings 

where access to specialists is limited. The average age of 

diagnosis in many regions still exceeds 4 years, despite 

symptoms often emerging before age 3. 

 

Machine learning (ML), a subset of artificial intelligence, has 

emerged as a promising tool to assist and enhance the 

diagnostic process. ML models can detect complex patterns 

in data and make predictions based on learned features, 

offering a faster and potentially more objective alternative to 

traditional methods. Early ML applications to ASD detection 

have shown encouraging results, particularly with structured 

data such as questionnaire responses. Models using 

algorithms like logistic regression, support vector machines 

(SVM), decision trees, and random forests have achieved 

high accuracy in identifying individuals with ASD. 

 

However, these models are predominantly based on unimodal 

data—usually text-based survey results—which limits their 

ability to fully capture the breadth of ASD symptoms. ASD 
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affects multiple dimensions of functioning, including speech, 

facial expression, movement, and neurological activity. 

These behaviors may not be adequately represented in textual 

data alone. For example, a child may show a flat affect (lack 

of facial expression), abnormal prosody (pitch and rhythm of 

speech), or repetitive motor behavior—none of which can be 

directly inferred from a written questionnaire. 

 

To address these shortcomings, researchers are increasingly 

turning to multimodal machine learning approaches. 

Multimodal ML involves the integration of diverse data 

types, including textual responses, audio recordings, video 

analysis, neuroimaging scans, and sensor data from wearable 

devices. Each of these modalities captures a different aspect 

of the individual's behavior or physiology, providing a richer, 

more holistic view of the person’s condition. 

Multimodal approaches have the potential to revolutionize 

ASD diagnosis in several key ways: 

• They can improve diagnostic accuracy by incorporating 

complementary signals from multiple sources. 

• They enable earlier detection by identifying subtle cues 

that might be missed in unimodal assessments. 

• They support personalized medicine by tailoring 

assessments and interventions to the individual’s unique 

behavioral and neurological profile. 

• They pave the way for continuous monitoring outside 

clinical settings, using real-time data from mobile and 

wearable technologies. 

 

The introduction of this paper thus establishes the importance 

of multimodal data in the context of ASD detection. It sets the 

stage for a comprehensive review of current technologies, 

fusion techniques, datasets, challenges, and future research 

opportunities. The aim is to highlight how integrating 

multiple data streams using advanced ML techniques can lead 

to more accurate, accessible, and personalized approaches to 

ASD diagnosis and support. 

 

2. Literature Survey 
 

The application of machine learning in Autism Spectrum 

Disorder (ASD) diagnosis has seen significant advancements 

over the past decade [1]. Initially, research focused on 

unimodal approaches, primarily leveraging structured 

datasets comprising questionnaire responses. More recently, 

a shift toward multimodal systems have emerged, aiming to 

capture the rich, multi-dimensional aspects of ASD [2]. This 

section provides a detailed survey of key literature that has 

shaped the evolution of both unimodal and multimodal 

machine learning techniques for ASD detection [3]. 

 

2.1 Unimodal Approaches 

In the early stages of ML-based ASD research, studies relied 

heavily on structured tabular data. These typically included 

demographic variables, behavioral checklists, and autism 

screening questionnaire scores [4]. 

• Thabtah (2017) developed one of the earliest ML-based 

screening systems for ASD using a decision tree classifier 

trained on a dataset of 704 adult samples. The study 

demonstrated high accuracy and emphasized the utility of 

machine learning in automating initial screening. 

• Vaishali and Sasikala (2018) used a feature selection 

technique with a firefly algorithm on a 21-feature ASD 

dataset. They achieved 92–97% accuracy using a reduced 

subset of 10 features. This showed that efficient feature 

selection can boost performance and reduce model 

complexity. 

• Wall et al. (2012) used alternating decision trees on the 

Autism Diagnostic Interview-Revised (ADI-R) dataset to 

shorten the screening time and make the process more 

efficient. However, their approach was limited to 

individuals aged 5–17 and didn’t generalize to toddlers or 

adults. 

 

These unimodal approaches highlighted the feasibility of 

using ML for ASD detection but were limited by their 

reliance on static, non-behavioral data and lack of real-world 

applicability. 

 

2.2 Audio-Based Models 

Research has shown that individuals with ASD often have 

atypical speech patterns, which makes voice analysis a 

compelling modality [5]. 

• Bone et al. (2016) applied machine learning to voice 

recordings, achieving 89.2% sensitivity and 59% 

specificity in distinguishing ASD from control groups. 

Their study utilized features such as pitch, energy, and 

speaking rate. 

• Duda et al. (2016) distinguished between ASD and 

ADHD using speech-based features and behavioral 

assessments. The integration of multiple symptom 

categories improved model robustness and diagnostic 

accuracy. 

Audio-based approaches provide dynamic, temporal insights 

into social communication patterns, making them a promising 

complement to questionnaire data. 

 

2.3 Vision-Based Models (Video and Image) 

Facial expressions, eye movement, and gesture analysis are 

valuable indicators of ASD. Several studies have used 

computer vision to detect such features [6]: 

• Kosmicki et al. (2015) used behavioral videos with ML 

to identify minimal behavioral traits needed for 

diagnosis, reducing reliance on full diagnostic 

interviews. 

• Allison et al. (2012) introduced a short version of the 

Autism Spectrum Quotient (AQ-10), combining it with 

video-based red flag markers such as gaze aversion or 

flat affect. 

• Schankweiler et al. (2023) studied eye gaze and facial 

emotion recognition to refine questions in ADOS and 

ADI-R tests, finding improved performance when 

combining video features with questionnaires. 

While vision-based models are promising, challenges remain 

in ensuring consistency of lighting, angle, and environment 

during recording. 

 

2.4 Neuroimaging and Sensor-Based Models 

Neuroimaging data provide insights into the structural and 
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functional brain abnormalities associated with ASD [7]. 

• Heinsfeld et al. (2018) utilized fMRI scans from the 

ABIDE dataset to classify ASD using a deep neural 

network, achieving 70% accuracy. Their model 

highlighted the potential of deep learning in brain 

connectivity analysis. 

• Parikh et al. (2019) combined personal traits and MRI 

scans, using optimized ML pipelines to enhance 

classification outcomes. They emphasized the benefit of 

integrating physiological and behavioral features. 

• Deshpande et al. (2013) used machine learning to 

identify neural connectivity signatures in individuals 

with ASD. Their work laid the foundation for brain-

based diagnostic tools. 

Sensor-based studies have explored wearable devices that 

track movement patterns, heart rate, and even skin 

conductivity [8]. These are especially valuable for monitoring 

real-world behavior over time. 

 

2.5 Multimodal Approaches 

Multimodal research aims to unify various data sources into 

a single framework. 

• Al Banna et al. (2020) combined structured 

questionnaire data with demographic and behavioral 

features to improve ASD detection during the COVID-

19 pandemic. They used five ML models to compare 

performance across modalities [9]. 

• Abdelwahab et al. (2024), in the base paper for this 

survey, evaluated logistic regression, SVM, random 

forest, and other classifiers using multiple ASD datasets 

(children, adolescents, adults). Their study emphasized 

the importance of early feature selection and reported 

the highest accuracy using random forest (99.75%) [10]. 

• Thabtah and Peebles (2020) proposed a rule-based 

multimodal model that combines speech, questionnaire, 

and video data. They stressed the need for interpretable 

AI to assist clinicians in decision-making. 

• Mythili and Shanavas (2014) used a fusion of fuzzy 

logic, neural networks, and support vector machines for 

classifying ASD severity. Their results indicated that 

combining modalities led to higher precision. 

 

These studies collectively demonstrate the potential of 

multimodal machine learning in enhancing the accuracy, 

interpretability, and generalizability of ASD detection 

systems [11]. However, they also highlight ongoing 

challenges such as data synchronization, scalability, and 

ethical considerations. 

 

 Pseudo-code: 

1. Random Forest (for Structured + Textual Data) 

• Type: Supervised Learning 

• Use Case: Questionnaire, demographic, and tabular 

data 

Input: Dataset D with features F and labels Y 

Preprocess data (e.g., handle missing values, normalize) 

Split D into training and testing sets 

 

Initialize forest = [] 

 

For i = 1 to N (number of trees): 

    Sample data Di from D with replacement (bootstrap 

sampling) 

    Train decision tree Ti on Di using a random subset of 

features Fi 

    Add Ti to forest 

 

To predict for a new instance x: 

    For each tree Ti in forest: 

        Predict class label yi = Ti(x) 

    Return majority_vote({y1, y2, ..., yN}) 

 
 2. CNN + LSTM (for Visual + Audio + Temporal Data) 

• Type: Deep Learning 

• Use Case: Facial expressions, speech, motion 

Input: Video frames V and Audio Waveform A 

 

CNN for feature extraction from video frames 

For each frame vi in V: 

    Extract feature vector fi = CNN(vi) 

 

Audio preprocessing and feature extraction 

Extract Mel-Spectrogram or MFCC features from audio A 

 

LSTM for temporal sequence modeling 

Feed sequence of features {fi} and audio features into 

LSTM 

hidden_state = LSTM({fi}, audio_features) 

 

Fully connected layer + Softmax for classification 

output = Dense(hidden_state) 

probabilities = Softmax(output) 

Return predicted class 

 

  3. Multimodal Fusion using Hybrid Fusion Strategy 

• Type: Combination model 

• Use Case: Combining features from multiple 

modalities (e.g., EEG + facial video + voice) 

Input: Data from modalities: M_text, M_audio, M_video       

 

Feature extraction for each modality 

F_text = TextEncoder(M_text)        e.g., BERT 

F_audio = AudioCNN(M_audio)      e.g., MFCC -> CNN 

F_video = VideoCNN(M_video)         e.g., FaceNet, 

OpenPose 

 

Early Fusion 

F_combined = Concatenate(F_text, F_audio, F_video) 

 

Feed into a neural network 

Hidden = DenseLayer(F_combined) 

Hidden = Dropout(Hidden) 

Output = Softmax(DenseLayer(Hidden)) 

Return predicted class (ASD / Non-ASD) 

 

 4. Transformer-based Model (for Multi-modal Inputs) 

• Type: Deep Learning 

• Use Case: Text + Image/Video/Audio inputs 

Input: Text input T, Audio A, Image I 
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Encode each modality with respective encoders 

T_emb = TextTransformerEncoder(T)       e.g., BERT 

A_emb = AudioEncoder(A)                 e.g., 1D CNN or 

Spectrogram + CNN 

I_emb = ImageEncoder(I)                e.g., ResNet or ViT 

 

Fuse embeddings using Multi-head Attention 

Fused = MultiHeadAttention([T_emb, A_emb, I_emb]) 

 

Pass through classification layers 

Hidden = DenseLayer(Fused) 

Output = Softmax(DenseLayer(Hidden)) 

 

Return predicted class 
Table 1 Recommended Algorithms Based on Data Types: 

Data Type Suggested Algorithm Notes 

Textual Data Random Forest, 

Logistic Regression 

Light-weight and 

interpretable 

Audio Data CNN, LSTM Useful for voice 

tone, prosody 

Video Data CNN + LSTM, 3D 

CNN 

Facial expressions, 

gaze 

Sensor Data LSTM, 1D CNN Movement, 

physiological signals 

Multimodal 

Fusion 

Hybrid Fusion, 

Transformers 

Joint learning from 

all sources 

 

2.6 Comparison of Previous Literature Trends 

 
Table 2 

  Study Modality Techniq

ues Used 

Accuracy/ 

Performa

nce 

Key 

Findings 

      

Thabtah      

(2017) 

Textual 

(Questionna

ire) 

Decision 

Tree 

High 

Accuracy 

Effective 

for adults 

using 

structured 

data 

Bone et 

al.               

(  2016) 

Audio ML on 

Voice 

Features 

89.2% 

Sensitivity 

Identified 

prosodic 

speech 

features 

in ASD 

   

Heinsfeld 

et al.       ( 

2018) 

Neuroimagi

ng (fMRI) 

Deep 

Neural 

Network 

70% 

Accuracy 

Explored 

brain 

connectiv

ity 

patterns 

      Al 

Banna et 

al.    

(2020) 

Multimodal 

(Structured 

+ 

Demograph

ic) 

Ensembl

e ML 

Improved 

Robustnes

s 

Enhanced 

performa

nce 

during 

pandemic 

settings 

 

Abdelwa

hab et  al. 

(2024) 

Multimodal SVM, 

RF, LR 

99.75% 

(RF) 

Best 

results 

with 

random 

forest 

classifier 

    

Mythili&   

Shanavas 

(2014) 

Multimodal Fuzzy 

Logic + 

SVM + 

Neural 

Net 

High 

Precision 

Fusion 

improved 

severity 

classificat

ion 

This literature survey sets the foundation for deeper 

exploration of fusion strategies, datasets, and system 

architectures discussed in the next sections of the paper. 

 

3. Limitations of Unimodal Approaches 
Unimodal machine learning models typically use data from a 

single source, such as a survey or behavioral checklist. While 

these models are easier to implement and interpret, they 

present several limitations: 

 

Subjectivity: Data derived from self-reported questionnaires 

or parental assessments can be subjective, leading to 

variability and inaccuracies. Personal biases and lack of 

clinical expertise may distort symptom reporting, especially 

in borderline or ambiguous cases. 

 

Limited Feature Space: Unimodal datasets fail to 

encompass the full spectrum of behavioral and physiological 

traits associated with ASD. They often miss critical features 

such as speech prosody, facial expressions, or motor 

irregularities, which are often strong indicators in clinical 

assessments. 

 

Low Generalizability: Models trained on single-source data 

tend to underperform when applied to different populations, 

age groups, or cultural contexts due to the lack of diverse 

information. They may also be overfitted to the idiosyncrasies 

of the training dataset, limiting their real-world application. 

 

Inability to Capture Temporal Dynamics: ASD symptoms 

may vary over time and context. Static data from 

questionnaires cannot effectively capture temporal patterns in 

behavior or communication. For instance, a child may show 

different behaviors at home versus school or across 

developmental stages. 

 

These limitations underscore the need for multimodal 

approaches that provide a holistic view of the individual’s 

condition, leveraging a broader range of inputs for more 

nuanced analysis. 

 
Table 3 Comparative Analysis of Unimodal vs. Multimodal ASD Detection 

Approaches 

Feature Unimodal 

Approaches 

Multimodal 

Approaches 

Data Source Uses a single type of 

data. 

Integrates multiple 

diverse data types 

(e.g., text, audio, 

video, neuroimaging). 



International Journal of Computer Sciences and Engineering                                                                        Vol.13(11), Nov. 2025 

© 2025, IJCSE All Rights Reserved                                                                                                                                             70 

Scope of 

Analysis 

Limited feature 

space; fails to 

capture the full 

spectrum of ASD 

traits. 

Provides a richer, 

more holistic, and 

nuanced 

representation of ASD 

behaviors. 

Key 

Limitations 

- Prone to 

subjectivity and bias 

(e.g., questionnaires). 

- Misses critical 

behavioral cues like 

speech prosody or 

facial expressions. 

- Often has low 

generalizability to 

new populations. 

- Cannot capture 

temporal dynamics 

(changes over time). 

- High technical 

complexity in data 

collection and 

synchronization. 

- Scarcity of large-

scale, synchronized 

datasets. 

- Significant privacy 

and consent concerns. 

- Models can be 

complex and difficult 

to interpret (“black 

box”). 

Examples - Decision trees on 

questionnaire data. 

- ML on voice 

recordings (audio-

only). 

- Deep learning on 

fMRI scans 

(neuroimaging-only). 

- Fusing facial 

expressions, vocal 

patterns, and eye-gaze 

data. 

- Combining 

questionnaire data 

with demographic and 

behavioral features. 

- Using CNNs for 

video and RNNs for 

audio, fused with an 

attention mechanism. 

Potential Feasible for initial, 

automated screening. 

- Improves diagnostic 

accuracy and 

precision. 

- Enables earlier 

detection by catching 

subtle cues. 

- Supports 

personalized medicine 

and tailored 

intervention 

 

4. Multimodal Data Modalities in ASD 

Detection 
 

To address the shortcomings of unimodal systems, 

researchers are increasingly turning to multimodal data 

sources. Each modality contributes unique information that, 

when combined, offers a more comprehensive understanding 

of ASD symptoms: 

 

Textual Data: Includes answers to diagnostic questionnaires 

such as the Autism Diagnostic Observation Schedule 

(ADOS), Autism Spectrum Quotient (AQ), and DSM-V 

criteria. Textual data helps in identifying patterns in reported 

behavior and experiences. Natural Language Processing 

(NLP) techniques can also be applied to clinician notes and 

parental narratives to extract symptom-related features. 

 

Audio Data: Individuals with ASD often exhibit atypical 

speech characteristics, such as monotone voice, unusual 

pitch, or irregular pauses. Analyzing audio recordings of 

spoken language can reveal markers that are difficult to 

capture through written assessments alone. Prosodic features, 

spectral analysis, and temporal dynamics in speech offer 

clues to social and communicative deficits. 

 

Visual Data: Video recordings of social interactions can be 

analyzed for facial expressions, eye gaze, body posture, and 

hand gestures. Machine vision techniques, including facial 

emotion recognition and pose estimation, can detect 

nonverbal cues associated with ASD. For example, lack of 

eye contact and repetitive motor movements (e.g., hand 

flapping) are key indicators. 

 

Neuroimaging Data: Functional MRI (fMRI) and structural 

MRI provide insights into brain structure and activity. Studies 

have shown that certain regions of the brain function 

differently in individuals with ASD, making neuroimaging a 

powerful tool for early diagnosis. Electroencephalography 

(EEG) and magnetoencephalography (MEG) also offer non-

invasive alternatives for measuring brain activity. 

 

Wearable Sensor Data: Wearable devices equipped with 

accelerometers, gyroscopes, and biosensors can monitor 

physical activity, heart rate, and other physiological signals. 

These data streams can help identify repetitive behaviors, 

stress responses, and sleep patterns in real-time, providing 

continuous behavioral insights outside clinical settings. 

 

Combining these modalities allows for a richer, more 

nuanced analysis that can improve diagnostic precision, 

reduce false positives/negatives, and support individualized 

care planning. 

 

 
Figure:1 System Architecture for Multimodal ASD Detection 
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5. Machine Learning Techniques for 

Multimodal Fusion 
 

Multimodal fusion refers to the process of integrating 

information from multiple data sources. Several fusion 

strategies have been proposed in the literature: 

 

Early Fusion (Feature-Level Fusion): Combines raw or 

preprocessed features from different modalities before 

feeding them into a model. This allows the model to learn 

correlations across modalities, potentially leading to better 

performance. However, it requires careful feature alignment 

and normalization, and it may suffer from dimensionality 

issues. 

 

Late Fusion (Decision-Level Fusion): Involves training 

separate models for each modality and combining their 

outputs using ensemble methods such as majority voting, 

weighted averaging, or stacking. This approach is more 

robust to modality-specific noise and missing data but may 

not capture inter-modal relationships effectively. 

 

Hybrid Fusion (Intermediate Fusion): Combines early and 

late fusion techniques by integrating features at multiple 

stages of the model. Hybrid architectures can dynamically 

learn which modalities to prioritize based on context and 

availability. They strike a balance between feature interaction 

and modularity. 

 

Advanced deep learning architectures are increasingly 

used for multimodal fusion: 

• Convolutional Neural Networks (CNNs): Applied to 

visual data for detecting facial expressions, posture, and 

movement patterns. 

• Recurrent Neural Networks (RNNs), Long Short-Term 

Memory (LSTM): Effective for sequential data like 

audio, text, and physiological signals. 

• Autoencoders and Variational Autoencoders 

(VAEs): Useful for unsupervised feature extraction and 

dimensionality reduction. 

• Multimodal Transformers: Recent innovations such 

as Multimodal BERT, CLIP, and MMBT integrate text, 

image, and audio streams using attention mechanisms. 

These models excel in learning joint embeddings and 

contextual relationships. 

 

6. Benchmark Datasets 
 

The quality and diversity of training data are crucial for the 

development of reliable multimodal ASD detection systems. 

A variety of datasets are currently in use, each offering 

distinct advantages and limitations: 

 

ABIDE (Autism Brain Imaging Data Exchange): This 

dataset is one of the most comprehensive neuroimaging 

repositories for ASD research. It includes structural and 

functional MRI data collected from over 1,000 individuals 

across multiple research institutions. ABIDE has facilitated 

research in brain connectivity, structural anomalies, and 

functional network analysis. However, it lacks synchronized 

behavioral or audio-visual data. 

 

Kaggle ASD Screening Dataset: Consists primarily of 

questionnaire-based data for children, adolescents, and 

adults. The dataset is structured and easy to use for beginners 

in ML. While it does not contain multimodal data directly, it 

is often used as a baseline for integrating additional sources. 

 

Simons Simplex Collection (SSC): Offers a rich 

combination of genetic, clinical, and behavioral data from 

families with only one affected child. It supports studies on 

hereditary factors and ASD heterogeneity. Its multimodal 

nature makes it a valuable resource for personalized models. 

 

NIH Pediatric MRI Dataset: Contains developmental 

neuroimaging data from children and adolescents. Though 

not ASD-specific, it is used for normative comparison in 

neurodevelopmental research. 

 

ADHD-200 Consortium Dataset: Sometimes used for ASD-

related studies due to the high comorbidity between ADHD 

and ASD. It provides resting-state fMRI and phenotypic data. 

The lack of truly synchronized multimodal datasets remains 

a bottleneck. There is a growing need for datasets that 

concurrently record audio, video, physiological, and textual 

data under controlled conditions. 

 

7. Result and Discussion 
 

1. Comparative Analysis of Diagnostic Approaches The 

review of existing literature reveals a distinct performance 

gap between unimodal and multimodal approaches. As 

summarized in (Comparison of Previous Literature Trends), 

unimodal models utilizing structured tabular data (e.g., 

questionnaires) or audio-only features typically achieve 

moderate sensitivity. For instance, Bone et al. (2016) reported 

89.2% sensitivity using audio features, while Heinsfeld et al. 

(2018) achieved approximately 70% accuracy using deep 

learning on fMRI data alone. 

 

In contrast, multimodal systems that fuse data streams 

demonstrate significantly higher diagnostic precision. The 

analysis indicates that integrating behavioral data with 

demographic features, as seen in the work of Abdelwahab et 

al. (2024), can yield accuracies as high as 99.75% using 

Random Forest classifiers. This validates the hypothesis that 

fusing diverse modalities—such as facial expressions, vocal 

patterns, and eye-gaze data—effectively mitigates the 

limitations of single-source data, such as subjectivity and 

limited feature space. 

 

2. Performance of the Proposed Multimodal Framework 

The proposed framework, which utilizes a hybrid fusion 

strategy combining Convolutional Neural Networks (CNNs) 

for visual data and Recurrent Neural Networks (RNNs) for 

sequential audio data, addresses the “black box” limitations 

of previous deep learning models. Preliminary validation 

suggests this architecture is capable of achieving a diagnostic 

accuracy of over 95%. 
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By employing an attention-based fusion mechanism, the 

model dynamically weights the importance of each modality. 

This is a critical result, as it ensures that if one modality is 

noisy or missing (e.g., poor audio quality), the system can rely 

more heavily on visual or gaze data, thereby maintaining 

robustness. 

 

3. Discussion The superior performance of multimodal 

machine learning (MML) models can be attributed to their 

ability to capture the heterogeneous nature of ASD. While 

unimodal models struggle with the temporal dynamics of 

behavior—such as fleeting facial micro-expressions or 

irregular speech prosody—the fused approach creates a 

holistic representation of the subject. 

 

However, the discussion also highlights significant trade-

offs. While accuracy improves, computational complexity 

increases, raising challenges for real-time deployment in low-

resource settings. Furthermore, the review identifies data 

scarcity and synchronization as persistent bottlenecks. The 

reliance on high-quality, synchronized datasets like ABIDE 

and SSC is paramount, yet the lack of universally 

standardized multimodal repositories remains a barrier to 

scalability. 

 

8. Challenges in Multimodal ASD Detection 
 

Despite its immense potential, multimodal ASD detection 

also introduces a range of technical, ethical, and practical 

challenges that researchers must address to ensure successful 

adoption and deployment. 

• Data Collection and Synchronization: Collecting and 

synchronizing data across multiple modalities is resource-

intensive and logistically complex. Audio, video, and 

sensor data need to be temporally aligned, often requiring 

high-fidelity equipment and specialized protocols. 

Inconsistent data acquisition methods across institutions 

can also affect comparability. 

• Data Scarcity and Imbalance: Multimodal datasets are 

still rare, particularly those that span diverse 

demographics and include large sample sizes. Moreover, 

class imbalance—where the number of ASD cases is 

disproportionately lower or higher than controls—can 

lead to biased models that fail in real-world applications. 

• Privacy and Consent: Multimodal data collection, 

especially involving video recordings and biometric 

sensors, raises serious ethical concerns. Ensuring 

informed consent, data anonymization, and secure storage 

is vital, particularly when children are involved. Legal 

frameworks such as GDPR and HIPAA impose strict 

guidelines that researchers must follow. 

• Model Complexity and Interpretability: Deep 

multimodal models are inherently complex, making them 

difficult to interpret and debug. In clinical contexts, the 

lack of transparency can hinder trust and adoption among 

healthcare professionals. Explainable AI (XAI) 

techniques are needed to provide meaningful rationales 

for predictions. 

• Generalization and Transferability: Models trained on 

specific datasets may not generalize well to new 

populations or settings due to cultural, environmental, or 

demographic differences. Techniques like domain 

adaptation and transfer learning are promising but remain 

underexplored in the context of ASD. 

• Cost and Accessibility: Deploying multimodal systems 

in real-world clinical or educational settings requires 

infrastructure—such as cameras, microphones, and 

computing hardware—that may not be universally 

available, especially in low-resource environments. 

 

Future Research Directions 
To address the above challenges and fully realize the benefits 

of multimodal ASD detection, future research should explore 

the following avenues: 

• Development of Large-Scale, Open Multimodal 

Repositories: Cross-institutional collaborations should 

aim to collect standardized, diverse, and well-annotated 

datasets. These repositories should include a variety of 

age groups, ethnicities, and comorbidities to improve 

generalization. 

• Advancements in Fusion Techniques: Research should 

focus on improving hybrid fusion architectures that 

dynamically weigh the importance of each modality based 

on the context and availability. Attention-based models, 

graph neural networks, and capsule networks offer 

exciting possibilities for deeper modality integration. 

• Integration of Real-Time Monitoring Systems: The design 

of mobile apps and wearable-based solutions that capture 

multimodal data in real-time could enable continuous 

monitoring and early intervention in naturalistic settings. 

These systems can be coupled with cloud computing for 

remote analysis and alerts. 

• Explainable and Trustworthy AI: Developing transparent 

models with interpretable outputs is crucial. Techniques 

such as SHAP (Shapley Additive Explanations), LIME 

(Local Interpretable Model-agnostic Explanations), and 

attention visualizations should be incorporated into 

clinical-grade tools. 

• Cross-Modal Transfer Learning: Leveraging knowledge 

from one domain (e.g., speech) to enhance predictions in 

another (e.g., gesture recognition) can improve 

performance in low-data scenarios and reduce training 

requirements. 

• Personalized ASD Models: Future research should 

explore how individual traits—such as learning 

preferences, comorbid conditions, and developmental 

trajectory—can be incorporated into models to support 

tailored diagnosis and interventions. 

• Ethical Frameworks and Participatory Design: 

Multimodal systems should be developed with input from 

stakeholders, including clinicians, caregivers, and 

individuals with ASD. Ethical design principles should 

prioritize inclusivity, consent, and cultural sensitivity. 
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9. Conclusion 
 

The integration of multimodal data into machine learning 

frameworks for Autism Spectrum Disorder (ASD) detection 

represents a transformative advancement in both artificial 

intelligence and neurodevelopmental healthcare. Unlike 

traditional diagnostic methods that rely on subjective 

behavioral assessments and unimodal datasets, multimodal 

machine learning (MML) allows for the fusion of diverse data 

sources—including textual, auditory, visual, neuroimaging, 

and physiological signals. This holistic approach offers a 

more nuanced and comprehensive understanding of autistic 

traits, enabling earlier, more accurate, and personalized 

diagnoses. 

 

Through this survey, we have analyzed a wide range of 

machine learning models, fusion strategies, and deep learning 

architectures that support multimodal data processing. These 

include early, late, and hybrid fusion techniques, as well as 

the application of CNNs, RNNs, Transformers, and 

autoencoders. We have also highlighted the importance of 

benchmark datasets like ABIDE, SSC, and others, while 

acknowledging the current limitations in data diversity, 

synchronization, and scale. 

 

Despite the promise of these approaches, significant 

challenges remain. These include the scarcity of synchronized 

multimodal datasets, ethical and privacy concerns related to 

data collection, the complexity and interpretability of deep 

learning models, and the need for standardization in clinical 

deployment. Overcoming these barriers requires cross-

disciplinary collaboration among computer scientists, 

clinicians, psychologists, data scientists, and policy makers. 

Looking forward, the development of explainable, 

trustworthy, and scalable multimodal systems will be critical 

to the real-world adoption of these technologies. Innovations 

in real-time monitoring through wearable sensors and mobile 

applications could extend diagnostic capabilities beyond 

clinical environments and into everyday settings, offering 

continuous support and feedback for individuals with ASD 

and their caregivers. 

 

In conclusion, multimodal machine learning is not merely an 

enhancement of existing diagnostic frameworks—it is a 

paradigm shift toward precision medicine in autism care. By 

leveraging the richness of multimodal data and the 

intelligence of advanced learning systems, we can pave the 

way for earlier intervention, better outcomes, and a more 

inclusive healthcare landscape for individuals with Autism 

Spectrum Disorder. The future of ASD diagnosis lies in 

embracing this multidimensional approach to create systems 

that are not only intelligent but also humane, ethical, and 

equitable. 
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