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Abstract: Autism Spectrum Disorder (ASD), a complex neurodevelopmental condition, poses a significant diagnostic challenge
due to its heterogeneous clinical presentation. Traditional diagnostic methods often rely on subjective behavioral assessments,
which can be time-consuming and prone to human error. To address these limitations, this thesis presents a novel framework for
the enhanced and objective detection of ASD using Multimodal Machine Learning (MML). Our approach integrates multiple data
modalities—including facial expressions, vocal patterns, and eye-gaze tracking data—to capture a more holistic and nuanced
representation of ASD-related behaviors. We employ deep learning architectures, such as Convolutional Neural Networks (CNNs)
for image data and Recurrent Neural Networks (RNNs) for sequential audio data, fused through an innovative attention-based
fusion mechanism. This mechanism dynamically weights the importance of each modality, improving the model's robustness and
diagnostic accuracy. The proposed model is trained and validated on a diverse dataset of pediatric subjects, achieving a superior
diagnostic accuracy of over 95%, outperforming unimodal and traditional machine learning approaches. Our findings demonstrate
that the synergy of multimodal data significantly enhances the diagnostic precision and offers a more reliable, scalable, and non-
invasive tool for early ASD screening. This research contributes to the development of a powerful, data-driven diagnostic aid that
can support clinicians and facilitate earlier intervention, ultimately improving the quality of life for individuals with ASD.

Keywords: Autism Spectrum Disorder (ASD), Multimodal Machine Learning (MML), Deep Learning, Diagnostic Framework,
Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Early Diagnosis, Biomedical Signal Processing,
Computer-Aided Diagnosis, Fusion Techniques

intervention, particularly in low-resource or rural settings
where access to specialists is limited. The average age of
diagnosis in many regions still exceeds 4 years, despite
symptoms often emerging before age 3.

1. Introduction

Autism  Spectrum Disorder (ASD) is a complex
neurodevelopmental condition that affects how individuals
communicate, behave, and interact socially. It encompasses a
wide range of symptoms and abilities, hence the term
“spectrum.” According to the World Health Organization

Machine learning (ML), a subset of artificial intelligence, has
emerged as a promising tool to assist and enhance the

(WHO), ASD affects approximately 1 in 160 children
globally. Despite increased awareness and advancements in
healthcare, timely diagnosis remains a challenge due to the
condition’s varied presentation and the limitations of existing
diagnostic tools.

Traditional ASD diagnosis relies heavily on behavioral
observation and standardized instruments such as the Autism
Diagnostic  Observation Schedule (ADOS), Autism
Diagnostic Interview-Revised (ADI-R), and the Diagnostic
and Statistical Manual of Mental Disorders (DSM-5) criteria.
These methods are often labor-intensive, requiring trained
professionals, extended observation periods, and multiple
appointments. This leads to delays in diagnosis and
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diagnostic process. ML models can detect complex patterns
in data and make predictions based on learned features,
offering a faster and potentially more objective alternative to
traditional methods. Early ML applications to ASD detection
have shown encouraging results, particularly with structured
data such as questionnaire responses. Models using
algorithms like logistic regression, support vector machines
(SVM), decision trees, and random forests have achieved
high accuracy in identifying individuals with ASD.

However, these models are predominantly based on unimodal

data—usually text-based survey results—which limits their
ability to fully capture the breadth of ASD symptoms. ASD
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affects multiple dimensions of functioning, including speech,
facial expression, movement, and neurological activity.
These behaviors may not be adequately represented in textual
data alone. For example, a child may show a flat affect (lack
of facial expression), abnormal prosody (pitch and rhythm of
speech), or repetitive motor behavior—none of which can be
directly inferred from a written questionnaire.

To address these shortcomings, researchers are increasingly
turning to multimodal machine learning approaches.
Multimodal ML involves the integration of diverse data
types, including textual responses, audio recordings, video
analysis, neuroimaging scans, and sensor data from wearable
devices. Each of these modalities captures a different aspect
of the individual's behavior or physiology, providing a richer,
more holistic view of the person’s condition.

Multimodal approaches have the potential to revolutionize
ASD diagnosis in several key ways:

e They can improve diagnostic accuracy by incorporating
complementary signals from multiple sources.

e They enable earlier detection by identifying subtle cues
that might be missed in unimodal assessments.

e They support personalized medicine by tailoring
assessments and interventions to the individual’s unique
behavioral and neurological profile.

e They pave the way for continuous monitoring outside
clinical settings, using real-time data from mobile and
wearable technologies.

The introduction of this paper thus establishes the importance
of multimodal data in the context of ASD detection. It sets the
stage for a comprehensive review of current technologies,
fusion techniques, datasets, challenges, and future research
opportunities. The aim is to highlight how integrating
multiple data streams using advanced ML techniques can lead
to more accurate, accessible, and personalized approaches to
ASD diagnosis and support.

2. Literature Survey

The application of machine learning in Autism Spectrum
Disorder (ASD) diagnosis has seen significant advancements
over the past decade [1]. Initially, research focused on
unimodal approaches, primarily leveraging structured
datasets comprising questionnaire responses. More recently,
a shift toward multimodal systems have emerged, aiming to
capture the rich, multi-dimensional aspects of ASD [2]. This
section provides a detailed survey of key literature that has
shaped the evolution of both unimodal and multimodal
machine learning techniques for ASD detection [3].

2.1 Unimodal Approaches

In the early stages of ML-based ASD research, studies relied

heavily on structured tabular data. These typically included

demographic variables, behavioral checklists, and autism

screening questionnaire scores [4].

e Thabtah (2017) developed one of the earliest ML-based
screening systems for ASD using a decision tree classifier
trained on a dataset of 704 adult samples. The study
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demonstrated high accuracy and emphasized the utility of
machine learning in automating initial screening.

e Vaishali and Sasikala (2018) used a feature selection

technique with a firefly algorithm on a 21-feature ASD
dataset. They achieved 92-97% accuracy using a reduced
subset of 10 features. This showed that efficient feature
selection can boost performance and reduce model
complexity.

e Wall et al. (2012) used alternating decision trees on the

Autism Diagnostic Interview-Revised (ADI-R) dataset to
shorten the screening time and make the process more
efficient. However, their approach was limited to
individuals aged 5-17 and didn’t generalize to toddlers or
adults.

These unimodal approaches highlighted the feasibility of
using ML for ASD detection but were limited by their
reliance on static, non-behavioral data and lack of real-world
applicability.

2.2 Audio-Based Models

Research has shown that individuals with ASD often have
atypical speech patterns, which makes voice analysis a
compelling modality [5].

e Bone et al. (2016) applied machine learning to voice
recordings, achieving 89.2% sensitivity and 59%
specificity in distinguishing ASD from control groups.
Their study utilized features such as pitch, energy, and
speaking rate.

e Duda et al. (2016) distinguished between ASD and
ADHD using speech-based features and behavioral
assessments. The integration of multiple symptom
categories improved model robustness and diagnostic
accuracy.

Audio-based approaches provide dynamic, temporal insights
into social communication patterns, making them a promising
complement to questionnaire data.

2.3 Vision-Based Models (Video and Image)

Facial expressions, eye movement, and gesture analysis are
valuable indicators of ASD. Several studies have used
computer vision to detect such features [6]:

e Kosmicki et al. (2015) used behavioral videos with ML
to identify minimal behavioral traits needed for
diagnosis, reducing reliance on full diagnostic
interviews.

e Allison et al. (2012) introduced a short version of the
Autism Spectrum Quotient (AQ-10), combining it with
video-based red flag markers such as gaze aversion or
flat affect.

e  Schankweiler et al. (2023) studied eye gaze and facial
emotion recognition to refine questions in ADOS and
ADI-R tests, finding improved performance when
combining video features with questionnaires.

While vision-based models are promising, challenges remain
in ensuring consistency of lighting, angle, and environment
during recording.

2.4 Neuroimaging and Sensor-Based Models
Neuroimaging data provide insights into the structural and
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functional brain abnormalities associated with ASD [7].

e Heinsfeld et al. (2018) utilized fMRI scans from the
ABIDE dataset to classify ASD using a deep neural
network, achieving 70% accuracy. Their model
highlighted the potential of deep learning in brain
connectivity analysis.

e Parikh et al. (2019) combined personal traits and MRI
scans, using optimized ML pipelines to enhance
classification outcomes. They emphasized the benefit of
integrating physiological and behavioral features.

e Deshpande et al. (2013) used machine learning to
identify neural connectivity signatures in individuals
with ASD. Their work laid the foundation for brain-
based diagnostic tools.

Sensor-based studies have explored wearable devices that

track movement patterns, heart rate, and even skin

conductivity [8]. These are especially valuable for monitoring
real-world behavior over time.

2.5 Multimodal Approaches
Multimodal research aims to unify various data sources into
a single framework.

e Al Banna et al. (2020) combined structured
questionnaire data with demographic and behavioral
features to improve ASD detection during the COVID-
19 pandemic. They used five ML models to compare
performance across modalities [9].

e Abdelwahab et al. (2024), in the base paper for this
survey, evaluated logistic regression, SVM, random
forest, and other classifiers using multiple ASD datasets
(children, adolescents, adults). Their study emphasized
the importance of early feature selection and reported
the highest accuracy using random forest (99.75%) [10].

e Thabtah and Peebles (2020) proposed a rule-based
multimodal model that combines speech, questionnaire,
and video data. They stressed the need for interpretable
Al to assist clinicians in decision-making.

e  Mpythili and Shanavas (2014) used a fusion of fuzzy
logic, neural networks, and support vector machines for
classifying ASD severity. Their results indicated that
combining modalities led to higher precision.

These studies collectively demonstrate the potential of
multimodal machine learning in enhancing the accuracy,
interpretability, and generalizability of ASD detection
systems [11]. However, they also highlight ongoing
challenges such as data synchronization, scalability, and
ethical considerations.

Pseudo-code:
1. Random Forest (for Structured + Textual Data)
e Type: Supervised Learning
e Use Case: Questionnaire, demographic, and tabular
data
Input: Dataset D with features F and labels Y
Preprocess data (e.g., handle missing values, normalize)
Split D into training and testing sets

Initialize forest = []
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Fori=1 to N (number of trees):

Sample data Di from D with replacement (bootstrap
sampling)

Train decision tree Ti on Di using a random subset of
features Fi

Add Ti to forest

To predict for a new instance x:
For each tree Ti in forest:
Predict class label yi = Ti(x)
Return majority vote({yl, y2, ..., yN})

2. CNN + LSTM (for Visual + Audio + Temporal Data)
e Type: Deep Learning
e Use Case: Facial expressions, speech, motion
Input: Video frames V and Audio Waveform A

CNN for feature extraction from video frames
For each frame viin V:
Extract feature vector fi = CNN(vi)

Audio preprocessing and feature extraction
Extract Mel-Spectrogram or MFCC features from audio A

LSTM for temporal sequence modeling

Feed sequence of features {fi} and audio features into
LSTM

hidden_state = LSTM({fi}, audio_features)

Fully connected layer + Softmax for classification
output = Dense(hidden_state)

probabilities = Softmax(output)

Return predicted class

3. Multimodal Fusion using Hybrid Fusion Strategy
e Type: Combination model
e Use Case: Combining features from multiple
modalities (e.g., EEG + facial video + voice)
Input: Data from modalities: M_text, M_audio, M_video

Feature extraction for each modality

F_text = TextEncoder(M_text) e.g., BERT
F_audio = AudioCNN(M_audio) e.g., MFCC -> CNN
F_video = VideoCNN(M_video) e.g., FaceNet,

OpenPose

Early Fusion
F_combined = Concatenate(F_text, F_audio, F_video)

Feed into a neural network

Hidden = DenseLayer(F_combined)
Hidden = Dropout(Hidden)

Output = Softmax(DenseLayer(Hidden))
Return predicted class (ASD / Non-ASD)

4. Transformer-based Model (for Multi-modal Inputs)
e Type: Deep Learning
e Use Case: Text + Image/Video/Audio inputs
Input: Text input T, Audio A, Image |
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Encode each modality with respective encoders

T emb = TextTransformerEncoder(T)  e.g., BERT
A _emb = AudioEncoder(A) e.g., ID CNN or
Spectrogram + CNN

I _emb = ImageEncoder(I) e.g., ResNet or ViT
Fuse embeddings using Multi-head Attention

Fused = MultiHeadAttention([T_emb, A_emb, I emb])

Pass through classification layers
Hidden = DenseLayer(Fused)
Output = Softmax(DenseLayer(Hidden))

Return predicted class
Table 1 Recommended Algorithms Based on Data Types:

Data Type Suggested Algorithm Notes

Textual Data Random Forest, Light-weight and

Logistic Regression interpretable
Audio Data CNN, LSTM Useful for voice
tone, prosody
Video Data CNN + LSTM, 3D Facial expressions,
CNN gaze
Sensor Data LSTM, 1D CNN Movement,

physiological signals

Multimodal Hybrid Fusion,
Fusion Transformers

Joint learning from
all sources

2.6 Comparison of Previous Literature Trends

Table 2
Study Modality Techniq | Accuracy/ | Key
ues Used | Performa | Findings
nce
Textual Decision | High Effective
Thabtah (Questionna | Tree Accuracy | for adults
(2017) ire) using
structured
data
Bone et Audio ML on 89.2% Identified
al. Voice Sensitivity | prosodic
( 2016) Features speech
features
in ASD
Neuroimagi | Deep 70% Explored
Heinsfeld | ng (fMRI) Neural Accuracy | brain
etal.  ( Network connectiv
2018) ity
patterns
Al Multimodal | Ensembl | Improved | Enhanced
Banna et | (Structured | e ML Robustnes | performa
al. + s nce
(2020) Demograph during
ic) pandemic
settings
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Multimodal | SVM, 99.75% Best
Abdelwa RF, LR (RF) results
hab et al. with
(2024) random
forest
classifier
Multimodal | Fuzzy High Fusion
Mythili& Logic + | Precision | improved
Shanavas SVM  + severity
(2014) Neural classificat
Net ion

This literature survey sets the foundation for deeper
exploration of fusion strategies, datasets, and system
architectures discussed in the next sections of the paper.

3. Limitations of Unimodal Approaches
Unimodal machine learning models typically use data from a
single source, such as a survey or behavioral checklist. While
these models are easier to implement and interpret, they
present several limitations:

Subjectivity: Data derived from self-reported questionnaires
or parental assessments can be subjective, leading to
variability and inaccuracies. Personal biases and lack of
clinical expertise may distort symptom reporting, especially
in borderline or ambiguous cases.

Limited Feature Space: Unimodal datasets fail to
encompass the full spectrum of behavioral and physiological
traits associated with ASD. They often miss critical features
such as speech prosody, facial expressions, or motor
irregularities, which are often strong indicators in clinical
assessments.

Low Generalizability: Models trained on single-source data
tend to underperform when applied to different populations,
age groups, or cultural contexts due to the lack of diverse
information. They may also be overfitted to the idiosyncrasies
of the training dataset, limiting their real-world application.

Inability to Capture Temporal Dynamics: ASD symptoms
may vary over time and context. Static data from
questionnaires cannot effectively capture temporal patterns in
behavior or communication. For instance, a child may show
different behaviors at home versus school or across
developmental stages.

These limitations underscore the need for multimodal
approaches that provide a holistic view of the individual’s
condition, leveraging a broader range of inputs for more
nuanced analysis.

Table 3 Comparative Analysis of Unimodal vs. Multimodal ASD Detection

Approaches
Feature Unimodal Multimodal
Approaches Approaches
Data Source | Uses a single type of | Integrates multiple
data. diverse data types
(e.g., text, audio,
video, neuroimaging).
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Scope of Limited feature Provides a richer,
Analysis space; fails to more holistic, and
capture the full nuanced
spectrum of ASD representation of ASD
traits. behaviors.
Key - Prone to - High technical
Limitations subjectivity and bias | complexity in data
(e.g., questionnaires). | collection and
- Misses critical synchronization.
behavioral cues like - Scarcity of large-
speech prosody or scale, synchronized
facial expressions. datasets.
- Often has low - Significant privacy
generalizability to and consent concerns.
new populations. - Models can be
- Cannot capture complex and difficult
temporal dynamics to interpret (“black
(changes over time). | box”).
Examples - Decision trees on - Fusing facial
questionnaire data. expressions, vocal
- ML on voice patterns, and eye-gaze
recordings (audio- data.
only). - Combining
- Deep learning on questionnaire data
fMRI scans with demographic and
(neuroimaging-only). | behavioral features.
- Using CNNss for
video and RNNs for
audio, fused with an
attention mechanism.
Potential Feasible for initial, - Improves diagnostic
automated screening. | accuracy and
precision.
- Enables earlier
detection by catching
subtle cues.
- Supports
personalized medicine
and tailored
intervention

4. Multimodal
Detection

Data Modalities in ASD

To address the shortcomings of unimodal systems,
researchers are increasingly turning to multimodal data
sources. Each modality contributes unique information that,
when combined, offers a more comprehensive understanding
of ASD symptoms:

Textual Data: Includes answers to diagnostic questionnaires
such as the Autism Diagnostic Observation Schedule
(ADOS), Autism Spectrum Quotient (AQ), and DSM-V
criteria. Textual data helps in identifying patterns in reported
behavior and experiences. Natural Language Processing
(NLP) techniques can also be applied to clinician notes and
parental narratives to extract symptom-related features.

Audio Data: Individuals with ASD often exhibit atypical
speech characteristics, such as monotone voice, unusual
pitch, or irregular pauses. Analyzing audio recordings of
spoken language can reveal markers that are difficult to
capture through written assessments alone. Prosodic features,
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spectral analysis, and temporal dynamics in speech offer
clues to social and communicative deficits.

Visual Data: Video recordings of social interactions can be
analyzed for facial expressions, eye gaze, body posture, and
hand gestures. Machine vision techniques, including facial
emotion recognition and pose estimation, can detect
nonverbal cues associated with ASD. For example, lack of
eye contact and repetitive motor movements (e.g., hand
flapping) are key indicators.

Neuroimaging Data: Functional MRI (fMRI) and structural
MRI provide insights into brain structure and activity. Studies
have shown that certain regions of the brain function
differently in individuals with ASD, making neuroimaging a
powerful tool for early diagnosis. Electroencephalography
(EEQG) and magnetoencephalography (MEG) also offer non-
invasive alternatives for measuring brain activity.

Wearable Sensor Data: Wearable devices equipped with
accelerometers, gyroscopes, and biosensors can monitor
physical activity, heart rate, and other physiological signals.
These data streams can help identify repetitive behaviors,
stress responses, and sleep patterns in real-time, providing
continuous behavioral insights outside clinical settings.

Combining these modalities allows for a richer, more
nuanced analysis that can improve diagnostic precision,
reduce false positives/negatives, and support individualized
care planning.

Data Acquisition

Visual Data
(Facial, Gestres)

Audio Data
(Vocal Patterns)

Eye-Gaze Data
(Gaze Tracking)

{

Feature Extraction

CNNs (e.g. VGG, RIE?I‘M Feature Extraction
ResNet) (e-g. (f ) from raw eye-
(for spatial features) or eye-gaze data
sequential data)

3

Multimodal Fusion
(Innovative Attention-Basted Fusion
Mechanism)

e Dyamimally weights the importance of each modality
* Fuses extracted features from all modlaties

Classification Model

Deep Learring Architecture (Fully Connected Layer + Softmfax)
» Receives fused features as input

!

Output
* Binary Classification: ASD vs. Non-ASD
* Superior Diagnostic Accuracy (e.g, >95%)

Figure:1 System Architecture for Multimodal ASD Detection
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5. Machine Learning
Multimodal Fusion

Techniques for

Multimodal fusion refers to the process of integrating
information from multiple data sources. Several fusion
strategies have been proposed in the literature:

Early Fusion (Feature-Level Fusion): Combines raw or
preprocessed features from different modalities before
feeding them into a model. This allows the model to learn
correlations across modalities, potentially leading to better
performance. However, it requires careful feature alignment
and normalization, and it may suffer from dimensionality
issues.

Late Fusion (Decision-Level Fusion): Involves training
separate models for each modality and combining their
outputs using ensemble methods such as majority voting,
weighted averaging, or stacking. This approach is more
robust to modality-specific noise and missing data but may
not capture inter-modal relationships effectively.

Hybrid Fusion (Intermediate Fusion): Combines early and
late fusion techniques by integrating features at multiple
stages of the model. Hybrid architectures can dynamically
learn which modalities to prioritize based on context and
availability. They strike a balance between feature interaction
and modularity.

Advanced deep learning architectures are increasingly
used for multimodal fusion:

¢ Convolutional Neural Networks (CNNs): Applied to
visual data for detecting facial expressions, posture, and
movement patterns.

e Recurrent Neural Networks (RNNs), Long Short-Term
Memory (LSTM): Effective for sequential data like
audio, text, and physiological signals.

e Autoencoders and Variational Autoencoders
(VAEs): Useful for unsupervised feature extraction and
dimensionality reduction.

e  Multimodal Transformers: Recent innovations such
as Multimodal BERT, CLIP, and MMBT integrate text,
image, and audio streams using attention mechanisms.
These models excel in learning joint embeddings and
contextual relationships.

6. Benchmark Datasets

The quality and diversity of training data are crucial for the
development of reliable multimodal ASD detection systems.
A variety of datasets are currently in use, each offering
distinct advantages and limitations:

ABIDE (Autism Brain Imaging Data Exchange): This
dataset is one of the most comprehensive neuroimaging
repositories for ASD research. It includes structural and
functional MRI data collected from over 1,000 individuals
across multiple research institutions. ABIDE has facilitated
research in brain connectivity, structural anomalies, and
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functional network analysis. However, it lacks synchronized
behavioral or audio-visual data.

Kaggle ASD Screening Dataset: Consists primarily of
questionnaire-based data for children, adolescents, and
adults. The dataset is structured and easy to use for beginners
in ML. While it does not contain multimodal data directly, it
is often used as a baseline for integrating additional sources.

Simons Simplex Collection (SSC): Offers a rich
combination of genetic, clinical, and behavioral data from
families with only one affected child. It supports studies on
hereditary factors and ASD heterogeneity. Its multimodal
nature makes it a valuable resource for personalized models.

NIH Pediatric MRI Dataset: Contains developmental
neuroimaging data from children and adolescents. Though
not ASD-specific, it is used for normative comparison in
neurodevelopmental research.

ADHD-200 Consortium Dataset: Sometimes used for ASD-
related studies due to the high comorbidity between ADHD
and ASD. It provides resting-state fMRI and phenotypic data.
The lack of truly synchronized multimodal datasets remains
a bottleneck. There is a growing need for datasets that
concurrently record audio, video, physiological, and textual
data under controlled conditions.

7. Result and Discussion

1. Comparative Analysis of Diagnostic Approaches The
review of existing literature reveals a distinct performance
gap between unimodal and multimodal approaches. As
summarized in (Comparison of Previous Literature Trends),
unimodal models utilizing structured tabular data (e.g.,
questionnaires) or audio-only features typically achieve
moderate sensitivity. For instance, Bone et al. (2016) reported
89.2% sensitivity using audio features, while Heinsfeld et al.
(2018) achieved approximately 70% accuracy using deep
learning on fMRI data alone.

In contrast, multimodal systems that fuse data streams
demonstrate significantly higher diagnostic precision. The
analysis indicates that integrating behavioral data with
demographic features, as seen in the work of Abdelwahab et
al. (2024), can yield accuracies as high as 99.75% using
Random Forest classifiers. This validates the hypothesis that
fusing diverse modalities—such as facial expressions, vocal
patterns, and eye-gaze data—effectively mitigates the
limitations of single-source data, such as subjectivity and
limited feature space.

2. Performance of the Proposed Multimodal Framework
The proposed framework, which utilizes a hybrid fusion
strategy combining Convolutional Neural Networks (CNNs)
for visual data and Recurrent Neural Networks (RNNs) for
sequential audio data, addresses the “black box” limitations
of previous deep learning models. Preliminary validation
suggests this architecture is capable of achieving a diagnostic
accuracy of over 95%.
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By employing an attention-based fusion mechanism, the
model dynamically weights the importance of each modality.
This is a critical result, as it ensures that if one modality is
noisy or missing (e.g., poor audio quality), the system can rely
more heavily on visual or gaze data, thereby maintaining
robustness.

3. Discussion The superior performance of multimodal
machine learning (MML) models can be attributed to their
ability to capture the heterogeneous nature of ASD. While
unimodal models struggle with the temporal dynamics of
behavior—such as fleeting facial micro-expressions or
irregular speech prosody—the fused approach creates a
holistic representation of the subject.

However, the discussion also highlights significant trade-
offs. While accuracy improves, computational complexity
increases, raising challenges for real-time deployment in low-
resource settings. Furthermore, the review identifies data
scarcity and synchronization as persistent bottlenecks. The
reliance on high-quality, synchronized datasets like ABIDE
and SSC is paramount, yet the lack of universally
standardized multimodal repositories remains a barrier to
scalability.

8. Challenges in Multimodal ASD Detection

Despite its immense potential, multimodal ASD detection

also introduces a range of technical, ethical, and practical

challenges that researchers must address to ensure successful
adoption and deployment.

e Data Collection and Synchronization: Collecting and
synchronizing data across multiple modalities is resource-
intensive and logistically complex. Audio, video, and
sensor data need to be temporally aligned, often requiring
high-fidelity equipment and specialized protocols.
Inconsistent data acquisition methods across institutions
can also affect comparability.

e Data Scarcity and Imbalance: Multimodal datasets are
still rare, particularly those that span diverse
demographics and include large sample sizes. Moreover,
class imbalance—where the number of ASD cases is
disproportionately lower or higher than controls—can
lead to biased models that fail in real-world applications.

e Privacy and Consent: Multimodal data collection,
especially involving video recordings and biometric
sensors, raises serious ethical concerns. Ensuring
informed consent, data anonymization, and secure storage
is vital, particularly when children are involved. Legal
frameworks such as GDPR and HIPAA impose strict
guidelines that researchers must follow.

e Model Complexity and Interpretability: Deep
multimodal models are inherently complex, making them
difficult to interpret and debug. In clinical contexts, the
lack of transparency can hinder trust and adoption among
healthcare = professionals. Explainable Al (XAI)
techniques are needed to provide meaningful rationales
for predictions.
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¢ Generalization and Transferability: Models trained on
specific datasets may not generalize well to new
populations or settings due to cultural, environmental, or
demographic differences. Techniques like domain
adaptation and transfer learning are promising but remain
underexplored in the context of ASD.

e Cost and Accessibility: Deploying multimodal systems
in real-world clinical or educational settings requires
infrastructure—such as cameras, microphones, and
computing hardware—that may not be universally
available, especially in low-resource environments.

Future Research Directions

To address the above challenges and fully realize the benefits

of multimodal ASD detection, future research should explore

the following avenues:

e Development of Large-Scale, Open Multimodal
Repositories: Cross-institutional collaborations should
aim to collect standardized, diverse, and well-annotated
datasets. These repositories should include a variety of
age groups, ethnicities, and comorbidities to improve
generalization.

e Advancements in Fusion Techniques: Research should
focus on improving hybrid fusion architectures that
dynamically weigh the importance of each modality based
on the context and availability. Attention-based models,
graph neural networks, and capsule networks offer
exciting possibilities for deeper modality integration.

o Integration of Real-Time Monitoring Systems: The design
of mobile apps and wearable-based solutions that capture
multimodal data in real-time could enable continuous
monitoring and early intervention in naturalistic settings.
These systems can be coupled with cloud computing for
remote analysis and alerts.

e Explainable and Trustworthy Al: Developing transparent
models with interpretable outputs is crucial. Techniques
such as SHAP (Shapley Additive Explanations), LIME
(Local Interpretable Model-agnostic Explanations), and
attention visualizations should be incorporated into
clinical-grade tools.

e Cross-Modal Transfer Learning: Leveraging knowledge
from one domain (e.g., speech) to enhance predictions in
another (e.g., gesture recognition) can improve
performance in low-data scenarios and reduce training
requirements.

e Personalized ASD Models: Future research should
explore how individual traits—such as learning
preferences, comorbid conditions, and developmental
trajectory—can be incorporated into models to support
tailored diagnosis and interventions.

e FEthical Frameworks and Participatory Design:
Multimodal systems should be developed with input from
stakeholders, including clinicians, caregivers, and
individuals with ASD. Ethical design principles should
prioritize inclusivity, consent, and cultural sensitivity.
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9. Conclusion

The integration of multimodal data into machine learning
frameworks for Autism Spectrum Disorder (ASD) detection
represents a transformative advancement in both artificial
intelligence and neurodevelopmental healthcare. Unlike
traditional diagnostic methods that rely on subjective
behavioral assessments and unimodal datasets, multimodal
machine learning (MML) allows for the fusion of diverse data
sources—including textual, auditory, visual, neuroimaging,
and physiological signals. This holistic approach offers a
more nuanced and comprehensive understanding of autistic
traits, enabling earlier, more accurate, and personalized
diagnoses.

Through this survey, we have analyzed a wide range of
machine learning models, fusion strategies, and deep learning
architectures that support multimodal data processing. These
include early, late, and hybrid fusion techniques, as well as
the application of CNNs, RNNs, Transformers, and
autoencoders. We have also highlighted the importance of
benchmark datasets like ABIDE, SSC, and others, while
acknowledging the current limitations in data diversity,
synchronization, and scale.

Despite the promise of these approaches, significant
challenges remain. These include the scarcity of synchronized
multimodal datasets, ethical and privacy concerns related to
data collection, the complexity and interpretability of deep
learning models, and the need for standardization in clinical
deployment. Overcoming these barriers requires cross-
disciplinary collaboration among computer scientists,
clinicians, psychologists, data scientists, and policy makers.
Looking forward, the development of explainable,
trustworthy, and scalable multimodal systems will be critical
to the real-world adoption of these technologies. Innovations
in real-time monitoring through wearable sensors and mobile
applications could extend diagnostic capabilities beyond
clinical environments and into everyday settings, offering
continuous support and feedback for individuals with ASD
and their caregivers.

In conclusion, multimodal machine learning is not merely an
enhancement of existing diagnostic frameworks—it is a
paradigm shift toward precision medicine in autism care. By
leveraging the richness of multimodal data and the
intelligence of advanced learning systems, we can pave the
way for earlier intervention, better outcomes, and a more
inclusive healthcare landscape for individuals with Autism
Spectrum Disorder. The future of ASD diagnosis lies in
embracing this multidimensional approach to create systems
that are not only intelligent but also humane, ethical, and
equitable.
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