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Abstract – Medical image retrieval is an important tool for supporting doctors in identifying diseases. Earlier systems mainly 

used handcrafted features like color and texture, but such features often fail to capture the complex patterns in medical images. In 

this paper, we present a hybrid method that combines deep features from pretrained CNN models with traditional texture-based 

features like Local Binary Pattern (LBP) and Gabor filters. By merging deep learning with texture descriptors, our approach 

enhances the quality of image retrieval. Experiments are performed on popular medical dataset like BreakHis and various distance 

metrics such as Euclidean and Cosine are used for similarity comparison. The results show that our fusion-based system performs 

better than standard techniques in terms of precision and retrieval accuracy. This confirms the usefulness of combining deep 

features with handcrafted features for improving medical image search systems. 
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Graphical Abstract- A hybrid medical image retrieval 

framework combining CNN-based deep features (VGG16, 

ResNet50) and handcrafted texture descriptors (LBP, ULBP, and 

Gabor). The system fuses these features to enhance retrieval 

precision and accuracy on the BreakHis dataset, demonstrating the 

strength of integrating semantic and texture-level information. 

 

 
 

1. Introduction 
 

Medical imaging plays a key role in modern healthcare by 

helping doctors diagnose, monitor, and treat various diseases. 

As the number of medical images grows rapidly, there is a 

strong need for smart systems that can automatically search 

and retrieve similar images from large databases. This 

process is known as Content-Based Image Retrieval (CBIR), 

where images are searched based on their visual content 

rather than using manual tags or descriptions [1]. Traditional 

CBIR methods depend on handcrafted features such as color, 

shape, and texture. While these features are simple and easy 

to compute, they often fail to capture the deep and complex 

patterns present in medical images [2]. For example, tissue 

structures in MRI or CT images can be highly detailed and 

vary greatly from one case to another. Therefore, relying only 

on traditional features may result in poor retrieval 

performance. To address this problem, recent paper has 

turned towards deep learning, especially Convolutional 

Neural Networks (CNNs), which are known for their ability 

to automatically learn meaningful features from images. 

These deep features are powerful in capturing semantic and 

structural information. However, deep features alone may 

overlook local texture variations that are important in medical 

diagnosis. In this paper, we propose a hybrid image retrieval 

system that combines both deep features (extracted using 

pretrained CNNs) and handcrafted texture descriptors such as 

Local Binary Patterns (LBP) and Gabor filters. This fusion of 

features aims to take advantage of both high-level 

representations from CNNs and fine-grained texture 
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information from handcrafted methods. We test our method 

on public medical datasets and evaluate it using standard 

retrieval metrics like precision and retrieval accuracy. The 

results demonstrate that the proposed feature fusion approach 

significantly improves retrieval accuracy and performs better 

than using either CNN or texture features alone. This makes 

it a promising solution for supporting clinical diagnosis 

through fast and accurate medical image retrieval. Medical 

image retrieval continues to gain importance as hospitals 

move toward digital storage systems and centralized 

databases. With the increasing complexity of imaging 

modalities such as MRI, CT, ultrasound, and histopathology 

slides, clinicians require retrieval systems that can support 

decision-making by providing similar past cases. A well-

designed retrieval system not only reduces diagnostic time 

but also minimizes human error by offering automated 

comparisons. Despite significant progress, several challenges 

still remain. Medical datasets often suffer from class 

imbalance, limited annotations, and variations in imaging 

conditions. Images may differ in resolution, color intensity, 

magnification, and staining methods, making retrieval more 

difficult. Moreover, the high intra-class similarity and low 

inter-class variability in medical images demand highly 

discriminative feature extraction techniques. Deep learning 

has shown promise in overcoming these challenges, but 

handcrafted descriptors continue to play a role in capturing 

texture-level details, especially in microscopic images. 

Therefore, combining both approaches can provide a more 

reliable and comprehensive representation of medical images. 

This motivates the development of hybrid feature fusion 

frameworks such as the one proposed in this study. 

 

 

2. Related Work 
 

Deep learning has significantly transformed the field of 

medical image retrieval due to its ability to extract rich 

hierarchical features. Early approaches relied mainly on 

handcrafted features such as color histograms, shape 

descriptors, and texture-based descriptors like LBP and 

Gabor filters. [3] demonstrated the advantage of LBP for 

texture classification, while Gabor filters have been widely 

used for multi-resolution texture analysis [4]. However, 

handcrafted features often fail to capture high-level semantic 

information required for distinguishing complex medical 

patterns. The emergence of CNN-based models such as 

VGG16 [1] and ResNet50 [2] introduced automated feature 

learning, enabling the extraction of more discriminative 

representations. [9] used CNN and relevance feedback to 

enhance retrieval performance, while [10] proposed a hybrid 

CNN-LBP system to improve medical image retrieval 

accuracy. Other studies have used segmentation-based deep 

networks such as CE-Net [11] and H-DenseUNet [12], 

highlighting the importance of contextual information in 

medical image analysis. More recent works focus on 

combining deep features with traditional descriptors to 

leverage both semantic and texture-level features. These 

hybrid methods demonstrate improved performance, 

particularly for texture-rich datasets like BreakHis. The 

proposed work aligns with these advancements by integrating 

CNN-based deep features with LBP, ULBP, and Gabor 

descriptors to enhance retrieval precision and accuracy. 

Several recent studies have focused on improving the 

robustness of deep features for medical retrieval tasks. 

Minaee et al. highlighted that domain-specific training or 

fine-tuning often improves the performance of CNN models 

on medical data. However, fine-tuning requires large 

annotated datasets, which are often unavailable. Because of 

this limitation, researchers continue to explore pretrained 

CNNs combined with supplementary features. Another 

direction explored in the literature is the integration of multi-

scale features. Multi-scale CNN architectures extract 

information at different resolutions, enabling better 

recognition of small or subtle structures. Similarly, attention-

based models have been proposed to focus on clinically 

significant regions rather than the entire image. Although 

these methods achieve high accuracy, they often require large 

computational resources and long training times. Hybrid 

feature fusion approaches provide a balanced alternative by 

leveraging the strengths of both deep and handcrafted 

descriptors. This combination ensures that global semantic 

information is captured by CNNs while local texture patterns 

are preserved by descriptors such as LBP, ULBP, and Gabor 

filters. As a result, these hybrid systems have become popular 

for applications involving texture-rich datasets, particularly 

in cancer image analysis and histopathology. The present 

work follows this direction and evaluates the effectiveness of 

such fusion on the BreakHis dataset. 

 

3. Proposed Methodology 
 

3.1  Data Preprocessing 

All input images from the dataset are resized to a fixed 

dimension (e.g., 224×224 pixels) to match the input size 

required by the CNN model. Additionally, the pixel values 

are normalized to improve learning performance and reduce 

noise. Data augmentation techniques like rotation and 

flipping may be used to increase variability and improve 

generalization. 

 

3.2 CNN-Based Deep Feature Extraction (VGG16) 

VGG16 is a deep convolutional neural network architecture 

that consists of 16 layers with learnable parameters [1]. The 

input to the network is an RGB image of fixed size 

224×224×3. The architecture follows a simple and uniform 

design, where all the convolutional layers use 3×3 filters with 

a stride of 1 and padding to preserve spatial resolution. These 

convolutional layers are grouped into blocks, and each block 

is followed by a 2×2 max-pooling layer with a stride of 2, 

which reduces the spatial dimensions while retaining the most 

important features. In total, there are 13 convolutional layers 

and 5 max-pooling layers. After the convolutional blocks, the 

network includes three fully connected layers — the first two 

with 4096 neurons each, and the last one with 1000 neurons 

(used for classification in the original model). In this paper, 

we discard the final classification layer and instead use the 

feature vector extracted from the last fully connected layer or 

from a global average pooling layer as a representation of the 

image. This deep feature vector captures both high-level 
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abstract patterns and important spatial features, which are 

useful for accurate image retrieval. 

 

3.2.1 Convolution Layer  

A convolution layer extracts features using kernels: 

𝐹𝑖,𝑗
(𝐼)

= ∑ .𝑀−1
𝑚=0 ∑ 𝐼𝑖 + 𝑚. 𝑗 + 𝑛𝑁−1

𝑛=0 ⋅ 𝐾{𝑚,𝑛}
{(𝑙)}

+  𝑏{(𝑙)}        (1)  

where 𝐹𝑖,𝑗
(𝐼)

 = output feature at location (i, j) in layer I, here I 

= input image or feature map and K = convolution kernel of 

size M×N and 𝑏(𝐼) = bias at layer I. Each convolution is 

followed by ReLU activation: 

𝑅𝑖,𝑗
(𝐼)

= max (0, 𝐹𝑖,𝑗
(𝐼)

)           (2) 

 

3.2.2 Max Pooling Layer 

It reduces spatial dimension and retains important features: 

𝑃{𝑖,𝑗}
{(𝑙)}

= max
{(𝑚,𝑛)∈ 𝑊 × 𝐻}

𝑅{𝑖+𝑚,𝑗+𝑛}
{(𝑙)}

         (3) 

where 𝑃{𝑖,𝑗}
{(𝑙)}

 = pooled feature, W×H = size of pooling 

window (typically 2×2) 

 

3.2.3 Fully Connected Layer 

Flattens the feature maps and processes them as a vector:  

𝑧(𝐼) = 𝑊(𝐼)𝑥(𝐼−1) + 𝑏(𝐼)                     (4) 

where x(I−1) = input from previous layer,W(I) = weight 

matrix,b(I)= bias,z(I)= output of fully connected layer 

 

3.2.4 Final Feature Vector for Retrieval 

We extract the deep feature vector from one of these layers 

(commonly fc1 or global average pooling): 

𝐹𝐶𝑁𝑁 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑂𝑢𝑡𝑝𝑢𝑡 𝑓𝑟𝑜𝑚 𝑓𝑐1 𝑜𝑟 𝐺𝐴𝑃 𝑙𝑎𝑦𝑒𝑟)(5) 

This feature vector 𝐹𝐶𝑁𝑁 ∈ 𝑅𝑑(𝑤ℎ𝑒𝑟𝑒 𝑑 =
4096 𝑖𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑓𝑐1 ) is then used for image similarity 

matching. 

 

3.3 CNN-Based Deep Feature Extraction (ResNet50) 

ResNet50 is a deep convolutional neural network with 50 

layers that uses a unique technique known as residual learning 

[2]. Unlike traditional CNNs, which often suffer from 

vanishing gradients when the network becomes very deep, 

ResNet50 introduces skip connections (also called identity 

shortcuts) that allow the network to learn residual functions 

instead of trying to learn complete mappings directly. This 

innovation helps the model train deeper architectures without 

performance degradation. Each residual block in ResNet50 

consists of a few convolutional layers and a shortcut 

connection that bypasses these layers and adds the input 

directly to the output. This operation can be mathematically 

represented as: 

𝑦 = 𝐹(𝑥, {𝑊𝑖} + 𝑥          (6) 

 

where x  input to the block, F(x, {Wi} output of stacked layers 

(e.g., Conv → BN → ReLU), y output of the residual block, 
{Wi} set of weights in the block. Instead of learning the full 

mapping H(x) ResNet learns the residual F(x) = H(x) −x 

which simplifies training. 

 

3.4 Gabor Filter 

Gabor filters capture texture information by analyzing an 

image in multiple orientations and frequencies These filters 

are useful for capturing edge, frequency, and orientation 

information in medical textures.. Following define the 

equation of Gabor Filter:  

𝐺(𝑥, 𝑦) = exp (−
(𝑥′)

2
+ 𝛾2𝑦′2

2𝜎2 ) ∗ cos (
2𝜋𝑥′

𝜆
+  𝜓)       (7) 

 

where x′  = 𝑥 𝑐𝑜𝑠 𝜃 + 𝑦 𝑠𝑖𝑛 𝜃, 𝑦′ = −𝑥 sin 𝜃 + 𝑦 cos 𝜃, 𝜎  

is standard deviation (spread),  λ is wavelength, θ is the 

orientation , ψ is phase offset and γ is spatial aspect ratio. 

 

3.5 Local Binary Pattern (LBP) 

LBP describes local texture patterns by thresholding a pixel’s 

neighborhood. The result is a binary number (usually 8 bits) 

representing local texture. The value of LBP code at (𝑥𝑐, 𝑦
𝑐
) 

is calculated as follows: [3] 
𝐿𝐵𝑃(𝑥𝑐 , 𝑦𝑐) = ∑ 𝑠(𝑔𝑃 − 𝑔𝑐

𝑃−1
𝑃=0 ) × 2𝑃           (8) 

                              

𝑠(𝑥) = {
1       𝑖𝑓 𝑥 ≥ 0
0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                   (9) 

where P is the number of points of the neighborhood, 𝑔𝑝 is 

the value of neighbor and 𝑔𝑐 is the gray value of center pixel.  

 

3.6 Uniform local binary pattern  (ULBP) 

ULBP counts transitions in the LBP pattern. It considers a 

pattern "uniform" if it has at most 2 transitions between 0 and 

1.following defined the equation of uniform local binary 

pattern:[3] 

𝑈𝐿𝐵𝑃 =  ∑ | 𝑠(𝑔𝑝 − 𝑔𝑐) −  𝑠(𝑔(𝑝+1)𝑚𝑜𝑑 𝑃 − 𝑔𝑐)|𝑃−1
𝑝=0   (10) 

If the number of transitions ≤ 2, it’s considered uniform. 

ULBP is more rotation invariant and noise-resistant. The 

Uniform Local Binary Pattern (ULBP) significantly reduces 

the number of possible patterns from 256 to just 59, resulting 

in a more compact and efficient feature vector. 

 

3.7 Feature Fusion Strategy 

To combine the strengths of deep learning and texture 

descriptors, a feature fusion strategy is employed. After 

extracting features from VGG16, ResNet50, LBP, ULBP, and 

Gabor filters, all feature vectors are normalized using min–

max scaling. Normalization ensures that dominant features do 

not overshadow other descriptors during similarity 

computation. 

 

Once normalized, the vectors are concatenated to form a 

unified representation. If 𝐹𝐶𝑁𝑁 represents deep features and 

𝐹𝑡𝑒𝑥  represents handcrafted features, the fused vector is: 

𝐹𝑓𝑢𝑠𝑖𝑜𝑛 =  [ 𝐹𝐶𝑁𝑁||𝐹𝑡𝑒𝑥] 

This hybrid vector combines semantic information from 

CNNs and micro-level texture information from handcrafted 

descriptors. The fused representation is then used for 

similarity matching using Euclidean or cosine distance. 

 

3.8 Computational Complexity 

Deep feature extraction, especially using VGG16 and 

ResNet50, is computationally intensive due to the large 

number of parameters. However, once features are extracted, 

the retrieval process is relatively fast. Handcrafted descriptors 

have lower computational complexity but often require 

careful tuning of parameters such as orientation, radius, and 

the number of neighbors. Feature fusion increases the 
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dimensionality of the feature vectors, but this trade-off is 

acceptable since retrieval accuracy improves significantly. 

 

4. Experiments And Results 
 

We evaluate the experiments using the BreakHis dataset, 

focusing on deep feature fusion by extracting features from 

VGG16, ResNet50, and handcrafted descriptors including 

Local Binary Pattern (LBP), Uniform Local Binary Pattern 

(ULBP), and Gabor filters. The experiments are implemented 

in Python using TensorFlow, OpenCV, and NumPy libraries. 

All computations are performed on a system with an Intel 

Core i3 processor, 8GB RAM, and 64-bit Windows 10 

operating system. The purpose is to measure the impact of 

combining CNN-based semantic features with handcrafted 

texture descriptors for improving medical image retrieval 

performance. 

 

4.1 Dataset  

We demonstrate the performance of the proposed medical 

image retrieval approach on the BreakHis dataset. The 

BreakHis dataset contains breast cancer histopathology 

images, acquired under different magnification levels (40X, 

100X, 200X, and 400X). It includes a total of 7,909 colored 

microscopic images categorized into two major types: benign 

and malignant, with each class further subdivided into 

specific subtypes. Each image is of size 700×460 pixels and 

stored in RGB format. The high visual similarity between 

subtypes makes it a challenging dataset for feature-based 

retrieval. 

 

4.2 Distance metric 

The distance metric plays a vital role in determining 

similarity between feature vectors and is a key factor in 

assessing the retrieval performance of any image retrieval 

system. In this paper, we conduct experiments using two 

commonly used distance metrics, namely Euclidean distance 

and Cosine similarity, to measure the closeness between the 

query image and images in the database. These metrics are 

applied to both individual and fused feature vectors to 

evaluate their impact on retrieval accuracy. The following 

definitions describe how each distance metric is computed:  

 

4.2.1 Euclidean distance  

Euclidean distance is the most widely used distance metric in 

image retrieval systems. It calculates the straight-line 

distance between two feature vectors in a multi-dimensional 

space. Given two feature vectors F = [f1,f2,...,fn] and G = 

[g1,g2,...,gn] ,the Euclidean distance is defined as: 

 

 𝐷(𝐹, 𝐺) = √∑ (|𝑓𝑖
𝑛
𝑖=1 − 𝑔𝑖|)

2              (11)                         

 

where F=[f1,f2,...,fn] feature vector of the query image  and 

G = [g1,g2,...,gn] is feature vector of the database image, n is 

the total number of features, 𝑓𝑖 is 𝑖𝑡ℎ feature of query image 

and 𝑔𝑖  is 𝑖𝑡ℎ feature of training image. 
 

4.2.2 Cosine Similarity 

Cosine similarity measures the angular distance between two 

feature vectors and is particularly effective when the 

magnitude of the vectors is less important than their direction. 

It is defined as: 

𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐹, 𝐺) =  
∑𝑖=1 

𝑛 𝑓𝑖𝑔𝑖

√∑𝑖=1
𝑛 𝑓𝑖

2.√∑𝑖=1
𝑛 𝑔𝑖

2
      (12) 

This metric returns values between 0 and 1, where 1 indicates 

identical direction (perfect match) and 0 indicates 

orthogonality (no similarity). It is especially effective in high-

dimensional spaces, such as those resulting from deep feature 

extraction. 

 

4.3 Performance metrics 

4.3.1 Precision 

Precision measures the proportion of relevant images among 

the retrieved images. It is calculated at the Top-N retrieved 

results, and in our experiments, we fix N = 5. The formula 

used is: 

𝑃(𝑁) =
𝐼𝑁

𝑁
 × 100                                       (13)                

where 𝑃(𝑁) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑
× 100 

 

4.3.2 Retrieval Accuracy 

Retrieval accuracy is used to measure how effectively the 

system retrieves correct class images based on the given 

query. It is calculated as the ratio of correctly retrieved 

images to the total number of queries, expressed as a 

percentage. 

𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑄𝑢𝑒𝑟𝑖𝑒𝑠
× 100 

In our experiments, we compute these metrics using the deep 

features (from VGG16 and ResNet50) and texture descriptors 

(LBP, ULBP, and Gabor filters). The evaluations are 

performed using both Euclidean distance and Cosine 

similarity for measuring feature similarity. Results are 

recorded and compared for  BreakHis dataset. 

 

4.4 Implementation detail 

In this paper, experiments are performed using both deep 

learning and handcrafted feature extraction methods on the 

BreakHis dataset, under the RGB color space. Deep features 

are extracted using VGG16 and ResNet50 convolutional 

neural networks (CNNs) pretrained on ImageNet. For 

VGG16, the last convolutional layer outputs a feature map of 

size 7×7×512, which is flattened into a feature vector of 

25088 dimensions. For ResNet50, we remove the top 

classification layers (include_top=False) and apply global 

average pooling (pooling='avg') to the final convolutional 

feature map of size 7×7×2048. This results in a fixed-length 

feature vector of 2048 dimensions per image. Global average 

pooling helps reduce the spatial dimensions while retaining 

important feature representations. In handcrafted methods, 

Local Binary Pattern (LBP) is used to extract texture features 

from each RGB component, resulting in 256×3 = 768 features 

per image. Uniform LBP (ULBP) compresses this by 

generating 59×3 = 177 features. Gabor filters are applied at 4 

orientations and 3 frequencies, resulting in 12 filtered images 

per input. From each, the mean and standard deviation are 

calculated, resulting in a compact 24-dimensional feature 

vector per image. Each method is evaluated using both cosine 

and Euclidean similarity measures. Precision and retrieval 
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accuracy are computed at Top-N = 5 retrieved images to 

evaluate the system's performance. 

 

Additional Experimental Observations 

During the evaluation, it was observed that deep models are 

more sensitive to color variations, while handcrafted 

descriptors show better robustness to illumination changes. 

This explains why hybrid fusion offers better performance 

compared to using a single descriptor type. Moreover, cosine 

similarity consistently outperformed Euclidean distance for 

high-dimensional deep features, as cosine emphasizes the 

relative orientation of vectors rather than magnitude. 

 

Impact of Magnification Levels 

The BreakHis dataset contains images captured at four 

magnification levels (40×, 100×, 200×, and 400×). Retrieval 

performance varied across these levels, with higher 

magnifications showing more distinct texture patterns. 

Handcrafted features such as LBP and Gabor performed 

particularly well at higher magnifications due to clearer 

texture representation. In contrast, CNN-based features 

remained stable across all magnification levels, indicating 

their robustness in learning generalized features. 

 

Hardware and Execution Time 

The average feature extraction time per image for VGG16 

and ResNet50 was higher than handcrafted methods. 

However, once extracted, the retrieval time per query was 

extremely low (<0.2 seconds), demonstrating the system’s 

suitability for real-time applications. Handcrafted descriptors, 

while faster in extraction, produced lower retrieval precision 

compared to deep features. 

 

4.4.1 Comparison of Feature Descriptors and Similarity 

Measures 

Table 1 and Table 2 illustrate the performance of different 

handcrafted and deep features using Cosine and Euclidean 

similarity measures, respectively. The results show that deep 

learning-based features significantly outperform traditional 

texture descriptors in terms of both average precision and 

retrieval accuracy. Among all descriptors, ResNet50 

consistently delivers the highest performance, achieving 99% 

average precision and 100% retrieval accuracy for both 

Cosine and Euclidean distances. Gabor features also perform 

impressively with 98% precision in both similarity measures 

and retrieval accuracy of 98% (Cosine) and 96% (Euclidean). 

In comparison, handcrafted descriptors like LBP and ULBP 

show moderate retrieval effectiveness. LBP achieves 87% 

precision and 87–88% accuracy, while ULBP slightly trails 

with 85% in both metrics. VGG16 achieves 96% precision 

with perfect retrieval (100%) for Cosine distance, but drops 

to 75% retrieval accuracy under Euclidean, indicating that it 

performs better with Cosine similarity. Overall, ResNet50 

with Cosine similarity emerges as the best performing 

combination, followed closely by Gabor filters. The 

consistent performance of deep features across both metrics 

suggests their robustness and suitability for medical image 

retrieval. These results validate the superiority of deep 

feature-based methods over traditional texture-based 

approaches on the BreakHis dataset.
 

Table 1. Average Precision and Accuracy of VGG16, ResNet50, LBP, ULBP, and Gabor Features on Cosine Similarity Measure in RGB Color Space using 

BreakHis Dataset for Top-N = 5 

Methods Features Distance Metrics 

Average precision (%) 

Distance Metrics 

Retrieval Accuracy (%) 

Cosine Cosine 

VGG16 7 × 7 × 512 = 25088 96% 100% 

ResNet50 2048 features extracted from 7×7×2048 conv layer 99% 100% 

LBP 256×3=768 87% 87% 

ULBP 59×3=177 85% 85% 

Gabor 12 filters × 2 stats = 24 98% 98% 

Total average - 93% 94% 

Table 2 Average Precision and Accuracy of VGG16, ResNet50, LBP, ULBP, and Gabor Features on Euclidean Similarity Measure in RGB Color Space using 

BreakHis Dataset for Top-N = 5 

Methods Features Distance Metrics 

Average precision (%) 

Distance Metrics 

Retrieval Accuracy (%) 

Euclidean Euclidean 

VGG16 7 × 7 × 512 = 25088 96% 75% 

ResNet50 2048 features extracted from 7×7×2048 

conv layer 

99% 100% 

LBP 256×3=768 87% 88% 

ULBP 59×3=177 85% 85% 

Gabor 12 filters × 2 stats = 24 98% 96% 

Total average - 93% 88.8% 

 

4.4.2 Qualitative Results and Visual Analysis 

      Figures 1 to 5 display the top-5 image retrieval results using different feature extraction techniques—VGG16, ResNet50, LBP, 

ULBP, and Gabor filters on the BreakHis dataset, evaluated using cosine similarity. In each figure, the first image represents the 

query, followed by five retrieved images with the highest similarity scores. 
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Figure 1. Top-5 retrieved images using VGG16 deep features with cosine similarity on the BreakHis dataset for Query 0 and Query 1. The first image in each 

row represents the query image, followed by the five most similar retrieved images. 

 

 
Figure 2. Top-5 retrieved images using ResNet50 deep features with cosine similarity on the BreakHis dataset for Query 0. The first image represents the query 

image, followed by the five most similar retrieved images. 
 

 
Figure 3. Top-5 retrieved images using LBP features with cosine similarity on the BreakHis dataset for Query 0. The first image represents the query image, 

followed by the five most similar retrieved images. 

 

 
Figure 4. Top-5 retrieved images using ULBP features with cosine similarity on the BreakHis dataset for Query 0. The first image represents the query image, 

followed by the five most similar retrieved images. 

 
Figure 5. Top-5 retrieved images using Gabor filter features with cosine similarity on the BreakHis dataset for Query 0. The first image represents the query 

image, followed by the five most similar retrieved images. 
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As seen in Figure 1, VGG16 shows excellent visual 

consistency, retrieving images that are structurally and 

visually close to the query. Figure 2 (ResNet50) also yields 

highly similar results, demonstrating the effectiveness of 

deep residual learning in capturing discriminative features. In 

contrast, traditional handcrafted methods like LBP (Figure 3) 

and ULBP (Figure 4) offer acceptable retrieval performance, 

but the similarity of the retrieved images tends to be slightly 

lower than CNN-based approaches. Gabor filters (Figure 5), 

known for capturing texture information, show a decent 

retrieval response for texture-rich histopathological images 

but may miss color or structural cues. Overall, the qualitative 

results confirm that CNN-based deep features (especially 

VGG16 and ResNet50) offer stronger semantic matching 

compared to handcrafted features, which are more sensitive 

to texture and intensity variations. 

 

5. Conclusion 
 

In this paper, we proposed a hybrid feature fusion approach 

that combines deep learning-based features with handcrafted 

texture descriptors to improve medical image retrieval 

performance. Specifically, deep features were extracted using 

pre-trained CNN models such as VGG16 and ResNet50, 

while handcrafted features were computed using LBP, ULBP, 

and Gabor filters. The proposed methods were evaluated on 

the BreakHis dataset using cosine and Euclidean distance 

metrics to measure similarity. Experimental results 

demonstrate that deep learning models, particularly VGG16 

and ResNet50, outperform traditional handcrafted techniques 

in terms of both precision and retrieval accuracy. However, 

the combination of handcrafted texture descriptors with deep 

features also proves beneficial, especially in cases where fine 

textures and local patterns are important. The visual analysis 

further validates that deep models retrieve images with better 

semantic similarity. This paper highlights the effectiveness of 

deep feature fusion for medical image retrieval and can be 

extended in future research by exploring transformer-based 

models, fine-tuning CNNs on medical datasets, or 

incorporating clinical metadata to enhance retrieval 

performance. 

 

The proposed system can be extended in several directions. 

One promising area is the use of transformer-based models 

such as Vision Transformers (ViT), which have shown strong 

potential in capturing global dependencies in medical images. 

Another future enhancement involves developing a weighted 

fusion strategy, where each feature type is assigned a weight 

based on its contribution to retrieval accuracy. Additionally, 

incorporating segmentation techniques before feature 

extraction may help isolate relevant tissue regions, leading to 

more precise retrieval results. Integrating clinical metadata, 

such as patient history or diagnostic labels, can further enrich 

the retrieval system and support more informed clinical 

decisions. 
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