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Abstract — Medical image retrieval is an important tool for supporting doctors in identifying diseases. Earlier systems mainly
used handcrafted features like color and texture, but such features often fail to capture the complex patterns in medical images. In
this paper, we present a hybrid method that combines deep features from pretrained CNN models with traditional texture-based
features like Local Binary Pattern (LBP) and Gabor filters. By merging deep learning with texture descriptors, our approach
enhances the quality of image retrieval. Experiments are performed on popular medical dataset like BreakHis and various distance
metrics such as Euclidean and Cosine are used for similarity comparison. The results show that our fusion-based system performs
better than standard techniques in terms of precision and retrieval accuracy. This confirms the usefulness of combining deep
features with handcrafted features for improving medical image search systems.

Keyword — Medical Image Retrieval, Deep Learning, Convolutional Neural Networks (CNN),Feature Fusion, Local Binary
Pattern (LBP), Gabor Filter, Texture Descriptors, Content-Based Image Retrieval (CBIR), Similarity Metrics

Graphical Abstract- A hybrid medical image retrieval
framework combining CNN-based deep features (VGG16,
ResNet50) and handcrafted texture descriptors (LBP, ULBP, and
Gabor). The system fuses these features to enhance retrieval
precision and accuracy on the BreakHis dataset, demonstrating the
strength of integrating semantic and texture-level information.
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1. Introduction
Medical imaging plays a key role in modern healthcare by
helping doctors diagnose, monitor, and treat various diseases.

As the number of medical images grows rapidly, there is a
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strong need for smart systems that can automatically search
and retrieve similar images from large databases. This
process is known as Content-Based Image Retrieval (CBIR),
where images are searched based on their visual content
rather than using manual tags or descriptions [1]. Traditional
CBIR methods depend on handcrafted features such as color,
shape, and texture. While these features are simple and easy
to compute, they often fail to capture the deep and complex
patterns present in medical images [2]. For example, tissue
structures in MRI or CT images can be highly detailed and
vary greatly from one case to another. Therefore, relying only
on traditional features may result in poor retrieval
performance. To address this problem, recent paper has
turned towards deep learning, especially Convolutional
Neural Networks (CNNs), which are known for their ability
to automatically learn meaningful features from images.
These deep features are powerful in capturing semantic and
structural information. However, deep features alone may
overlook local texture variations that are important in medical
diagnosis. In this paper, we propose a hybrid image retrieval
system that combines both deep features (extracted using
pretrained CNNs) and handcrafted texture descriptors such as
Local Binary Patterns (LBP) and Gabor filters. This fusion of
features aims to take advantage of both high-level
representations from CNNs and fine-grained texture
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information from handcrafted methods. We test our method
on public medical datasets and evaluate it using standard
retrieval metrics like precision and retrieval accuracy. The
results demonstrate that the proposed feature fusion approach
significantly improves retrieval accuracy and performs better
than using either CNN or texture features alone. This makes
it a promising solution for supporting clinical diagnosis
through fast and accurate medical image retrieval. Medical
image retrieval continues to gain importance as hospitals
move toward digital storage systems and centralized
databases. With the increasing complexity of imaging
modalities such as MRI, CT, ultrasound, and histopathology
slides, clinicians require retrieval systems that can support
decision-making by providing similar past cases. A well-
designed retrieval system not only reduces diagnostic time
but also minimizes human error by offering automated
comparisons. Despite significant progress, several challenges
still remain. Medical datasets often suffer from class
imbalance, limited annotations, and variations in imaging
conditions. Images may differ in resolution, color intensity,
magnification, and staining methods, making retrieval more
difficult. Moreover, the high intra-class similarity and low
inter-class variability in medical images demand highly
discriminative feature extraction techniques. Deep learning
has shown promise in overcoming these challenges, but
handcrafted descriptors continue to play a role in capturing
texture-level details, especially in microscopic images.
Therefore, combining both approaches can provide a more
reliable and comprehensive representation of medical images.
This motivates the development of hybrid feature fusion
frameworks such as the one proposed in this study.

2. Related Work

Deep learning has significantly transformed the field of
medical image retrieval due to its ability to extract rich
hierarchical features. Early approaches relied mainly on
handcrafted features such as color histograms, shape
descriptors, and texture-based descriptors like LBP and
Gabor filters. [3] demonstrated the advantage of LBP for
texture classification, while Gabor filters have been widely
used for multi-resolution texture analysis [4]. However,
handcrafted features often fail to capture high-level semantic
information required for distinguishing complex medical
patterns. The emergence of CNN-based models such as
VGG16 [1] and ResNet50 [2] introduced automated feature
learning, enabling the extraction of more discriminative
representations. [9] used CNN and relevance feedback to
enhance retrieval performance, while [10] proposed a hybrid
CNN-LBP system to improve medical image retrieval
accuracy. Other studies have used segmentation-based deep
networks such as CE-Net [11] and H-DenseUNet [12],
highlighting the importance of contextual information in
medical image analysis. More recent works focus on
combining deep features with traditional descriptors to
leverage both semantic and texture-level features. These
hybrid methods demonstrate improved performance,
particularly for texture-rich datasets like BreakHis. The
proposed work aligns with these advancements by integrating
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CNN-based deep features with LBP, ULBP, and Gabor
descriptors to enhance retrieval precision and accuracy.
Several recent studies have focused on improving the
robustness of deep features for medical retrieval tasks.
Minaee et al. highlighted that domain-specific training or
fine-tuning often improves the performance of CNN models
on medical data. However, fine-tuning requires large
annotated datasets, which are often unavailable. Because of
this limitation, researchers continue to explore pretrained
CNNs combined with supplementary features. Another
direction explored in the literature is the integration of multi-
scale features. Multi-scale CNN architectures extract
information at different resolutions, enabling better
recognition of small or subtle structures. Similarly, attention-
based models have been proposed to focus on clinically
significant regions rather than the entire image. Although
these methods achieve high accuracy, they often require large
computational resources and long training times. Hybrid
feature fusion approaches provide a balanced alternative by
leveraging the strengths of both deep and handcrafted
descriptors. This combination ensures that global semantic
information is captured by CNNs while local texture patterns
are preserved by descriptors such as LBP, ULBP, and Gabor
filters. As a result, these hybrid systems have become popular
for applications involving texture-rich datasets, particularly
in cancer image analysis and histopathology. The present
work follows this direction and evaluates the effectiveness of
such fusion on the BreakHis dataset.

3. Proposed Methodology

3.1 Data Preprocessing

All input images from the dataset are resized to a fixed
dimension (e.g., 224x224 pixels) to match the input size
required by the CNN model. Additionally, the pixel values
are normalized to improve learning performance and reduce
noise. Data augmentation techniques like rotation and
flipping may be used to increase variability and improve
generalization.

3.2 CNN-Based Deep Feature Extraction (VGG16)
VGG16 is a deep convolutional neural network architecture
that consists of 16 layers with learnable parameters [1]. The
input to the network is an RGB image of fixed size
224x224x3. The architecture follows a simple and uniform
design, where all the convolutional layers use 3x3 filters with
a stride of 1 and padding to preserve spatial resolution. These
convolutional layers are grouped into blocks, and each block
is followed by a 2x2 max-pooling layer with a stride of 2,
which reduces the spatial dimensions while retaining the most
important features. In total, there are 13 convolutional layers
and 5 max-pooling layers. After the convolutional blocks, the
network includes three fully connected layers — the first two
with 4096 neurons each, and the last one with 1000 neurons
(used for classification in the original model). In this paper,
we discard the final classification layer and instead use the
feature vector extracted from the last fully connected layer or
from a global average pooling layer as a representation of the
image. This deep feature vector captures both high-level
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abstract patterns and important spatial features, which are
useful for accurate image retrieval.

3.2.1 Convolution Layer
A convolution layer extracts features using kernels:

1 — — . 1
FQ = M SN +mj+n- Kb + b (1)
where FL(JI) = output feature at location (i, j) in layer I, here I
= input image or feature map and K = convolution kernel of

size MxN and b = bias at layer 1. Each convolution is
followed by ReLU activation:

R{) = max (0,F?) @)
3.2.2 Max Pooling Layer

It reduces spatial dimension and retains important features:
{0} _ {03
Paiy = (on Xy Riivm jimy 3)

where P{{ig-)}} = pooled feature, WxH = size of pooling

window (typically 2x2)

3.2.3 Fully Connected Layer

Flattens the feature maps and processes them as a vector:
7D = W DxU-1) L p® 4)

where x=1 = input from previous layer, W) = weight

matrix,b®= bias,z(D= output of fully connected layer

3.2.4 Final Feature Vector for Retrieval

We extract the deep feature vector from one of these layers
(commonly fcl or global average pooling):

Fenny = Flatten(Output from fcl or GAP layer)(5)
This feature vector Foyy € R4 (Where d =

4096 in case of fcl) is then used for image similarity
matching.

3.3 CNN-Based Deep Feature Extraction (ResNet50)
ResNet50 is a deep convolutional neural network with 50
layers that uses a unique technique known as residual learning
[2]. Unlike traditional CNNs, which often suffer from
vanishing gradients when the network becomes very deep,
ResNet50 introduces skip connections (also called identity
shortcuts) that allow the network to learn residual functions
instead of trying to learn complete mappings directly. This
innovation helps the model train deeper architectures without
performance degradation. Each residual block in ResNet50
consists of a few convolutional layers and a shortcut
connection that bypasses these layers and adds the input
directly to the output. This operation can be mathematically
represented as:

y=FQ {W}+x (6)

where x input to the block, F(x, {W;} output of stacked layers
(e.g., Conv — BN — ReLU), y output of the residual block,
{W;} set of weights in the block. Instead of learning the full
mapping H(x) ResNet learns the residual F(x) = H(x) —x
which simplifies training.

3.4 Gabor Filter

Gabor filters capture texture information by analyzing an
image in multiple orientations and frequencies These filters
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are useful for capturing edge, frequency, and orientation
information in medical textures.. Following define the
equation of Gabor Filter:

_ (x’)2+ y2y'? 2nx’
G(x,y) = exp (—T * COS (T + l,b) @)
where x’ =xcos8 + ysinf,y’ = —xsinf +ycosf, o

is standard deviation (spread), A is wavelength, 0 is the
orientation , y is phase offset and vy is spatial aspect ratio.

3.5 Local Binary Pattern (LBP)

LBP describes local texture patterns by thresholding a pixel’s
neighborhood. The result is a binary number (usually 8 bits)
representing local texture. The value of LBP code at (x.,y,)
is calculated as follows: [3]

LBP(xc,¥c) = Xp=55(gp — gc) x 2° ®)
_(1 ifx=0
s() = {0 otherwise ©)

where P is the number of points of the neighborhood, g, is
the value of neighbor and g, is the gray value of center pixel.

3.6 Uniform local binary pattern (ULBP)

ULBP counts transitions in the LBP pattern. It considers a
pattern "uniform" if it has at most 2 transitions between 0 and
1.following defined the equation of uniform local binary
pattern:[3]

ULBP = ZS;% S(gp - gc) - S(g(p+1)modP - gc)l (10)

If the number of transitions < 2, it’s considered uniform.
ULBP is more rotation invariant and noise-resistant. The
Uniform Local Binary Pattern (ULBP) significantly reduces
the number of possible patterns from 256 to just 59, resulting
in a more compact and efficient feature vector.

3.7 Feature Fusion Strategy

To combine the strengths of deep learning and texture
descriptors, a feature fusion strategy is employed. After
extracting features from VGG16, ResNet50, LBP, ULBP, and
Gabor filters, all feature vectors are normalized using min—
max scaling. Normalization ensures that dominant features do
not overshadow other descriptors during similarity
computation.

Once normalized, the vectors are concatenated to form a
unified representation. If Fyy represents deep features and
F;., represents handcrafted features, the fused vector is:
Frusion = [ Fennl|Frex]
This hybrid vector combines semantic information from
CNNs and micro-level texture information from handcrafted
descriptors. The fused representation is then used for
similarity matching using Euclidean or cosine distance.

3.8 Computational Complexity

Deep feature extraction, especially using VGG16 and
ResNet50, is computationally intensive due to the large
number of parameters. However, once features are extracted,
the retrieval process is relatively fast. Handcrafted descriptors
have lower computational complexity but often require
careful tuning of parameters such as orientation, radius, and
the number of neighbors. Feature fusion increases the
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dimensionality of the feature vectors, but this trade-off is
acceptable since retrieval accuracy improves significantly.

4. Experiments And Results

We evaluate the experiments using the BreakHis dataset,
focusing on deep feature fusion by extracting features from
VGG16, ResNet50, and handcrafted descriptors including
Local Binary Pattern (LBP), Uniform Local Binary Pattern
(ULBP), and Gabor filters. The experiments are implemented
in Python using TensorFlow, OpenCV, and NumPy libraries.
All computations are performed on a system with an Intel
Core i3 processor, 8GB RAM, and 64-bit Windows 10
operating system. The purpose is to measure the impact of
combining CNN-based semantic features with handcrafted
texture descriptors for improving medical image retrieval
performance.

4.1 Dataset

We demonstrate the performance of the proposed medical
image retrieval approach on the BreakHis dataset. The
BreakHis dataset contains breast cancer histopathology
images, acquired under different magnification levels (40X,
100X, 200X, and 400X). It includes a total of 7,909 colored
microscopic images categorized into two major types: benign
and malignant, with each class further subdivided into
specific subtypes. Each image is of size 700x460 pixels and
stored in RGB format. The high visual similarity between
subtypes makes it a challenging dataset for feature-based
retrieval.

4.2 Distance metric

The distance metric plays a vital role in determining
similarity between feature vectors and is a key factor in
assessing the retrieval performance of any image retrieval
system. In this paper, we conduct experiments using two
commonly used distance metrics, namely Euclidean distance
and Cosine similarity, to measure the closeness between the
query image and images in the database. These metrics are
applied to both individual and fused feature vectors to
evaluate their impact on retrieval accuracy. The following
definitions describe how each distance metric is computed:

4.2.1 Euclidean distance

Euclidean distance is the most widely used distance metric in
image retrieval systems. It calculates the straight-line
distance between two feature vectors in a multi-dimensional
space. Given two feature vectors F = [f1,f2,....fn] and G =
[g1,g2,...,gn] ,the Euclidean distance is defined as:

D(F,6) = S, (f — gi)? (11)
where F=[f1,12,...,fn] feature vector of the query image and
G =[gl,g2,...,gn] is feature vector of the database image, n is
the total number of features, f; is ith feature of query image
and g; is ith feature of training image.

4.2.2 Cosine Similarity
Cosine similarity measures the angular distance between two
feature vectors and is particularly effective when the
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magnitude of the vectors is less important than their direction.
It is defined as:

Zi:l figi (12)

n 2 n 2
’ i=1fi | Xi=19i

This metric returns values between 0 and 1, where 1 indicates
identical direction (perfect match) and 0 indicates
orthogonality (no similarity). It is especially effective in high-
dimensional spaces, such as those resulting from deep feature
extraction.

Cosine Similarity(F,G) =

4.3 Performance metrics

4.3.1 Precision

Precision measures the proportion of relevant images among
the retrieved images. It is calculated at the Top-N retrieved
results, and in our experiments, we fix N = 5. The formula
used is:

P(N) =2 x 100 (13)

Number of images retrieved
where P(N) = f imag - %X 100
Total number of images retrieved

4.3.2 Retrieval Accuracy

Retrieval accuracy is used to measure how effectively the
system retrieves correct class images based on the given
query. It is calculated as the ratio of correctly retrieved
images to the total number of queries, expressed as a

percentage.
) Number of Correct Retrievals
Retrieval Accuracy = - X 100
Total number of Queries

In our experiments, we compute these metrics using the deep
features (from VGG16 and ResNet50) and texture descriptors
(LBP, ULBP, and Gabor filters). The evaluations are
performed using both Euclidean distance and Cosine
similarity for measuring feature similarity. Results are

recorded and compared for BreakHis dataset.

4.4 Implementation detail

In this paper, experiments are performed using both deep
learning and handcrafted feature extraction methods on the
BreakHis dataset, under the RGB color space. Deep features
are extracted using VGG16 and ResNet50 convolutional
neural networks (CNNs) pretrained on ImageNet. For
VGG16, the last convolutional layer outputs a feature map of
size 7x7x512, which is flattened into a feature vector of
25088 dimensions. For ResNet50, we remove the top
classification layers (include top=False) and apply global
average pooling (pooling='avg') to the final convolutional
feature map of size 7x7x2048. This results in a fixed-length
feature vector of 2048 dimensions per image. Global average
pooling helps reduce the spatial dimensions while retaining
important feature representations. In handcrafted methods,
Local Binary Pattern (LBP) is used to extract texture features
from each RGB component, resulting in 256%3 =768 features
per image. Uniform LBP (ULBP) compresses this by
generating 59x3 = 177 features. Gabor filters are applied at 4
orientations and 3 frequencies, resulting in 12 filtered images
per input. From each, the mean and standard deviation are
calculated, resulting in a compact 24-dimensional feature
vector per image. Each method is evaluated using both cosine
and Euclidean similarity measures. Precision and retrieval
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accuracy are computed at Top-N = 5 retrieved images to
evaluate the system's performance.

Additional Experimental Observations

During the evaluation, it was observed that deep models are
more sensitive to color variations, while handcrafted
descriptors show better robustness to illumination changes.
This explains why hybrid fusion offers better performance
compared to using a single descriptor type. Moreover, cosine
similarity consistently outperformed Euclidean distance for
high-dimensional deep features, as cosine emphasizes the
relative orientation of vectors rather than magnitude.

Impact of Magnification Levels

The BreakHis dataset contains images captured at four
magnification levels (40x%, 100x, 200x, and 400x). Retrieval
performance varied across these levels, with higher
magnifications showing more distinct texture patterns.
Handcrafted features such as LBP and Gabor performed
particularly well at higher magnifications due to clearer
texture representation. In contrast, CNN-based features
remained stable across all magnification levels, indicating
their robustness in learning generalized features.

Hardware and Execution Time

The average feature extraction time per image for VGG16
and ResNet50 was higher than handcrafted methods.
However, once extracted, the retrieval time per query was
extremely low (<0.2 seconds), demonstrating the system’s
suitability for real-time applications. Handcrafted descriptors,

Vol.13(11), Nov. 2025

while faster in extraction, produced lower retrieval precision
compared to deep features.

4.4.1 Comparison of Feature Descriptors and Similarity
Measures

Table 1 and Table 2 illustrate the performance of different
handcrafted and deep features using Cosine and Euclidean
similarity measures, respectively. The results show that deep
learning-based features significantly outperform traditional
texture descriptors in terms of both average precision and
retrieval accuracy. Among all descriptors, ResNet50
consistently delivers the highest performance, achieving 99%
average precision and 100% retrieval accuracy for both
Cosine and Euclidean distances. Gabor features also perform
impressively with 98% precision in both similarity measures
and retrieval accuracy of 98% (Cosine) and 96% (Euclidean).
In comparison, handcrafted descriptors like LBP and ULBP
show moderate retrieval effectiveness. LBP achieves 87%
precision and 87-88% accuracy, while ULBP slightly trails
with 85% in both metrics. VGG16 achieves 96% precision
with perfect retrieval (100%) for Cosine distance, but drops
to 75% retrieval accuracy under Euclidean, indicating that it
performs better with Cosine similarity. Overall, ResNet50
with Cosine similarity emerges as the best performing
combination, followed closely by Gabor filters. The
consistent performance of deep features across both metrics
suggests their robustness and suitability for medical image
retrieval. These results validate the superiority of deep
feature-based methods over traditional texture-based
approaches on the BreakHis dataset.

Table 1. Average Precision and Accuracy of VGG16, ResNet50, LBP, ULBP, and Gabor Features on Cosine Similarity Measure in RGB Color Space using
BreakHis Dataset for Top-N =5

Methods Features Distance Metrics Distance Metrics
Average precision (%) | Retrieval Accuracy (%)
Cosine Cosine

VGGl6 7 x7x512=25088 96% 100%

ResNet50 2048 features extracted from 7x7x2048 conv layer 99% 100%

LBP 256x3=768 87% 87%

ULBP 59x3=177 85% 85%

Gabor 12 filters x 2 stats =24 98% 98%

Total average - 93% 94%

Table 2 Average Precision and Accuracy of VGG16, ResNet50, LBP, ULBP, and Gabor Features on Euclidean Similarity Measure in RGB Color Space using
BreakHis Dataset for Top-N =5

Methods Features Distance Metrics Distance Metrics
Average precision (%) Retrieval Accuracy (%)
Euclidean Euclidean

VGGl16 7 x 7 x512=25088 96% 75%

ResNet50 2048 features extracted from 7x7x2048 99% 100%

conv layer

LBP 256x3=768 87% 88%

ULBP 59x3=177 85% 85%

Gabor 12 filters x 2 stats = 24 98% 96%

Total average - 93% 88.8%

4.4.2  Qualitative Results and Visual Analysis

Figures 1 to 5 display the top-5 image retrieval results using different feature extraction techniques—VGG16, ResNet50, LBP,
ULBP, and Gabor filters on the BreakHis dataset, evaluated using cosine similarity. In each figure, the first image represents the
query, followed by five retrieved images with the highest similarity scores.
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Query Top 1 Top 2

Figure 1. Top-5 retrieved images using VGG16 deep features with cosine similarity on the BreakHis dataset for Query 0 and Query 1. The first image in each
row represents the query image, followed by the five most similar retrieved images.

Query Top 2 Top 3

Figure 2. Top-5 retrieved images using ResNet50 deep features with cosine similarity on the BreakHis dataset for Query 0. The first image represents the query
image, followed by the five most similar retrieved images.

Query Top 1 Top 2 Top 5

Figure 3. Top-5 retrieved images using LBP features with cosine similarity on the BreakHis dataset for Query 0. The first image represents the query image,
followed by the five most similar retrieved images.

Query Top 4 Top 5

Top 1 Top 2

s

Figure 4. Top-5 retrieved images using ULBP features with cosine similarity on the BreakHis dataset for Query 0. The first image represents the query image,
followed by the five most similar retrieved images.

Top 2 Top 3 Top 4 Top 5

Query

Figure 5. Top-5 retrieved images using Gabor filter features with cosine similarity on the BreakHis dataset for Query 0. The first image represents the query
image, followed by the five most similar retrieved images.

© 2025, IJCSE All Rights Reserved 50



International Journal of Computer Sciences and Engineering

As seen in Figure 1, VGG16 shows excellent visual
consistency, retrieving images that are structurally and
visually close to the query. Figure 2 (ResNet50) also yields
highly similar results, demonstrating the effectiveness of
deep residual learning in capturing discriminative features. In
contrast, traditional handcrafted methods like LBP (Figure 3)
and ULBP (Figure 4) offer acceptable retrieval performance,
but the similarity of the retrieved images tends to be slightly
lower than CNN-based approaches. Gabor filters (Figure 5),
known for capturing texture information, show a decent
retrieval response for texture-rich histopathological images
but may miss color or structural cues. Overall, the qualitative
results confirm that CNN-based deep features (especially
VGG16 and ResNet50) offer stronger semantic matching
compared to handcrafted features, which are more sensitive
to texture and intensity variations.

5. Conclusion

In this paper, we proposed a hybrid feature fusion approach
that combines deep learning-based features with handcrafted
texture descriptors to improve medical image retrieval
performance. Specifically, deep features were extracted using
pre-trained CNN models such as VGG16 and ResNet50,
while handcrafted features were computed using LBP, ULBP,
and Gabor filters. The proposed methods were evaluated on
the BreakHis dataset using cosine and Euclidean distance
metrics to measure similarity. Experimental results
demonstrate that deep learning models, particularly VGG16
and ResNet50, outperform traditional handcrafted techniques
in terms of both precision and retrieval accuracy. However,
the combination of handcrafted texture descriptors with deep
features also proves beneficial, especially in cases where fine
textures and local patterns are important. The visual analysis
further validates that deep models retrieve images with better
semantic similarity. This paper highlights the effectiveness of
deep feature fusion for medical image retrieval and can be
extended in future research by exploring transformer-based
models, fine-tuning CNNs on medical datasets, or
incorporating clinical metadata to enhance retrieval
performance.

The proposed system can be extended in several directions.
One promising area is the use of transformer-based models
such as Vision Transformers (ViT), which have shown strong
potential in capturing global dependencies in medical images.
Another future enhancement involves developing a weighted
fusion strategy, where each feature type is assigned a weight
based on its contribution to retrieval accuracy. Additionally,
incorporating segmentation techniques before feature
extraction may help isolate relevant tissue regions, leading to
more precise retrieval results. Integrating clinical metadata,
such as patient history or diagnostic labels, can further enrich
the retrieval system and support more informed clinical
decisions.

Data Availability-The dataset used in this study, BreakHis,
is publicly available and can be accessed online for research
purposes. All data used for analysis in this paper are included
within the article.
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