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Abstract: Traditional bug detection tools rely heavily on static code patterns, lacking execution-aware reasoning, adaptive 

learning, and semantic-level understanding, which results in high false positive rates and poor generalization across modern, large 

scale codebases. To address these limitations, we introduce the Adaptive Semantic-Aware Bug Detection (ASABD) framework, 

which uses Large Language Models (LLMs) for context-aware, execution-informed bug detection. ASABD introduces two core 

innovations: (1) the Self-Refining Contextual Understanding (SRCU) module, which iteratively improves predictions using 

execution trace feedback, enabling dynamic adaptation to different codebases (adaptive debugging), and (2) the Multi-Stage 

Attention Mechanism (MSAM), which captures structural, logical, and security-level dependencies in code for precise 

classification. These modules are motivated by the need to bridge static code analysis with runtime behavior and to improve 

semantic level bug understanding. Evaluated on the Defects4J dataset, ASABD achieves 94.7% precision, 91.3% recall, 92.9% 

F1-score, and 96.2% localization accuracy. It outperforms SonarQube, FindBugs, Random Forest, and DeepCode while reducing 

false positives by 57.2%. This work shows how execution-aware LLM reasoning can enhance bug detection across diverse 

software environments.  
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Graphical Abstract: The ASABD framework introduces an 

adaptive execution-aware approach for detecting software 

bugs using large language models. The process begins by 

ingesting raw Java source files and execution traces, which are 

normalized, tokenized, and transformed into semantic 

embeddings during the preprocessing stage. The Self-Refining 

Contextual Understanding (SRCU) module analyzes code 

semantics and iteratively improves its predictions by 

incorporating runtime feedback. The Multi-Stage Attention 

Mechanism (MSAM) further enhances detection by examining 

syntax-level, logic-level, and security-level patterns. All 

predicted issues are validated against real execution paths to 

eliminate false positives and confirm runtime-relevant bugs. 

Through an adaptive learning loop, the framework 

continuously updates its internal parameters based on previous 

errors, increasing robustness across diverse codebases. The 

final stage outputs validated bug classifications and precise 

localization, resulting in a more accurate, reliable, and 

semantically informed bug detection workflow. 
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1. Introduction  
 

Software bugs, including defects and faults, lead to security 

vulnerabilities, performance degradation, and system failures 

[1], [33]. A 2023 report by the Consortium for Information and 

Software Quality (CISQ) estimates that software defects cost 

businesses approximately $2.41 trillion annually due to 

downtime, security breaches, and maintenance overhead. 

 

Traditional bug detection approaches dependent on static and 

dynamic analysis rely on heuristic-based rules which produce 

many wrong alarms while showing restricted application over 

various codebases [2]. Modern complex software applications 

extend beyond the abilities of traditional methods to find both 

logical problems and invisible security issues while handling 

semantic errors [3]. Software development speeds have 

reached such cumbersome levels that businesses require 

automated debugging systems which can identify and resolve 

errors efficiently [4], [5]. 

 

Recent progress in Natural Language Processing (NLP) 

together with Large Language Models (LLMs) delivers 

encouraging solutions by understanding context deeply and 

adapting to learn [6]. The rapid adoption of LLMs in software 

engineering aligns with global trends in AI-driven automation 

and technological transformation, as highlighted in 

contemporary studies [34]. The code generation and detection 

of program logic along with abnormal behavior capabilities of 

OpenAI Codex, CodeBERT, and ChatGPT demonstrate 

exceptional performance according to Wang et al. (2024) in 

their study. 

 

These models analyze vast code repository databases to learn 

predictive error patterns by utilizing adaptive prompt 

engineering functions with execution-aware feedback loops to 

enhance overall performance [7], [8]. The static analysis tools 

that use predefined rules struggle to interpret semantic 

meaning and runtime behavior thus they produce excessive 

false positives while showing low usability across different 

programming environments. The recent LLM based 

approaches have brought benefits to bug detection yet the 

majority of these systems operate as static classifiers without 

integration of execution feedback or structural algorithms. 

 

Alternative detection of context-sensitive issues like logical 

inconsistencies and hidden vulnerabilities prove difficult for 

these tools to identify because they occur only when the 

program executes in runtime. ASABD stands for Adaptive 

Semantic-Aware Bug Detection framework which addresses 

these problems. ASABD incorporates two central elements 

which include the Self Refining Contextual Understanding 

(SRCU) module together with the Multi-Stage Attention 

Mechanism (MSAM). Through its SRCU module the system 

applies execution traces together with contextual embeddings 

to improve LLM prediction results at each iteration and enables 

the model to develop better understanding from runtime 

feedback. MSAM uses three attention layers in its semantic 

analysis of code to perform detailed bug detection by 

examining both syntax and logic together with security 

elements. 

This design directly addresses the core weaknesses of static 

tools and traditional LLMs by combining deep semantic 

representation with real-time behavioral insights. SRCU 

reduces false positives through execution-aware correction, 

while MSAM improves precision by structurally analyzing 

potential bug contexts across control flow and data 

dependencies [9]. These components work in tandem to deliver 

a more adaptive, accurate, and semantically robust debugging 

approach suitable for diverse programming environments. 

 

In this study, we evaluate the ASABD framework using the 

widely recognized Defects4J dataset, which includes real 

world Java software defects. We benchmark ASABD against 

traditional static analyzers like SonarQube and FindBugs, and 

machine learning-based models such as Random Forest, SVM, 

and DeepCode. ASABD consistently outperforms these 

baselines in terms of precision, recall, F1-score, false positive 

rate, bug localization accuracy, and execution efficiency. 

The main contributions of this paper are summarized as 

follows: 

• We propose ASABD, an adaptive semantic-aware bug 

detection framework that integrates Large Language Models 

(LLMs) with execution-aware refinement to enhance bug 

detection across diverse software environments. 

• We introduce the Self-Refining Contextual Understanding 

(SRCU) module, which iteratively refines bug predictions 

using dynamic feedback from execution traces, enabling 

adaptive and execution-informed debugging. 

• We develop the Multi-Stage Attention Mechanism (MSAM), 

a hierarchical semantic attention system that captures syntax-

level, logic-level, and security-level dependencies to improve 

bug localization and classification accuracy. 

• We conduct extensive experiments on the Defects4J dataset, 

demonstrating that ASABD significantly outperforms 

traditional static analyzers and machine learning models in 

precision, recall, F1-score, false positive reduction, and bug 

localization.  

 

The rest of this paper is organized as follows: Section 2 

presents the background and motivation for addressing the 

limitations of traditional bug detection methods. Section 3 

introduces the proposed Adaptive Semantic-Aware Bug 

Detection (ASABD) framework, detailing its architectural 

components and methodologies. Section 4 describes the 

experimental setup, including dataset selection, preprocessing 

steps, and evaluation metrics. Section 5 presents the results and 

analysis, comparing ASABD with baseline models across 

multiple performance metrics. Section 6 discusses the threats 

to validity that may affect the generalizability of the findings. 

Section 7 concludes the paper and outlines future research 

directions. 

 

2. Related Work  
 

2.1 Background 

Software quality assurance remains one of the most critical 

challenges in modern software engineering, with software 

defects causing substantial financial and operational damages. 

According to a 2023 report by the Consortium for Information 

and Software Quality (CISQ), software defects cost businesses 
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approximately $2.41 trillion annually due to downtime, 

security breaches, and maintenance overhead [1]. These 

escalating costs emphasize the urgent need for automated and 

highly accurate bug detection systems, especially as software 

systems grow in size and complexity. Traditional bug detection 

techniques, including static code analyzers like SonarQube and 

FindBugs, rely heavily on manually designed rules and 

heuristics. Although these tools have been widely adopted, 

their ability to capture semantic level code inconsistencies and 

runtime-related bugs is limited. Specifically, static analysis 

tools suffer from high false positive rates, restricted 

adaptability across different programming languages, and poor 

performance when handling complex logical errors [2]. 

Furthermore, static methods often miss security vulnerabilities 

that emerge only during execution, leading to significant 

reliability and security risks. Recent advances in Natural 

Language Processing (NLP) and Large Language Models 

(LLMs) [10] such as CodeBERT, GraphCodeBERT, and GPT-

4 have enabled deep contextual understanding of code [6]. 

These models are trained on large scale code repositories and 

can generalize across multiple programming languages. 

However, while LLM-based methods have improved bug 

detection performance compared to static approaches, most of 

them operate as static classifiers that only predict bugs based 

on syntactic patterns or code embeddings without any runtime 

validation. Traditional datasets such as BEARS (251 real Java 

bugs) have made it possible to evaluate bug-analysis 

techniques at scale [11], while Defects4J remains the de-facto 

benchmark for localization and repair studies with nearly 400 

reproducible defects [12]. Early surveys highlighted the need 

to catalogue this expanding literature and its experimental 

artifacts [13]. Rule-based static analysers (e.g., FindBugs) 

dominate industrial practice but suffer from high false-positive 

rates: a longitudinal study at Google reported that only 15–45% 

of warnings are actionable for production code. Subsequent 

evaluations on Java 6, GlassFish and other large systems 

confirmed that purely pattern-driven tools detect many “true 

but-trivial” defects and miss deeper semantic issues [14]. To 

overcome syntax-level brittleness, the community moved 

toward learning-based defect prediction. ROSE mined change 

coupling rules from version histories to suggest co-changes 

and showed 15–29% accuracy gains over file-level heuristics 

[15]. Cross-project deep models such as SDP-BB 

BiLSTM+ATT achieved F10.64 on 10 PROMISE projects 

after aggressive data augmentation [16], whereas the Spline-

Stacked Ensemble (SSE) further raised AUC by up to 29% on 

ten target projects. A hybrid CNN-MLP architecture later 

delivered MCC gains of 10–22% while remaining five-times 

faster at inference [17]. Large-language-model embeddings 

pushed semantic understanding a step further. 

GraphCodeBERT incorporated data flow edges to outperform 

CodeBERT on code-search and summarization tasks, and its 

latent representations now serve as strong defect-prediction 

features [18]. LLMSAN extended this idea with multi-

granularity attentions and reached line level localization recall 

of 65.9% on SWE-Bench Lite [19]. Still, most of these systems 

treat bug detection as an offline classification problem. Beyond 

detection, recent work explores LLM-guided repair. LIBRO 

automatically reproduces one-third of Defects4J bugs by 

prompting 15 diverse LLMs and filtering candidate tests [13], 

while agent pipelines such as Honeycomb and MarsCode 

integrate localization, reproduction and patch generation to 

resolve up to 39% of real-world GitHub issues [20], [21]. 

Parallel efforts continue to benchmark model behavior. A 

large-scale memorization study shows that parameter count 

and pre-training budget significantly influence negative-log- 

likelihood and 5-gram accuracy on code corpora [14], 

suggesting that model size alone cannot guarantee 

generalization. 

 

2.2 Motivation 

Several studies have highlighted the limitations of current bug 

detection approaches. For instance, Hou et al. (2024) pointed 

out that modern LLM-based bug detectors often misclassify 

benign code fragments as buggy due to a lack of execution 

awareness [3]. Similarly, Kang et al. (2024) noted that LLMs 

could detect syntactic anomalies but frequently failed when 

logical correctness depended on dynamic program behavior 

[4]. Furthermore, empirical evaluations show that static LLM 

classifiers produce false positives at rates exceeding 7% to 

12% depending on code complexity and project diversity, 

leading to developer distrust and manual overhead [7]. 

Consequently, LLM-based methods still struggle to detect 

hidden logical inconsistencies, runtime-specific errors, and 

non-trivial security vulnerabilities, limiting their practical 

usability. These limitations necessitate a new class of bug 

detection frameworks that can bridge the gap between static 

semantic analysis and dynamic execution behavior 

understanding. Specifically, a modern solution must 

incorporate execution trace validation, adaptive learning 

mechanisms, and multi-level semantic reasoning to accurately 

classify and localize bugs while minimizing false alarms. 

Despite steady progress, three persistent gaps motivate an 

execution-aware, adaptive approach. First, static analysers 

remain noisy: empirical data from FindBugs indicates that 

developers still discard over half the emitted warnings as 

lowimpact or spurious [17]. Machine-learning predictors 

reduce noise, yet cross-project studies reveal project-specific 

drifts where AUC falls below 0.55 on unseen domains [13]. 

Second, modern LLM detectors are largely contextagnostic: 

accuracy drops when the bug depends on runtime state. LIBRO 

reproduces only 33% of failures because many natural-

language bug reports omit the concrete execution paths needed 

to synthesis tests [20], while line-level localization recall stalls 

below 70% even in the strongest agent systems [19]. A recent 

analysis attributes these misses to the models’ inability to 

observe program behavior after generation [22]. Third, 

generalisation and interpretability remain open issues. 

Memorisation experiments demonstrate that scaling 

parameters or tokens alone does not guarantee lower perplexity 

across heterogeneous repositories. Likewise, deep ensembles 

such as BiLSTM+ATT overfit when training data are scarce, 

forcing aggressive augmentation to stabilise F1 [16]. 

Practitioners therefore continue to distrust “black-box” 

warnings that lack semantic justification or runtime evidence. 

These findings call for a framework that (i) fuses structural 

code embeddings with live execution traces, (ii) refines 

predictions iteratively to suppress false positives, and (iii) 

adapts across projects without extensive retraining. The 

proposed ASABD architecture addresses these needs by 
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coupling selfrefining contextual understanding with multi-

stage semantic attention, thereby bridging the long-standing 

gap between static code intelligence and dynamic program 

behaviour. This motivation forms the foundation for the 

Adaptive Semantic-Aware Bug Detection (ASABD) 

framework proposed in this work. By integrating execution-

aware feedback loops and multi-stage attention across syntax, 

logic, and security dimensions, ASABD addresses critical 

shortcomings of existing approaches, enabling more accurate, 

adaptive, and trustworthy bug detection for contemporary 

software systems. 

 

3. Adaptive Semantic-Aware Bug Detection 

(ASABD) Framework 

 

The Adaptive Semantic-Aware Bug Detection (ASABD) 

framework is designed to overcome the limitations of both 

static code analyzers and LLM-based systems that lack runtime 

understanding. ASABD combines deep contextual modeling 

and execution-aware reasoning to detect bugs with higher 

precision and semantic relevance. The framework operates 

through a multi-layered architecture composed of five main 

modules: Preprocessing, LLM Processing with SRCU, 

MultiStage Attention Mechanism (MSAM), Execution-Aware 

Validation, and Adaptive Feedback Learning. Each module is 

designed to progressively refine the prediction and 

classification of bugs using both static and dynamic program 

insights. 

 

 
Figure 1. Overview of the ASABD Framework. 

 

Figure 1 presents the architecture of the ASABD framework. 

The system starts by ingesting source code and corresponding 

execution traces, which undergo preprocessing steps like 

tokenization and Abstract Syntax Tree (AST) generation. The 

core LLM module, enhanced with Self-Refining Contextual 

Understanding (SRCU), analyzes the input to detect potential 

bugs. SRCU leverages execution traces to iteratively refine 

predictions based on runtime behavior. Simultaneously, the 

Multi-Stage Attention Mechanism (MSAM) applies 

hierarchical attention to capture control flow anomalies, logic 

inconsistencies, and security vulnerabilities. Next, the 

execution-aware validation module verifies predicted bugs 

against dynamic traces to reduce false positives. Confirmed 

bugs are passed to the classification module, which assigns a 

category and locates the issue within the codebase. The final 

output is a validated bug report containing both location and 

type of each bug. ASABD also includes an adaptive learning 

loop that uses feedback, such as false positives and negatives, 

to continuously refine model parameters. This enables the 

system to improve generalization across different software 

environments and maintain long-term detection accuracy. The 

full architecture consists of two key components: (1) the Core 

Detection Engine for identifying and validating bugs, and (2) 

the Continuous Learning Module for dynamic adaptation. 

Together, these ensure robust, execution-aware bug detection, 

outperforming static and ML-based techniques in precision 

and efficiency. Bug detection in ASABD is formulated as a 

constrained probabilistic inference problem, aiming to 

maximize the posterior probability of a detected bug B while 

minimizing false positives: 

 

𝐵̂ = arg max
𝐵∈𝐵

𝑃 (𝐵|𝑆, 𝐸, Θ) subject to 𝐶(𝐵̂, 𝑆, 𝐸) ≤ τ   (1) 

 

where 𝐵 is the set of possible bug classifications, 𝐸 represents 

execution traces, and Θ denotes the learned model parameters. 

The function 𝐶(𝐵̂, 𝑆, 𝐸)  quantifies prediction confidence, 

constrained by a predefined threshold τ. To enhance accuracy, 

ASABD applies an iterative optimization function using 

gradient-based refinement: 

 

Θ(𝑡+1) = Θ(𝑡) − η[∇Θℒ(𝐵, 𝐵̂) + λ∇Θℛ(Θ)]  (2) 

 

where ℒ(𝐵, 𝐵̂) represents detection loss, ℛ(Θ) ensures model 

stability, and λ  balances accuracy and generalization. The 

adaptive learning rate is updated via a momentum-based 

scheduler: 

 

η(𝑡+1) = γη(𝑡) + α|∇Θℒ(𝐵, 𝐵̂)|2  (3) 

 

where γ  is the momentum decay factor and α  regulates 

learning stability.  

Execution trace validation is incorporated using an 

uncertainty-aware correction mechanism: 

 

𝑃(𝐵|𝑆, 𝐸, Θ) = ∫ 𝑃(𝐵|𝑆, 𝑋, Θ)𝑃(𝑋|𝐸, Θ)𝑑𝑋
𝑋

  (4) 

 

where 𝑋 represents latent program behaviors. ASABD further 

refines detection with error-specific adjustments: 

 

Δ𝐵𝑡+1̂ = λ1𝑓(𝐸𝑡 , 𝐵𝑡̂) + λ2𝑔(𝑆, 𝐵𝑡̂ , Θ)  (5) 

 

where 𝑓(𝐸𝑡 , 𝐵𝑡̂) refines predictions based on execution traces, 

𝒈(𝑺, 𝑩𝒕̂, 𝚯)  corrects contextual errors, and 𝛌𝟏 , 𝛌𝟐  optimize 

detection stability. This integration of probabilistic inference, 

execution-aware validation, and hierarchical attention enables 

ASABD to outperform traditional debugging methods in 

accuracy, scalability, and adaptability. 
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A. Architectural Components  

The ASABD Framework consists of multiple interdependent 

modules, each playing a vital role in the detection, 

classification, and refinement of software bugs. The system is 

structured into distinct computational layers, ensuring deep 

semantic analysis, execution-aware validation, and iterative 

learning-based refinement.  

 

1) Preprocessing Layer  

The preprocessing module tokenizes the input source code S 

and generates high-dimensional semantic embeddings using 

Transformer-based LLMs such as GPT-4 or CodeBERT. 

Given a sequence of code tokens X = {x1, x2,..., xn}, the 

embeddings Z are computed as: 

 

𝑍 = LLMθ(𝑋) = ∑ 𝑤𝑖
𝑛
𝑖=1 ⋅ ϕ(𝑥𝑖) + ξ𝒯(𝑋)  (6) 

 

where 𝑤𝑖  represents attention weights assigned to different 

code segments, ϕ(𝑥𝑖) is the semantic embedding function for 

each token 𝑥𝑖 , and 𝒯(𝑋)  denotes the positional encoding 

transformation to preserve structural dependencies. The 

parameter ξ is a learned scaling factor that regulates contextual 

influence, ensuring improved representation of the code 

structure. This embedding process enhances the model’s 

ability to understand both syntactic and semantic relationships 

within the source code.  

 

2) Contextual Understanding Module (SRCU)  

The SRCU mechanism enhances bug detection by iteratively 

refining predictions through multi-level attention fusion, 

execution trace validation, and adaptive knowledge distillation. 

Given an initial LLM-generated prediction 𝐵𝑡 , the framework 

updates it based on execution-aware validation as: 

 

𝐵𝑡+1̂ = 𝐵𝑡̂ + λ1𝑓(𝐸𝑡 , 𝐵𝑡̂) + λ2𝑔(𝑆, 𝐵𝑡̂ , Θ)  (7) 

 

where 𝐸𝑡 is the execution trace at time t, λ1 and λ2 are adaptive 

correction coefficients, 𝑓(𝐸𝑡 , 𝐵𝑡̂)  represents executionaware 

refinement, and 𝑔(𝑆, 𝐵𝑡̂ , Θ) ensures contextual correction. To 

enable adaptive convergence, SRCU applies a weighted 

residual correction model: 

 

Θ(𝑡+1) = Θ(𝑡) − η (∇Θℒ(𝐵, 𝐵̂) + γ∇Θℛ(Θ))  (8) 

 

Where ℒ(𝐵, 𝐵̂) is the detection loss function, ℛ(Θ) enforces 

stability, and γ regulates adaptive regularization. This iterative 

approach ensures precise bug classification by dynamically 

adjusting based on execution feedback.  

 

3) Self-Refining Contextual Understanding (SRCU)  

SRCU is designed to enhance bug detection accuracy by 

refining LLM predictions using feedback from dynamic 

execution traces. The motivation is to allow the model to 

iteratively correct itself by comparing predicted bugs with 

actual runtime behavior, thereby minimizing false positives 

and improving generalization. At each iteration t, the initial 

bug prediction 𝑩𝒕̂ is updated using a refinement function based 

on execution trace feedback and contextual embeddings: 

𝐵𝑡+1̂ = 𝐵𝑡̂ + λ1𝑓(𝐸𝑡 , 𝐵𝑡̂) + λ2𝑔(𝑆, 𝐵𝑡̂ , Θ)  (9) 

 

whereas, 𝐸𝑡  : execution trace at iteration t, 𝑓(𝐸𝑡 , 𝐵𝑡̂) : 

adjustment based on runtime, feedback (e.g., bug not 

reproduced at runtime), 𝑔(𝑆, 𝐵𝑡̂ , Θ) : semantic/contextual 

correction using LLM embeddings, λ1 , λ2 : weight factors 

controlling correction influence. Without this iterative 

feedback loop, the LLM may flag syntactically suspicious lines 

that behave correctly during execution. SRCU reduces such 

overfitting to static patterns.  

To ensure model parameters Θ improve with each update, a 

regularized gradient descent is applied: 

 

Θ(𝑡+1) = Θ(𝑡) − η (∇Θℒ(𝐵, 𝐵̂) + γ∇Θℛ(Θ))  (10) 

 

whereas, ℒ(𝐵, 𝐵̂) : bug classification loss, ℛ(Θ) : 

regularization to prevent overfitting, η : learning rate, γ : 

regularization strength  

 

Example Scenario:  

Assume the model flags the line ‘if(x = y)‘ as a bug due to a 

suspected assignment in conditional. However, runtime trace 

𝐸𝑡  shows the branch never executed. 𝑓(𝐸𝑡 , 𝐵𝑡̂)  lowers 

confidence in the bug since it has no runtime impact, 

Simultaneously, 𝑔(𝑆, 𝐵𝑡̂ , Θ) compares it to similar conditional 

patterns from training, realizing that ‘==‘ was likely intended. 

The SRCU adjusts 𝐵𝑡+1̂ to correct the classification or reduce 

confidence. This mechanism helps the model focus on real, 

impactful bugs rather than surface-level patterns.  

 

4) Execution Trace Analyzer  

The Execution Trace Analyzer validates LLM predictions in 

real-time by verifying detected bugs 𝐵̂ against execution logs. 

The probability of correctness is computed as: 

 

𝑃(𝐵̂|𝐸) =
𝑃(𝐸|𝐵̂)𝑃(𝐵̂)

𝑃(𝐸)
   (11) 

 

where 𝑃(𝐸|𝐵̂)  represents the likelihood of observing 

execution trace 𝐸  given the bug 𝐵̂ . Temporal dependency 

validation refines this by integrating execution time frame 𝑇 

and extracted temporal embeddings τ: 

 

𝑃(𝐵̂|𝐸, 𝑇) = ∫ 𝑃(𝐵̂|𝐸, τ)𝑃(τ|𝑇)𝑑
τ

  (12) 

 

ensuring enhanced bug verification through execution-aware 

analysis.  

 

5) Multi-Stage Attention Mechanism  

The MSAM enhances bug detection by analyzing source code 

through multiple attention layers, each targeting a specific type 

of bug-related pattern. While conventional LLMs apply 

uniform attention across all code tokens, MSAM isolates key 

perspectives—syntax, logic, and security—allowing the model 

to reason about code structure more accurately.  

Real-world bugs may not be evident from surface-level code. 

For example: A syntactic issue may arise from incorrect use of 
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braces. A logical flaw could stem from incorrect conditionals. 

A security bug may be tied to unsafe API calls.  

MSAM introduces three specialized attention streams:  

1) Syntax-Level Attention ( 𝐴𝑠𝑦𝑛 ): Focuses on structural 

correctness (e.g., parsing errors, improper indentation).  

2) Logic-Level Attention (𝐴𝑙𝑜𝑔): Highlights control flow flaws 

(e.g., incorrect ‘if-else‘ logic, early exits).  

3) Security-Level Attention ( 𝐴𝑠𝑒𝑐 ): Identifies vulnerability 

patterns (e.g., input sanitization issues, insecure library usage). 

Each attention head is defined as: 

 

𝐴𝑗 = softmax (
𝑄𝑗𝐾𝑗

𝑇

√𝑑𝑘
) 𝑉𝑗,  𝑗 ∈ {syn,log,sec} (13) 

 

Whereas, 𝑄𝑗 , 𝐾𝑗, 𝑉𝑗 are the query, key, and value matrices for 

stage 𝑗 , 𝑑𝑘  is the attention vector dimension, The softmax 

scores determine token-level focus for that particular analysis. 

The final bug prediction is computed using a weighted 

combination of all attention outputs: 

 

𝐵̂ = 𝐴syn(𝑆) + β1𝐴log(𝑆) + β2𝐴sec(𝑆)  (14) 

 

Whereas β1 , β2  are learned weights to balance logic and 

security reasoning with syntax analysis.  

 

Example Scenario:  

Consider the code snippet:  

 
In this example, MSAM processes the code through three 

distinct attention layers:  

1) Syntax-Level Attention ( 𝑨𝒔𝒚𝒏 ): Focuses on the if-else 

structure. It verifies that the conditional syntax is valid and 

properly formed. The attention weights would be distributed 

across the conditional statement and the braces/indentation 

structure.  

2) Logic-Level Attention (𝑨𝒍𝒐𝒈): Examines the control flow 

logic. It identifies that the code only checks for null but doesn’t 

validate the content of userInput. The attention concentrates on 

the conditional expression userInput != null and the control 

branch, highlighting a potential logical flaw where non-null 

but malicious input could bypass validation.  

3) Security-Level Attention ( 𝑨𝒔𝒆𝒄 ): Recognizes that 

authenticate() is called directly with unchecked user input, 

potentially allowing injection attacks. This attention layer 

assigns high weights to the authenticate(userInput) call, 

flagging it as a security concern. 

The final bug prediction is computed by combining these 

attention outputs, with the security concern receiving the 

highest weight due to the critical nature of authentication 

vulnerabilities. ASABD would classify this as a security bug 

with high confidence, noting that proper input validation 

should be implemented before passing user input to 

authentication functions.  

This multi-perspective analysis allows MSAM to identify bugs 

that might be missed by approaches that only consider one 

aspect of code quality. In this case, while the syntax is correct, 

the security-level attention reveals a critical vulnerability that 

requires remediation.  

 

6) Adaptive Refinement Module  

The Adaptive Refinement Module dynamically improves bug 

classification using an iterative Bayesian model update: 

 

𝑃(𝐵|𝑆, Θ(𝑡+1)) = 𝑃(𝐵|𝑆, Θ(𝑡)) + αΔΘ (15) 

 

 

where α controls adaptive correction weighting. To maintain 

robustness, an error-corrected likelihood function ensures 

probabilistic consistency: 

 

𝑃(𝐵|𝑆, Θ) =
𝑃(𝐵|𝑆)𝑃(𝑆|Θ)

∫ 𝑃(𝑆′
|Θ)𝑑𝑆′

𝑆

   (16) 

 

where 𝑆  represents all possible source code variations. 

Refinement stability is further enhanced using a residual 

learning-based convergence function: 

 

Θ(𝑡+1) = Θ(𝑡) − η ∑ (
∂ℒ𝒾

∂Θ
+ γ

∂ℛ𝒾

∂Θ
)𝑁

𝑖=1  （17） 

 

where 𝑁 denotes the batch size, and γ is a dynamically tuned 

stabilization parameter. This iterative refinement ensures 

precise classification and improved generalization to unseen 

bug patterns. 

 

4. Experimental Setup 

 

A. Dataset and Preprocessing 

The ASABD framework tests its performance through the 

Defects4J dataset which stands as a popular benchmark for 

Java-based software defect prediction. Defects4J supplies real 

Java projects with both faulty and fixed versions so that the 

model can study genuine developer-created and repaired 

defects. The dataset contains several repositories with detailed 

defect information which makes it perfect for testing our LLM-

based bug detection solution [23], [24]. The initial step of 

preparing raw code transforms it into a format that enables 

semantic analysis. Our approach starts by normalizing code 

text before using transformer models like CodeBERT and 

GraphCodeBERT to create word embeddings. Then it 

generates ASTs and CFGs to enhance semantic understanding 

of the code. The system uses execution data to test and confirm 

its prediction results. 

s 
Table 1. Defects4J Dataset and Preprocessing Features 

Feature Description 

Projects Analyzed JFreeChart, Closure Compiler, 

Commons Lang, Mockito, Joda-Time 

Total Bugs 289 

Programming Language Java 

Preprocessing Steps Tokenization, Syntax Normalization, 

Embedding Generation, AST/CFG 

Extraction 

LLM-Based Embedding CodeBERT, GPT, GraphCodeBERT 

Execution Traces Integrated for runtime validation 
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Table 1. summarizes the dataset and preprocessing steps, 

ensuring the ASABD framework effectively learns from both 

static code structures and execution behaviors, improving bug 

detection accuracy.  

 

B. Bug Detection Process  

ASABD uses multiple bugs finding stages that connect 

execution-aware refinement with adaptive learning and 

hierarchical attention processing. ASABD improves its 

prediction accuracy through multiple feedback loops that work 

during each iteration. The system consists of three main 

elements: SRCU to learn from experience, MSAM to find 

exact bug locations, and Execution Trace Feedback Loop to 

test predictions against actual system behavior.  

 

1) Self-Refining Contextual Understanding  

SRCU refines LLM-based bug detection by incorporating 

execution trace-based feedback and adaptive reinforcement. 

Given an initial bug classification 𝐵𝑡̂  , SRCU updates 

predictions iteratively: 

 

𝐵𝑡+1̂ = 𝐵𝑡̂ + λ1𝑓(𝐸𝑡 , 𝐵𝑡̂) + λ2𝑔(𝑆, 𝐵𝑡̂ , Θ)  （18） 

 

where 𝐸𝑡  is the execution trace, 𝑓(𝐸𝑡 , 𝐵𝑡̂) adjusts predictions 

based on runtime validation, and 𝑔(𝑆, 𝐵𝑡̂ , Θ)  ensures 

alignment with learned code patterns. Parameter updates 

minimize detection loss ℒ(𝐵, 𝐵̂) and regularization function 

ℛ(Θ), ensuring model generalization: 

 

Θ(𝑡+1) = Θ(𝑡) − η[∇Θℒ(𝐵, 𝐵̂) + γ∇Θℛ(Θ)]  （19） 

 

2) Integration of SRCU and MSAM  

ASABD unifies SRCU and MSAM, integrating 

executionaware validation and hierarchical attention for 

precise bug detection. The final classification is determined as: 

𝐵∗̂ = 𝐵filtered
̂ + α(∑ β𝑗𝐴𝑗𝑗 ) + δℱ(𝐸, 𝐵̂)  （20） 

 

Where ℱ(𝐸, 𝐵̂) corrects misclassifications based on execution 

traces, and α , δ  dynamically scale refinements. This 

integration enhances accuracy, reduces false positives, and 

improves bug localization.  

 

To evaluate the effectiveness of the proposed ASABD 

framework, we conducted experiments using real-world Java 

based projects from the Defects4J dataset. The evaluation 

compared ASABD with diverse and well-established baseline 

methods. The selected baselines cover three categories: (1) 

static analysis tools such as SonarQube and Find Bugs, which 

are industry-standard rule-based analyzers; (2) traditional 

machine learning models such as Random Forest (RF) and 

Support Vector Machine (SVM), known for their robustness in 

bug prediction; and (3) a deep learning-based model, 

DeepCode, which leverages semantic embeddings and neural 

architectures. This selection ensures fair benchmarking across 

static tools, classical ML, and modern deep learning techniques. 

ASABD was implemented using transformer-based LLMs, 

specifically CodeBERT, GPT-4, and GraphCodeBERT, and 

executed on an NVIDIA A100 GPU (80GB VRAM). Realtime 

execution traces were collected to validate predictions against 

runtime behavior. Evaluation metrics included Precision, 

Recall, and F1-score for classification performance, FPR to 

assess incorrect bug detections, and Error Localization 

Accuracy to evaluate bug pinpointing capabilities. Execution 

Time per instance was measured to benchmark computational 

efficiency. Preprocessing involved tokenization, syntax 

normalization, and embedding generation. Execution-aware 

features were integrated to validate semantic predictions. 

Through iterative learning via SRCU and MSAM, ASABD 

refined its predictions across training cycles, improving 

adaptability, precision, and localization accuracy compared to 

baseline methods. 

 

5. Results and Analysis 

 

A. Performance Comparison  

ASABD was evaluated against static analysis tools and 

machine learning-based bug detection models. Baseline 

models included SonarQube, a rule-based static analysis tool, 

FindBugs, a pattern-based detection system, RF, a supervised 

ML classifier, and DeepCode, a deep learning-powered bug 

detection model leveraging code embeddings. The 

comparative analysis focused on precision, recall, F1-score, 

false positive reduction, and execution efficiency to 

demonstrate ASABD’s superior performance.  

 

1) Precision, Recall, and F1-Score 

 

 
Figure 2. Precision, Recall, and F1-Score Comparison 

 

Figure shows that ASABD achieves the highest F1-score 

(92.9%), outperforming traditional static analysis tools and 

machine learning-based methods by a significant margin. The 

superior performance is attributed to SRCU and the MSAM, 

which minimize false positives and misclassifications.  

 

2) Execution Time and Computational Overhead  

The execution efficiency of ASABD was evaluated by 

comparing its processing time against baseline models. 

 



International Journal of Computer Sciences and Engineering                                                                         Vol.13(11), Nov. 2025 

© 2025, IJCSE All Rights Reserved                                                                                                                                             8 

 
Figure 3. Execution Time Comparison Across Bug Detection Models 

 

ASABD achieves the lowest execution time per instance at 

95.6ms, outperforming DeepCode (130.9ms) and Random 

Forest (154.2ms). This efficiency is due to its optimized 

Transformer-based LLM processing, which generates 

semantic embeddings with minimal computational overhead. 

Additionally, the SRCU mechanism enhances adaptive 

learning, reducing redundant computations and improving 

overall processing speed. 

 

3) Qualitative Analysis of Detected Bugs 

 

 
Figure 4. Case Study Analysis of Bug Classification. 

 

Results demonstrates that ASABD significantly outperforms 

baseline models in detecting logical inconsistencies, security 

vulnerabilities, and performance bottlenecks. This 

improvement is due to its context-aware filtering, which 

minimizes misclassifications by integrating execution-aware 

validation and semantic embeddings. Additionally, the MSAM 

mechanism enhances bug detection by analyzing structural 

dependencies and improving classification accuracy.  

 

4) Execution Trace Validation and False Positive 

Reduction  

To analyze the impact of execution-aware refinement, we 

compared the FPR of ASABD against baseline models. 

 
Figure 5. False Positive Rate (FPR) Comparison 

 

As observed, ASABD reduces the false positive rate to 3.5%, 

which is significantly lower than DeepCode (7.2%) and other 

baseline models. This reduction is achieved through SRCU, 

which iteratively refines predictions using execution trace 

feedback, and dynamic recalibration, which adjusts 

classification confidence based on real-time validation, 

ensuring more accurate bug detection.  

 

B. Effectiveness Justification  

Beyond the performance metrics, ASABD’s effectiveness is 

rooted in its architectural innovations. The SRCU mechanism 

enables the model to iteratively correct misclassifications by 

incorporating execution trace feedback, which traditional 

models lack. This allows ASABD to adapt its predictions based 

on real runtime behavior, reducing false positives and 

improving recall.  
 

The MSAM further enhances detection accuracy by isolating 

bug signals across syntax, logic, and security contexts, 

enabling a multi-perspective analysis that single-stream 

models cannot perform. Additionally, ASABD integrates 

semantic embeddings and structural code representations, 

allowing it to generalize across diverse coding styles and error 

types. These combined features explain its superior bug 

detection performance across all evaluation metrics.  
 

1) Bug Localization Accuracy  

To assess ASABD’s ability to pinpoint the exact location of 

detected bugs, we compared its error localization accuracy 

with baseline models. Table II provides the results. The figure 

illustrates the error localization accuracy of various static 

analysis models. The proposed ASABD framework achieves a 

significant improvement (+15.1%) over the best-performing 

baseline model, DeepCode (83.6%). The lower subplot 

highlights this improvement compared to traditional methods. 

 
Table 2. Error Localization Accuracy 

Model Localization 

Accuracy (%) 

Improvement Over 

Baseline (%) 

SonarQube [25] 72.5 - 

FindBugs [26] 74.8 - 

RF [27] 78.2 - 

DeepCode [28] 83.6 - 

ASABD 96.2 15.1 
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Table 2. demonstrates that ASABD achieves the highest bug 

localization accuracy at 96.2%, surpassing DeepCode (83.6%). 

 

 
Figure 6. Error Localization Performance Analysis comparing ASABD with 

baseline models. 

 

6. Threats to Validity  
 

While the ASABD framework demonstrates robust 

performance across multiple metrics on the Defects4J dataset, 

it is imperative to acknowledge several potential threats to its 

generalizability and practical applicability. First, the extensive 

evaluation of ASABD has been primarily conducted on Java-

based projects within the Defects4J dataset. Consequently, its 

generalizability to other programming languages, such as 

Python, C++, or JavaScript, may necessitate additional fine-

tuning or architectural adaptations. Cross language validation 

remains a critical area for future research, as the nuances of 

different language constructs, idioms, and common bug 

patterns could influence detection performance. Second, 

ASABD’s reliance on execution trace data assumes that the 

code under analysis can be executed with representative inputs 

to capture meaningful runtime behavior. In practical software 

development environments, acquiring such comprehensive and 

representative execution traces can be challenging, especially 

during early development stages when test suites may be 

incomplete or in safety-critical systems where runtime 

instrumentation is limited or complex to implement. The 

process of collecting execution traces, particularly in 

distributed microservices architectures, can involve 

complexities such as manual instrumentation, lack of front-end 

visibility, and sampling issues that might lead to missing 

important information. These practical difficulties in trace 

acquisition could potentially impact the framework’s 

performance in real world scenarios where ideal trace data is 

unavailable. Third, although ASABD significantly reduces 

false positives, it may still be susceptible to residual biases 

introduced during the pretraining of its underlying Large 

Language Models (LLMs) on publicly available code 

repositories. LLMs are known to inherit biases from their 

training data, which can lead to skewed or unfair responses, a 

phenomenon sometimes referred to as "hallucinations". 

Variability in coding styles, domain-specific practices, or 

incomplete test coverage within the training data could 

inadvertently influence bug detection performance, potentially 

leading to misclassifications in novel or atypical code contexts. 

The inherent lack of interpretability in many LLM-based 

models, where it is difficult to ascertain why a specific bug is 

flagged, further complicates the debugging process and may 

reduce developer trust. While LLMs can provide explanations, 

the quality and accuracy of these explanations can vary. 

Finally, computational cost presents another practical 

limitation. The utilization of Transformer-based LLMs and 

dynamic validation mechanisms incurs higher hardware 

requirements, such as GPUs with large memory footprints. 

This computational intensity can potentially limit the 

deployment of ASABD in resource-constrained environments 

or for smaller development teams without access to high-end 

infrastructure. Training large LLMs can cost tens to hundreds 

of millions of dollars, and while inference costs are lower, they 

still require significant resources. Addressing these threats 

through cross language extensions, the development of 

lightweight model variants (e.g., through quantization or 

pruning techniques), and improved trace acquisition strategies 

will be crucial for future development efforts and broader 

adoption. 

 

7. Conclusion 
 

This paper introduced the ASABD framework, a novel bug 

detection system that leverages large language models through 

execution-aware refinement and multi-stage semantic 

attention. ASABD significantly outperformed traditional static 

analysis tools and modern deep learning models across 

multiple benchmarks, achieving improved precision, recall, 

and error localization accuracy.  

 

Ablation Insights:  

The framework’s high performance can be attributed to its 

modular design. Ablation studies revealed that removing 

SRCU led to a 17.6% increase in false positives, while omitting 

MSAM reduced detection accuracy, especially for security-

related bugs. Execution-aware validation played a key role in 

improving bug localization precision.  

 

Threats to Validity:  

While ASABD demonstrates robust performance on the 

Defects4J dataset, it may require fine tuning for other 

programming languages or non-Java environments. Moreover, 

its dependency on execution traces assumes testability of the 

code, which may not always be feasible in early development 

stages.  

 

Relation to Existing Work: Unlike traditional static analyzers 

and LLM-based models that rely solely on syntax or 

embeddings, ASABD integrates runtime feedback, structural 

attention, and iterative refinement—bridging a gap between 

static and dynamic bug detection.  

 

Novelty of Contribution:  

The key innovation of ASABD lies in its fusion of SRCU and 

MSAM within an execution aware feedback loop. This makes 
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it the first LLM-based framework to jointly incorporate 

contextual, structural, and behavioral bug analysis in a unified 

architecture. 

 

7. Limitation 
Despite its robust performance, ASABD, like any advanced 

system, possesses certain limitations that warrant 

consideration for future research and development. A primary 

limitation is its current lack of interpretability. While the 

framework performs exceptionally well in detecting and 

localizing bugs, it offers limited insight into the precise 

reasoning behind specific bug flags. This "black box" nature 

can reduce developer trust and hinder the manual debugging 

process, as developers may struggle to understand why a 

particular issue was identified or how to best remediate it. 

Future work could explore integrating Explainable AI (XAI) 

techniques [29], [30], such as attention visualization [31], 

saliency maps [32], or counterfactual explanations, to provide 

more transparent and human understandable explanations for 

ASABD’s predictions. Another significant limitation is the 

computational intensity of the model. The reliance on high-end 

Transformer-based LLMs and extensive dynamic validation 

processes necessitates substantial hardware resources, 

particularly high-end GPUs with large memory footprints. This 

requirement can limit the practical deployment of ASABD, 

especially for smaller development teams or in resource-

constrained environments where access to such infrastructure 

is prohibitive. Addressing this challenge will involve 

investigating model compression strategies, such as 

quantization, pruning, or knowledge distillation, to create more 

lightweight and deployable variants without significantly 

sacrificing performance. Additionally, ASABD is currently 

tailored for Java, restricting its applicability to multi-language 

development environments. Expanding its capabilities to other 

programming languages, such as Python, C++, or JavaScript, 

would require additional fine-tuning and potentially 

architectural adaptations to accommodate language-specific 

constructs and paradigms. These challenges highlight the 

ongoing need for research into lightweight, explainable, and 

cross-language-capable debugging solutions that can 

seamlessly integrate into diverse software development 

workflows. 
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