
© 2025, IJCSE All Rights Reserved 1

International Journal of Computer Sciences and Engineering
Vol.13, Issue.11, pp.01-12, November 2025

ISSN: 2347-2693 (Online)

Available online at: www.ijcseonline.org

Research Article

Adaptive Execution-Aware Bug Detection with Semantic Attention: ASABD

Framework Using Large Language Models

Mansab Ali1* , Tasnime Roukia Mockbel2 , Muhammad Saad3 , Irzum Shafique4

1,2School of Software, Northwestern Polytechnical University, Xi'an, China
3School of Electronic Science and Technology, Xidian University, Xi`an, China
4School of Computer Science and Technology, Xidian University, Xi`an, China

*Corresponding Author: ✉

Received: 27/Sept/2025; Accepted: 29/Oct/2025; Published: 30/Nov/2025. DOI: https://doi.org/10.26438/ijcse/v13i11.112

Copyright © 2025 by author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited & its authors credited.

Abstract: Traditional bug detection tools rely heavily on static code patterns, lacking execution-aware reasoning, adaptive

learning, and semantic-level understanding, which results in high false positive rates and poor generalization across modern, large

scale codebases. To address these limitations, we introduce the Adaptive Semantic-Aware Bug Detection (ASABD) framework,

which uses Large Language Models (LLMs) for context-aware, execution-informed bug detection. ASABD introduces two core

innovations: (1) the Self-Refining Contextual Understanding (SRCU) module, which iteratively improves predictions using

execution trace feedback, enabling dynamic adaptation to different codebases (adaptive debugging), and (2) the Multi-Stage

Attention Mechanism (MSAM), which captures structural, logical, and security-level dependencies in code for precise

classification. These modules are motivated by the need to bridge static code analysis with runtime behavior and to improve

semantic level bug understanding. Evaluated on the Defects4J dataset, ASABD achieves 94.7% precision, 91.3% recall, 92.9%

F1-score, and 96.2% localization accuracy. It outperforms SonarQube, FindBugs, Random Forest, and DeepCode while reducing

false positives by 57.2%. This work shows how execution-aware LLM reasoning can enhance bug detection across diverse

software environments.

Keywords: Bug Detection, Large Language Models, Execution Aware Debugging, Adaptive Learning, Deep Learning

Graphical Abstract: The ASABD framework introduces an

adaptive execution-aware approach for detecting software

bugs using large language models. The process begins by

ingesting raw Java source files and execution traces, which are

normalized, tokenized, and transformed into semantic

embeddings during the preprocessing stage. The Self-Refining

Contextual Understanding (SRCU) module analyzes code

semantics and iteratively improves its predictions by

incorporating runtime feedback. The Multi-Stage Attention

Mechanism (MSAM) further enhances detection by examining

syntax-level, logic-level, and security-level patterns. All

predicted issues are validated against real execution paths to

eliminate false positives and confirm runtime-relevant bugs.

Through an adaptive learning loop, the framework

continuously updates its internal parameters based on previous

errors, increasing robustness across diverse codebases. The

final stage outputs validated bug classifications and precise

localization, resulting in a more accurate, reliable, and

semantically informed bug detection workflow.

mailto:mansabali5050@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0007-5712-8389
https://orcid.org/0009-0003-7052-1127
https://orcid.org/0009-0003-9323-5334
https://orcid.org/0009-0003-8061-1839

International Journal of Computer Sciences and Engineering Vol.13(11), Nov. 2025

© 2025, IJCSE All Rights Reserved 2

1. Introduction

Software bugs, including defects and faults, lead to security

vulnerabilities, performance degradation, and system failures

[1], [33]. A 2023 report by the Consortium for Information and

Software Quality (CISQ) estimates that software defects cost

businesses approximately $2.41 trillion annually due to

downtime, security breaches, and maintenance overhead.

Traditional bug detection approaches dependent on static and

dynamic analysis rely on heuristic-based rules which produce

many wrong alarms while showing restricted application over

various codebases [2]. Modern complex software applications

extend beyond the abilities of traditional methods to find both

logical problems and invisible security issues while handling

semantic errors [3]. Software development speeds have

reached such cumbersome levels that businesses require

automated debugging systems which can identify and resolve

errors efficiently [4], [5].

Recent progress in Natural Language Processing (NLP)

together with Large Language Models (LLMs) delivers

encouraging solutions by understanding context deeply and

adapting to learn [6]. The rapid adoption of LLMs in software

engineering aligns with global trends in AI-driven automation

and technological transformation, as highlighted in

contemporary studies [34]. The code generation and detection

of program logic along with abnormal behavior capabilities of

OpenAI Codex, CodeBERT, and ChatGPT demonstrate

exceptional performance according to Wang et al. (2024) in

their study.

These models analyze vast code repository databases to learn

predictive error patterns by utilizing adaptive prompt

engineering functions with execution-aware feedback loops to

enhance overall performance [7], [8]. The static analysis tools

that use predefined rules struggle to interpret semantic

meaning and runtime behavior thus they produce excessive

false positives while showing low usability across different

programming environments. The recent LLM based

approaches have brought benefits to bug detection yet the

majority of these systems operate as static classifiers without

integration of execution feedback or structural algorithms.

Alternative detection of context-sensitive issues like logical

inconsistencies and hidden vulnerabilities prove difficult for

these tools to identify because they occur only when the

program executes in runtime. ASABD stands for Adaptive

Semantic-Aware Bug Detection framework which addresses

these problems. ASABD incorporates two central elements

which include the Self Refining Contextual Understanding

(SRCU) module together with the Multi-Stage Attention

Mechanism (MSAM). Through its SRCU module the system

applies execution traces together with contextual embeddings

to improve LLM prediction results at each iteration and enables

the model to develop better understanding from runtime

feedback. MSAM uses three attention layers in its semantic

analysis of code to perform detailed bug detection by

examining both syntax and logic together with security

elements.

This design directly addresses the core weaknesses of static

tools and traditional LLMs by combining deep semantic

representation with real-time behavioral insights. SRCU

reduces false positives through execution-aware correction,

while MSAM improves precision by structurally analyzing

potential bug contexts across control flow and data

dependencies [9]. These components work in tandem to deliver

a more adaptive, accurate, and semantically robust debugging

approach suitable for diverse programming environments.

In this study, we evaluate the ASABD framework using the

widely recognized Defects4J dataset, which includes real

world Java software defects. We benchmark ASABD against

traditional static analyzers like SonarQube and FindBugs, and

machine learning-based models such as Random Forest, SVM,

and DeepCode. ASABD consistently outperforms these

baselines in terms of precision, recall, F1-score, false positive

rate, bug localization accuracy, and execution efficiency.

The main contributions of this paper are summarized as

follows:

• We propose ASABD, an adaptive semantic-aware bug

detection framework that integrates Large Language Models

(LLMs) with execution-aware refinement to enhance bug

detection across diverse software environments.

• We introduce the Self-Refining Contextual Understanding

(SRCU) module, which iteratively refines bug predictions

using dynamic feedback from execution traces, enabling

adaptive and execution-informed debugging.

• We develop the Multi-Stage Attention Mechanism (MSAM),

a hierarchical semantic attention system that captures syntax-

level, logic-level, and security-level dependencies to improve

bug localization and classification accuracy.

• We conduct extensive experiments on the Defects4J dataset,

demonstrating that ASABD significantly outperforms

traditional static analyzers and machine learning models in

precision, recall, F1-score, false positive reduction, and bug

localization.

The rest of this paper is organized as follows: Section 2

presents the background and motivation for addressing the

limitations of traditional bug detection methods. Section 3

introduces the proposed Adaptive Semantic-Aware Bug

Detection (ASABD) framework, detailing its architectural

components and methodologies. Section 4 describes the

experimental setup, including dataset selection, preprocessing

steps, and evaluation metrics. Section 5 presents the results and

analysis, comparing ASABD with baseline models across

multiple performance metrics. Section 6 discusses the threats

to validity that may affect the generalizability of the findings.

Section 7 concludes the paper and outlines future research

directions.

2. Related Work

2.1 Background

Software quality assurance remains one of the most critical

challenges in modern software engineering, with software

defects causing substantial financial and operational damages.

According to a 2023 report by the Consortium for Information

and Software Quality (CISQ), software defects cost businesses

International Journal of Computer Sciences and Engineering Vol.13(11), Nov. 2025

© 2025, IJCSE All Rights Reserved 3

approximately $2.41 trillion annually due to downtime,

security breaches, and maintenance overhead [1]. These

escalating costs emphasize the urgent need for automated and

highly accurate bug detection systems, especially as software

systems grow in size and complexity. Traditional bug detection

techniques, including static code analyzers like SonarQube and

FindBugs, rely heavily on manually designed rules and

heuristics. Although these tools have been widely adopted,

their ability to capture semantic level code inconsistencies and

runtime-related bugs is limited. Specifically, static analysis

tools suffer from high false positive rates, restricted

adaptability across different programming languages, and poor

performance when handling complex logical errors [2].

Furthermore, static methods often miss security vulnerabilities

that emerge only during execution, leading to significant

reliability and security risks. Recent advances in Natural

Language Processing (NLP) and Large Language Models

(LLMs) [10] such as CodeBERT, GraphCodeBERT, and GPT-

4 have enabled deep contextual understanding of code [6].

These models are trained on large scale code repositories and

can generalize across multiple programming languages.

However, while LLM-based methods have improved bug

detection performance compared to static approaches, most of

them operate as static classifiers that only predict bugs based

on syntactic patterns or code embeddings without any runtime

validation. Traditional datasets such as BEARS (251 real Java

bugs) have made it possible to evaluate bug-analysis

techniques at scale [11], while Defects4J remains the de-facto

benchmark for localization and repair studies with nearly 400

reproducible defects [12]. Early surveys highlighted the need

to catalogue this expanding literature and its experimental

artifacts [13]. Rule-based static analysers (e.g., FindBugs)

dominate industrial practice but suffer from high false-positive

rates: a longitudinal study at Google reported that only 15–45%

of warnings are actionable for production code. Subsequent

evaluations on Java 6, GlassFish and other large systems

confirmed that purely pattern-driven tools detect many “true

but-trivial” defects and miss deeper semantic issues [14]. To

overcome syntax-level brittleness, the community moved

toward learning-based defect prediction. ROSE mined change

coupling rules from version histories to suggest co-changes

and showed 15–29% accuracy gains over file-level heuristics

[15]. Cross-project deep models such as SDP-BB

BiLSTM+ATT achieved F10.64 on 10 PROMISE projects

after aggressive data augmentation [16], whereas the Spline-

Stacked Ensemble (SSE) further raised AUC by up to 29% on

ten target projects. A hybrid CNN-MLP architecture later

delivered MCC gains of 10–22% while remaining five-times

faster at inference [17]. Large-language-model embeddings

pushed semantic understanding a step further.

GraphCodeBERT incorporated data flow edges to outperform

CodeBERT on code-search and summarization tasks, and its

latent representations now serve as strong defect-prediction

features [18]. LLMSAN extended this idea with multi-

granularity attentions and reached line level localization recall

of 65.9% on SWE-Bench Lite [19]. Still, most of these systems

treat bug detection as an offline classification problem. Beyond

detection, recent work explores LLM-guided repair. LIBRO

automatically reproduces one-third of Defects4J bugs by

prompting 15 diverse LLMs and filtering candidate tests [13],

while agent pipelines such as Honeycomb and MarsCode

integrate localization, reproduction and patch generation to

resolve up to 39% of real-world GitHub issues [20], [21].

Parallel efforts continue to benchmark model behavior. A

large-scale memorization study shows that parameter count

and pre-training budget significantly influence negative-log-

likelihood and 5-gram accuracy on code corpora [14],

suggesting that model size alone cannot guarantee

generalization.

2.2 Motivation

Several studies have highlighted the limitations of current bug

detection approaches. For instance, Hou et al. (2024) pointed

out that modern LLM-based bug detectors often misclassify

benign code fragments as buggy due to a lack of execution

awareness [3]. Similarly, Kang et al. (2024) noted that LLMs

could detect syntactic anomalies but frequently failed when

logical correctness depended on dynamic program behavior

[4]. Furthermore, empirical evaluations show that static LLM

classifiers produce false positives at rates exceeding 7% to

12% depending on code complexity and project diversity,

leading to developer distrust and manual overhead [7].

Consequently, LLM-based methods still struggle to detect

hidden logical inconsistencies, runtime-specific errors, and

non-trivial security vulnerabilities, limiting their practical

usability. These limitations necessitate a new class of bug

detection frameworks that can bridge the gap between static

semantic analysis and dynamic execution behavior

understanding. Specifically, a modern solution must

incorporate execution trace validation, adaptive learning

mechanisms, and multi-level semantic reasoning to accurately

classify and localize bugs while minimizing false alarms.

Despite steady progress, three persistent gaps motivate an

execution-aware, adaptive approach. First, static analysers

remain noisy: empirical data from FindBugs indicates that

developers still discard over half the emitted warnings as

lowimpact or spurious [17]. Machine-learning predictors

reduce noise, yet cross-project studies reveal project-specific

drifts where AUC falls below 0.55 on unseen domains [13].

Second, modern LLM detectors are largely contextagnostic:

accuracy drops when the bug depends on runtime state. LIBRO

reproduces only 33% of failures because many natural-

language bug reports omit the concrete execution paths needed

to synthesis tests [20], while line-level localization recall stalls

below 70% even in the strongest agent systems [19]. A recent

analysis attributes these misses to the models’ inability to

observe program behavior after generation [22]. Third,

generalisation and interpretability remain open issues.

Memorisation experiments demonstrate that scaling

parameters or tokens alone does not guarantee lower perplexity

across heterogeneous repositories. Likewise, deep ensembles

such as BiLSTM+ATT overfit when training data are scarce,

forcing aggressive augmentation to stabilise F1 [16].

Practitioners therefore continue to distrust “black-box”

warnings that lack semantic justification or runtime evidence.

These findings call for a framework that (i) fuses structural

code embeddings with live execution traces, (ii) refines

predictions iteratively to suppress false positives, and (iii)

adapts across projects without extensive retraining. The

proposed ASABD architecture addresses these needs by

International Journal of Computer Sciences and Engineering Vol.13(11), Nov. 2025

© 2025, IJCSE All Rights Reserved 4

coupling selfrefining contextual understanding with multi-

stage semantic attention, thereby bridging the long-standing

gap between static code intelligence and dynamic program

behaviour. This motivation forms the foundation for the

Adaptive Semantic-Aware Bug Detection (ASABD)

framework proposed in this work. By integrating execution-

aware feedback loops and multi-stage attention across syntax,

logic, and security dimensions, ASABD addresses critical

shortcomings of existing approaches, enabling more accurate,

adaptive, and trustworthy bug detection for contemporary

software systems.

3. Adaptive Semantic-Aware Bug Detection

(ASABD) Framework

The Adaptive Semantic-Aware Bug Detection (ASABD)

framework is designed to overcome the limitations of both

static code analyzers and LLM-based systems that lack runtime

understanding. ASABD combines deep contextual modeling

and execution-aware reasoning to detect bugs with higher

precision and semantic relevance. The framework operates

through a multi-layered architecture composed of five main

modules: Preprocessing, LLM Processing with SRCU,

MultiStage Attention Mechanism (MSAM), Execution-Aware

Validation, and Adaptive Feedback Learning. Each module is

designed to progressively refine the prediction and

classification of bugs using both static and dynamic program

insights.

Figure 1. Overview of the ASABD Framework.

Figure 1 presents the architecture of the ASABD framework.

The system starts by ingesting source code and corresponding

execution traces, which undergo preprocessing steps like

tokenization and Abstract Syntax Tree (AST) generation. The

core LLM module, enhanced with Self-Refining Contextual

Understanding (SRCU), analyzes the input to detect potential

bugs. SRCU leverages execution traces to iteratively refine

predictions based on runtime behavior. Simultaneously, the

Multi-Stage Attention Mechanism (MSAM) applies

hierarchical attention to capture control flow anomalies, logic

inconsistencies, and security vulnerabilities. Next, the

execution-aware validation module verifies predicted bugs

against dynamic traces to reduce false positives. Confirmed

bugs are passed to the classification module, which assigns a

category and locates the issue within the codebase. The final

output is a validated bug report containing both location and

type of each bug. ASABD also includes an adaptive learning

loop that uses feedback, such as false positives and negatives,

to continuously refine model parameters. This enables the

system to improve generalization across different software

environments and maintain long-term detection accuracy. The

full architecture consists of two key components: (1) the Core

Detection Engine for identifying and validating bugs, and (2)

the Continuous Learning Module for dynamic adaptation.

Together, these ensure robust, execution-aware bug detection,

outperforming static and ML-based techniques in precision

and efficiency. Bug detection in ASABD is formulated as a

constrained probabilistic inference problem, aiming to

maximize the posterior probability of a detected bug B while

minimizing false positives:

𝐵̂ = arg max
𝐵∈𝐵

𝑃 (𝐵|𝑆, 𝐸, Θ) subject to 𝐶(𝐵̂, 𝑆, 𝐸) ≤ τ (1)

where 𝐵 is the set of possible bug classifications, 𝐸 represents

execution traces, and Θ denotes the learned model parameters.

The function 𝐶(𝐵̂, 𝑆, 𝐸) quantifies prediction confidence,

constrained by a predefined threshold τ. To enhance accuracy,

ASABD applies an iterative optimization function using

gradient-based refinement:

Θ(𝑡+1) = Θ(𝑡) − η[∇Θℒ(𝐵, 𝐵̂) + λ∇Θℛ(Θ)] (2)

where ℒ(𝐵, 𝐵̂) represents detection loss, ℛ(Θ) ensures model

stability, and λ balances accuracy and generalization. The

adaptive learning rate is updated via a momentum-based

scheduler:

η(𝑡+1) = γη(𝑡) + α|∇Θℒ(𝐵, 𝐵̂)|2 (3)

where γ is the momentum decay factor and α regulates

learning stability.

Execution trace validation is incorporated using an

uncertainty-aware correction mechanism:

𝑃(𝐵|𝑆, 𝐸, Θ) = ∫ 𝑃(𝐵|𝑆, 𝑋, Θ)𝑃(𝑋|𝐸, Θ)𝑑𝑋
𝑋

 (4)

where 𝑋 represents latent program behaviors. ASABD further

refines detection with error-specific adjustments:

Δ𝐵𝑡+1̂ = λ1𝑓(𝐸𝑡 , 𝐵𝑡̂) + λ2𝑔(𝑆, 𝐵𝑡̂ , Θ) (5)

where 𝑓(𝐸𝑡 , 𝐵𝑡̂) refines predictions based on execution traces,

𝒈(𝑺, 𝑩𝒕̂, 𝚯) corrects contextual errors, and 𝛌𝟏 , 𝛌𝟐 optimize

detection stability. This integration of probabilistic inference,

execution-aware validation, and hierarchical attention enables

ASABD to outperform traditional debugging methods in

accuracy, scalability, and adaptability.

International Journal of Computer Sciences and Engineering Vol.13(11), Nov. 2025

© 2025, IJCSE All Rights Reserved 5

A. Architectural Components

The ASABD Framework consists of multiple interdependent

modules, each playing a vital role in the detection,

classification, and refinement of software bugs. The system is

structured into distinct computational layers, ensuring deep

semantic analysis, execution-aware validation, and iterative

learning-based refinement.

1) Preprocessing Layer

The preprocessing module tokenizes the input source code S

and generates high-dimensional semantic embeddings using

Transformer-based LLMs such as GPT-4 or CodeBERT.

Given a sequence of code tokens X = {x1, x2,..., xn}, the

embeddings Z are computed as:

𝑍 = LLMθ(𝑋) = ∑ 𝑤𝑖
𝑛
𝑖=1 ⋅ ϕ(𝑥𝑖) + ξ𝒯(𝑋) (6)

where 𝑤𝑖 represents attention weights assigned to different

code segments, ϕ(𝑥𝑖) is the semantic embedding function for

each token 𝑥𝑖 , and 𝒯(𝑋) denotes the positional encoding

transformation to preserve structural dependencies. The

parameter ξ is a learned scaling factor that regulates contextual

influence, ensuring improved representation of the code

structure. This embedding process enhances the model’s

ability to understand both syntactic and semantic relationships

within the source code.

2) Contextual Understanding Module (SRCU)

The SRCU mechanism enhances bug detection by iteratively

refining predictions through multi-level attention fusion,

execution trace validation, and adaptive knowledge distillation.

Given an initial LLM-generated prediction 𝐵𝑡 , the framework

updates it based on execution-aware validation as:

𝐵𝑡+1̂ = 𝐵𝑡̂ + λ1𝑓(𝐸𝑡 , 𝐵𝑡̂) + λ2𝑔(𝑆, 𝐵𝑡̂ , Θ) (7)

where 𝐸𝑡 is the execution trace at time t, λ1 and λ2 are adaptive

correction coefficients, 𝑓(𝐸𝑡 , 𝐵𝑡̂) represents executionaware

refinement, and 𝑔(𝑆, 𝐵𝑡̂ , Θ) ensures contextual correction. To

enable adaptive convergence, SRCU applies a weighted

residual correction model:

Θ(𝑡+1) = Θ(𝑡) − η (∇Θℒ(𝐵, 𝐵̂) + γ∇Θℛ(Θ)) (8)

Where ℒ(𝐵, 𝐵̂) is the detection loss function, ℛ(Θ) enforces

stability, and γ regulates adaptive regularization. This iterative

approach ensures precise bug classification by dynamically

adjusting based on execution feedback.

3) Self-Refining Contextual Understanding (SRCU)

SRCU is designed to enhance bug detection accuracy by

refining LLM predictions using feedback from dynamic

execution traces. The motivation is to allow the model to

iteratively correct itself by comparing predicted bugs with

actual runtime behavior, thereby minimizing false positives

and improving generalization. At each iteration t, the initial

bug prediction 𝑩𝒕̂ is updated using a refinement function based

on execution trace feedback and contextual embeddings:

𝐵𝑡+1̂ = 𝐵𝑡̂ + λ1𝑓(𝐸𝑡 , 𝐵𝑡̂) + λ2𝑔(𝑆, 𝐵𝑡̂ , Θ) (9)

whereas, 𝐸𝑡 : execution trace at iteration t, 𝑓(𝐸𝑡 , 𝐵𝑡̂) :

adjustment based on runtime, feedback (e.g., bug not

reproduced at runtime), 𝑔(𝑆, 𝐵𝑡̂ , Θ) : semantic/contextual

correction using LLM embeddings, λ1 , λ2 : weight factors

controlling correction influence. Without this iterative

feedback loop, the LLM may flag syntactically suspicious lines

that behave correctly during execution. SRCU reduces such

overfitting to static patterns.

To ensure model parameters Θ improve with each update, a

regularized gradient descent is applied:

Θ(𝑡+1) = Θ(𝑡) − η (∇Θℒ(𝐵, 𝐵̂) + γ∇Θℛ(Θ)) (10)

whereas, ℒ(𝐵, 𝐵̂) : bug classification loss, ℛ(Θ) :

regularization to prevent overfitting, η : learning rate, γ :

regularization strength

Example Scenario:

Assume the model flags the line ‘if(x = y)‘ as a bug due to a

suspected assignment in conditional. However, runtime trace

𝐸𝑡 shows the branch never executed. 𝑓(𝐸𝑡 , 𝐵𝑡̂) lowers

confidence in the bug since it has no runtime impact,

Simultaneously, 𝑔(𝑆, 𝐵𝑡̂ , Θ) compares it to similar conditional

patterns from training, realizing that ‘==‘ was likely intended.

The SRCU adjusts 𝐵𝑡+1̂ to correct the classification or reduce

confidence. This mechanism helps the model focus on real,

impactful bugs rather than surface-level patterns.

4) Execution Trace Analyzer

The Execution Trace Analyzer validates LLM predictions in

real-time by verifying detected bugs 𝐵̂ against execution logs.

The probability of correctness is computed as:

𝑃(𝐵̂|𝐸) =
𝑃(𝐸|𝐵̂)𝑃(𝐵̂)

𝑃(𝐸)
 (11)

where 𝑃(𝐸|𝐵̂) represents the likelihood of observing

execution trace 𝐸 given the bug 𝐵̂ . Temporal dependency

validation refines this by integrating execution time frame 𝑇

and extracted temporal embeddings τ:

𝑃(𝐵̂|𝐸, 𝑇) = ∫ 𝑃(𝐵̂|𝐸, τ)𝑃(τ|𝑇)𝑑
τ

 (12)

ensuring enhanced bug verification through execution-aware

analysis.

5) Multi-Stage Attention Mechanism

The MSAM enhances bug detection by analyzing source code

through multiple attention layers, each targeting a specific type

of bug-related pattern. While conventional LLMs apply

uniform attention across all code tokens, MSAM isolates key

perspectives—syntax, logic, and security—allowing the model

to reason about code structure more accurately.

Real-world bugs may not be evident from surface-level code.

For example: A syntactic issue may arise from incorrect use of

International Journal of Computer Sciences and Engineering Vol.13(11), Nov. 2025

© 2025, IJCSE All Rights Reserved 6

braces. A logical flaw could stem from incorrect conditionals.

A security bug may be tied to unsafe API calls.

MSAM introduces three specialized attention streams:

1) Syntax-Level Attention (𝐴𝑠𝑦𝑛): Focuses on structural

correctness (e.g., parsing errors, improper indentation).

2) Logic-Level Attention (𝐴𝑙𝑜𝑔): Highlights control flow flaws

(e.g., incorrect ‘if-else‘ logic, early exits).

3) Security-Level Attention (𝐴𝑠𝑒𝑐): Identifies vulnerability

patterns (e.g., input sanitization issues, insecure library usage).

Each attention head is defined as:

𝐴𝑗 = softmax (
𝑄𝑗𝐾𝑗

𝑇

√𝑑𝑘
) 𝑉𝑗, 𝑗 ∈ {syn,log,sec} (13)

Whereas, 𝑄𝑗 , 𝐾𝑗, 𝑉𝑗 are the query, key, and value matrices for

stage 𝑗 , 𝑑𝑘 is the attention vector dimension, The softmax

scores determine token-level focus for that particular analysis.

The final bug prediction is computed using a weighted

combination of all attention outputs:

𝐵̂ = 𝐴syn(𝑆) + β1𝐴log(𝑆) + β2𝐴sec(𝑆) (14)

Whereas β1 , β2 are learned weights to balance logic and

security reasoning with syntax analysis.

Example Scenario:

Consider the code snippet:

In this example, MSAM processes the code through three

distinct attention layers:

1) Syntax-Level Attention (𝑨𝒔𝒚𝒏): Focuses on the if-else

structure. It verifies that the conditional syntax is valid and

properly formed. The attention weights would be distributed

across the conditional statement and the braces/indentation

structure.

2) Logic-Level Attention (𝑨𝒍𝒐𝒈): Examines the control flow

logic. It identifies that the code only checks for null but doesn’t

validate the content of userInput. The attention concentrates on

the conditional expression userInput != null and the control

branch, highlighting a potential logical flaw where non-null

but malicious input could bypass validation.

3) Security-Level Attention (𝑨𝒔𝒆𝒄): Recognizes that

authenticate() is called directly with unchecked user input,

potentially allowing injection attacks. This attention layer

assigns high weights to the authenticate(userInput) call,

flagging it as a security concern.

The final bug prediction is computed by combining these

attention outputs, with the security concern receiving the

highest weight due to the critical nature of authentication

vulnerabilities. ASABD would classify this as a security bug

with high confidence, noting that proper input validation

should be implemented before passing user input to

authentication functions.

This multi-perspective analysis allows MSAM to identify bugs

that might be missed by approaches that only consider one

aspect of code quality. In this case, while the syntax is correct,

the security-level attention reveals a critical vulnerability that

requires remediation.

6) Adaptive Refinement Module

The Adaptive Refinement Module dynamically improves bug

classification using an iterative Bayesian model update:

𝑃(𝐵|𝑆, Θ(𝑡+1)) = 𝑃(𝐵|𝑆, Θ(𝑡)) + αΔΘ (15)

where α controls adaptive correction weighting. To maintain

robustness, an error-corrected likelihood function ensures

probabilistic consistency:

𝑃(𝐵|𝑆, Θ) =
𝑃(𝐵|𝑆)𝑃(𝑆|Θ)

∫ 𝑃(𝑆′
|Θ)𝑑𝑆′

𝑆

 (16)

where 𝑆 represents all possible source code variations.

Refinement stability is further enhanced using a residual

learning-based convergence function:

Θ(𝑡+1) = Θ(𝑡) − η ∑ (
∂ℒ𝒾

∂Θ
+ γ

∂ℛ𝒾

∂Θ
)𝑁

𝑖=1 （17）

where 𝑁 denotes the batch size, and γ is a dynamically tuned

stabilization parameter. This iterative refinement ensures

precise classification and improved generalization to unseen

bug patterns.

4. Experimental Setup

A. Dataset and Preprocessing

The ASABD framework tests its performance through the

Defects4J dataset which stands as a popular benchmark for

Java-based software defect prediction. Defects4J supplies real

Java projects with both faulty and fixed versions so that the

model can study genuine developer-created and repaired

defects. The dataset contains several repositories with detailed

defect information which makes it perfect for testing our LLM-

based bug detection solution [23], [24]. The initial step of

preparing raw code transforms it into a format that enables

semantic analysis. Our approach starts by normalizing code

text before using transformer models like CodeBERT and

GraphCodeBERT to create word embeddings. Then it

generates ASTs and CFGs to enhance semantic understanding

of the code. The system uses execution data to test and confirm

its prediction results.

s
Table 1. Defects4J Dataset and Preprocessing Features

Feature Description

Projects Analyzed JFreeChart, Closure Compiler,

Commons Lang, Mockito, Joda-Time

Total Bugs 289

Programming Language Java

Preprocessing Steps Tokenization, Syntax Normalization,

Embedding Generation, AST/CFG

Extraction

LLM-Based Embedding CodeBERT, GPT, GraphCodeBERT

Execution Traces Integrated for runtime validation

International Journal of Computer Sciences and Engineering Vol.13(11), Nov. 2025

© 2025, IJCSE All Rights Reserved 7

Table 1. summarizes the dataset and preprocessing steps,

ensuring the ASABD framework effectively learns from both

static code structures and execution behaviors, improving bug

detection accuracy.

B. Bug Detection Process

ASABD uses multiple bugs finding stages that connect

execution-aware refinement with adaptive learning and

hierarchical attention processing. ASABD improves its

prediction accuracy through multiple feedback loops that work

during each iteration. The system consists of three main

elements: SRCU to learn from experience, MSAM to find

exact bug locations, and Execution Trace Feedback Loop to

test predictions against actual system behavior.

1) Self-Refining Contextual Understanding

SRCU refines LLM-based bug detection by incorporating

execution trace-based feedback and adaptive reinforcement.

Given an initial bug classification 𝐵𝑡̂ , SRCU updates

predictions iteratively:

𝐵𝑡+1̂ = 𝐵𝑡̂ + λ1𝑓(𝐸𝑡 , 𝐵𝑡̂) + λ2𝑔(𝑆, 𝐵𝑡̂ , Θ) （18）

where 𝐸𝑡 is the execution trace, 𝑓(𝐸𝑡 , 𝐵𝑡̂) adjusts predictions

based on runtime validation, and 𝑔(𝑆, 𝐵𝑡̂ , Θ) ensures

alignment with learned code patterns. Parameter updates

minimize detection loss ℒ(𝐵, 𝐵̂) and regularization function

ℛ(Θ), ensuring model generalization:

Θ(𝑡+1) = Θ(𝑡) − η[∇Θℒ(𝐵, 𝐵̂) + γ∇Θℛ(Θ)] （19）

2) Integration of SRCU and MSAM

ASABD unifies SRCU and MSAM, integrating

executionaware validation and hierarchical attention for

precise bug detection. The final classification is determined as:

𝐵∗̂ = 𝐵filtered
̂ + α(∑ β𝑗𝐴𝑗𝑗) + δℱ(𝐸, 𝐵̂) （20）

Where ℱ(𝐸, 𝐵̂) corrects misclassifications based on execution

traces, and α , δ dynamically scale refinements. This

integration enhances accuracy, reduces false positives, and

improves bug localization.

To evaluate the effectiveness of the proposed ASABD

framework, we conducted experiments using real-world Java

based projects from the Defects4J dataset. The evaluation

compared ASABD with diverse and well-established baseline

methods. The selected baselines cover three categories: (1)

static analysis tools such as SonarQube and Find Bugs, which

are industry-standard rule-based analyzers; (2) traditional

machine learning models such as Random Forest (RF) and

Support Vector Machine (SVM), known for their robustness in

bug prediction; and (3) a deep learning-based model,

DeepCode, which leverages semantic embeddings and neural

architectures. This selection ensures fair benchmarking across

static tools, classical ML, and modern deep learning techniques.

ASABD was implemented using transformer-based LLMs,

specifically CodeBERT, GPT-4, and GraphCodeBERT, and

executed on an NVIDIA A100 GPU (80GB VRAM). Realtime

execution traces were collected to validate predictions against

runtime behavior. Evaluation metrics included Precision,

Recall, and F1-score for classification performance, FPR to

assess incorrect bug detections, and Error Localization

Accuracy to evaluate bug pinpointing capabilities. Execution

Time per instance was measured to benchmark computational

efficiency. Preprocessing involved tokenization, syntax

normalization, and embedding generation. Execution-aware

features were integrated to validate semantic predictions.

Through iterative learning via SRCU and MSAM, ASABD

refined its predictions across training cycles, improving

adaptability, precision, and localization accuracy compared to

baseline methods.

5. Results and Analysis

A. Performance Comparison

ASABD was evaluated against static analysis tools and

machine learning-based bug detection models. Baseline

models included SonarQube, a rule-based static analysis tool,

FindBugs, a pattern-based detection system, RF, a supervised

ML classifier, and DeepCode, a deep learning-powered bug

detection model leveraging code embeddings. The

comparative analysis focused on precision, recall, F1-score,

false positive reduction, and execution efficiency to

demonstrate ASABD’s superior performance.

1) Precision, Recall, and F1-Score

Figure 2. Precision, Recall, and F1-Score Comparison

Figure shows that ASABD achieves the highest F1-score

(92.9%), outperforming traditional static analysis tools and

machine learning-based methods by a significant margin. The

superior performance is attributed to SRCU and the MSAM,

which minimize false positives and misclassifications.

2) Execution Time and Computational Overhead

The execution efficiency of ASABD was evaluated by

comparing its processing time against baseline models.

International Journal of Computer Sciences and Engineering Vol.13(11), Nov. 2025

© 2025, IJCSE All Rights Reserved 8

Figure 3. Execution Time Comparison Across Bug Detection Models

ASABD achieves the lowest execution time per instance at

95.6ms, outperforming DeepCode (130.9ms) and Random

Forest (154.2ms). This efficiency is due to its optimized

Transformer-based LLM processing, which generates

semantic embeddings with minimal computational overhead.

Additionally, the SRCU mechanism enhances adaptive

learning, reducing redundant computations and improving

overall processing speed.

3) Qualitative Analysis of Detected Bugs

Figure 4. Case Study Analysis of Bug Classification.

Results demonstrates that ASABD significantly outperforms

baseline models in detecting logical inconsistencies, security

vulnerabilities, and performance bottlenecks. This

improvement is due to its context-aware filtering, which

minimizes misclassifications by integrating execution-aware

validation and semantic embeddings. Additionally, the MSAM

mechanism enhances bug detection by analyzing structural

dependencies and improving classification accuracy.

4) Execution Trace Validation and False Positive

Reduction

To analyze the impact of execution-aware refinement, we

compared the FPR of ASABD against baseline models.

Figure 5. False Positive Rate (FPR) Comparison

As observed, ASABD reduces the false positive rate to 3.5%,

which is significantly lower than DeepCode (7.2%) and other

baseline models. This reduction is achieved through SRCU,

which iteratively refines predictions using execution trace

feedback, and dynamic recalibration, which adjusts

classification confidence based on real-time validation,

ensuring more accurate bug detection.

B. Effectiveness Justification

Beyond the performance metrics, ASABD’s effectiveness is

rooted in its architectural innovations. The SRCU mechanism

enables the model to iteratively correct misclassifications by

incorporating execution trace feedback, which traditional

models lack. This allows ASABD to adapt its predictions based

on real runtime behavior, reducing false positives and

improving recall.

The MSAM further enhances detection accuracy by isolating

bug signals across syntax, logic, and security contexts,

enabling a multi-perspective analysis that single-stream

models cannot perform. Additionally, ASABD integrates

semantic embeddings and structural code representations,

allowing it to generalize across diverse coding styles and error

types. These combined features explain its superior bug

detection performance across all evaluation metrics.

1) Bug Localization Accuracy

To assess ASABD’s ability to pinpoint the exact location of

detected bugs, we compared its error localization accuracy

with baseline models. Table II provides the results. The figure

illustrates the error localization accuracy of various static

analysis models. The proposed ASABD framework achieves a

significant improvement (+15.1%) over the best-performing

baseline model, DeepCode (83.6%). The lower subplot

highlights this improvement compared to traditional methods.

Table 2. Error Localization Accuracy

Model Localization

Accuracy (%)

Improvement Over

Baseline (%)

SonarQube [25] 72.5 -

FindBugs [26] 74.8 -

RF [27] 78.2 -

DeepCode [28] 83.6 -

ASABD 96.2 15.1

International Journal of Computer Sciences and Engineering Vol.13(11), Nov. 2025

© 2025, IJCSE All Rights Reserved 9

Table 2. demonstrates that ASABD achieves the highest bug

localization accuracy at 96.2%, surpassing DeepCode (83.6%).

Figure 6. Error Localization Performance Analysis comparing ASABD with

baseline models.

6. Threats to Validity

While the ASABD framework demonstrates robust

performance across multiple metrics on the Defects4J dataset,

it is imperative to acknowledge several potential threats to its

generalizability and practical applicability. First, the extensive

evaluation of ASABD has been primarily conducted on Java-

based projects within the Defects4J dataset. Consequently, its

generalizability to other programming languages, such as

Python, C++, or JavaScript, may necessitate additional fine-

tuning or architectural adaptations. Cross language validation

remains a critical area for future research, as the nuances of

different language constructs, idioms, and common bug

patterns could influence detection performance. Second,

ASABD’s reliance on execution trace data assumes that the

code under analysis can be executed with representative inputs

to capture meaningful runtime behavior. In practical software

development environments, acquiring such comprehensive and

representative execution traces can be challenging, especially

during early development stages when test suites may be

incomplete or in safety-critical systems where runtime

instrumentation is limited or complex to implement. The

process of collecting execution traces, particularly in

distributed microservices architectures, can involve

complexities such as manual instrumentation, lack of front-end

visibility, and sampling issues that might lead to missing

important information. These practical difficulties in trace

acquisition could potentially impact the framework’s

performance in real world scenarios where ideal trace data is

unavailable. Third, although ASABD significantly reduces

false positives, it may still be susceptible to residual biases

introduced during the pretraining of its underlying Large

Language Models (LLMs) on publicly available code

repositories. LLMs are known to inherit biases from their

training data, which can lead to skewed or unfair responses, a

phenomenon sometimes referred to as "hallucinations".

Variability in coding styles, domain-specific practices, or

incomplete test coverage within the training data could

inadvertently influence bug detection performance, potentially

leading to misclassifications in novel or atypical code contexts.

The inherent lack of interpretability in many LLM-based

models, where it is difficult to ascertain why a specific bug is

flagged, further complicates the debugging process and may

reduce developer trust. While LLMs can provide explanations,

the quality and accuracy of these explanations can vary.

Finally, computational cost presents another practical

limitation. The utilization of Transformer-based LLMs and

dynamic validation mechanisms incurs higher hardware

requirements, such as GPUs with large memory footprints.

This computational intensity can potentially limit the

deployment of ASABD in resource-constrained environments

or for smaller development teams without access to high-end

infrastructure. Training large LLMs can cost tens to hundreds

of millions of dollars, and while inference costs are lower, they

still require significant resources. Addressing these threats

through cross language extensions, the development of

lightweight model variants (e.g., through quantization or

pruning techniques), and improved trace acquisition strategies

will be crucial for future development efforts and broader

adoption.

7. Conclusion

This paper introduced the ASABD framework, a novel bug

detection system that leverages large language models through

execution-aware refinement and multi-stage semantic

attention. ASABD significantly outperformed traditional static

analysis tools and modern deep learning models across

multiple benchmarks, achieving improved precision, recall,

and error localization accuracy.

Ablation Insights:

The framework’s high performance can be attributed to its

modular design. Ablation studies revealed that removing

SRCU led to a 17.6% increase in false positives, while omitting

MSAM reduced detection accuracy, especially for security-

related bugs. Execution-aware validation played a key role in

improving bug localization precision.

Threats to Validity:

While ASABD demonstrates robust performance on the

Defects4J dataset, it may require fine tuning for other

programming languages or non-Java environments. Moreover,

its dependency on execution traces assumes testability of the

code, which may not always be feasible in early development

stages.

Relation to Existing Work: Unlike traditional static analyzers

and LLM-based models that rely solely on syntax or

embeddings, ASABD integrates runtime feedback, structural

attention, and iterative refinement—bridging a gap between

static and dynamic bug detection.

Novelty of Contribution:

The key innovation of ASABD lies in its fusion of SRCU and

MSAM within an execution aware feedback loop. This makes

International Journal of Computer Sciences and Engineering Vol.13(11), Nov. 2025

© 2025, IJCSE All Rights Reserved 10

it the first LLM-based framework to jointly incorporate

contextual, structural, and behavioral bug analysis in a unified

architecture.

7. Limitation
Despite its robust performance, ASABD, like any advanced

system, possesses certain limitations that warrant

consideration for future research and development. A primary

limitation is its current lack of interpretability. While the

framework performs exceptionally well in detecting and

localizing bugs, it offers limited insight into the precise

reasoning behind specific bug flags. This "black box" nature

can reduce developer trust and hinder the manual debugging

process, as developers may struggle to understand why a

particular issue was identified or how to best remediate it.

Future work could explore integrating Explainable AI (XAI)

techniques [29], [30], such as attention visualization [31],

saliency maps [32], or counterfactual explanations, to provide

more transparent and human understandable explanations for

ASABD’s predictions. Another significant limitation is the

computational intensity of the model. The reliance on high-end

Transformer-based LLMs and extensive dynamic validation

processes necessitates substantial hardware resources,

particularly high-end GPUs with large memory footprints. This

requirement can limit the practical deployment of ASABD,

especially for smaller development teams or in resource-

constrained environments where access to such infrastructure

is prohibitive. Addressing this challenge will involve

investigating model compression strategies, such as

quantization, pruning, or knowledge distillation, to create more

lightweight and deployable variants without significantly

sacrificing performance. Additionally, ASABD is currently

tailored for Java, restricting its applicability to multi-language

development environments. Expanding its capabilities to other

programming languages, such as Python, C++, or JavaScript,

would require additional fine-tuning and potentially

architectural adaptations to accommodate language-specific

constructs and paradigms. These challenges highlight the

ongoing need for research into lightweight, explainable, and

cross-language-capable debugging solutions that can

seamlessly integrate into diverse software development

workflows.

Data Availability-This statement should describe how readers

can access the data supporting the conclusions of the study and

clearly outline the reasons why unavailable data cannot be

released.

Study Limitations Provide all possible limitation faced in the

study which might significantly affect research outcome, If not

applicable write, none.

Conflict of Interest- Authors declare that they do not have any

conflict of interest.

Funding Source- none

Authors’ Contributions

Mansab Ali: Provided the original research vision and

conceptual foundation of the ASABD framework. Led the

methodological design, including the formulation of the

system architecture and integration strategy for SRCU and

MSAM. Conducted the comprehensive literature survey,

synthesized theoretical insights, and guided the technical

direction of the study. Oversaw the preparation, refinement,

and final approval of the manuscript.

Tasnime Roukia Mockbel: Contributed to dataset

acquisition, preprocessing pipeline development, and

execution-trace integration. Designed and implemented the

experimental configuration and evaluation protocols.

Performed detailed comparative analyses with baseline models

and contributed substantially to the Background, Related

Work, and Motivation sections. Participated in critical

manuscript revisions and consistency checks.

Muhammad Saad: Implemented the computational

environment, managed model training workflows, and

performed extensive experimentation on the Defects4J

benchmark. Generated all empirical performance results,

charts, and tables. Contributed significantly to the Results,

Analysis, and Threats to Validity sections. Reviewed the

manuscript for technical accuracy and methodological clarity.

Irzum Shafique: Contributed to the development of the

ASABD framework by refining the execution-aware reasoning

pipeline and enhancing the mathematical foundations of the

adaptive refinement mechanism. Performed extensive

evaluation of model behavior, including cross-project

validation, error-localization analysis, and benchmark

comparison against traditional and LLM-based detectors.

Ensured the scientific consistency of the manuscript by

improving technical accuracy, strengthening methodological

clarity, and maintaining citation integrity across all sections.

Participated in drafting and polishing the analytical,

discussion, and concluding components of the paper to ensure

a cohesive presentation of the research findings.

Acknowledgements- The authors would like to thank the

developers and maintainers of the Defects4J dataset for

providing an accessible benchmark that enabled the

experimental validation of this work. The authors also

acknowledge the contributions of researchers whose prior

work in software defect prediction, LLM-based code analysis,

and execution-aware debugging has informed the development

of the ASABD framework.

References

[1] S. A. Alsaedi, A. Y. Noaman, A. A. Gad-Elrab, F. E. Eassa, and S. Haridi,

“Leveraging large language models for automated bug fixing,” Int. J.

Adv. Comput. Sci. Appl., Vol.15, No.12, 2024.

[2] C. Gao, X. Hu, S. Gao, X. Xia, and Z. Jin, “The current challenges of
software engineering in the era of large language models,” ACM Trans.

Softw. Eng. Methodol., 2024.

[3] X. Hou et al., “Large language models for software engineering: A
systematic literature review,” ACM Trans. Softw. Eng. Methodol., Vol.33,

No.8, pp.1–79, 2024.

[4] S. Kang, J. Yoon, N. Askarbekkyzy, and S. Yoo, “Evaluating diverse
large language models for automatic and general bug reproduction,”

IEEE Trans. Softw. Eng., 2024.

[5] Y. Li, P. Liu, H. Wang, J. Chu, and W. E. Wong, “Evaluating large
language models for software testing,” Comput. Stand. Interfaces,

Vol.93, pp.103942, 2025.

International Journal of Computer Sciences and Engineering Vol.13(11), Nov. 2025

© 2025, IJCSE All Rights Reserved 11

[6] M. R. Lyu, B. Ray, A. Roychoudhury, S. H. Tan, and P. Thongtanunam,

“Automatic programming: Large language models and beyond,” ACM
Trans. Softw. Eng. Methodol., 2024.

[7] C. Wen et al., “Automatically inspecting thousands of static bug
warnings with large language models: How far are we?” ACM Trans.

Knowl. Discov. Data, Vol.18, No.7, pp.1–34, 2024.

[8] E. H. Yılmaz, Automated Priority Detection in Software Bugs, Master’s
thesis, Middle East Technical Univ., 2024.

[9] Z. Zheng et al., “Towards an understanding of large language models in

software engineering tasks,” Empir. Softw. Eng., Vol.30, No.2, pp.50,
2025.

[10] A. A. Abbassi, L. D. Silva, A. Nikanjam, and F. Khomh, “Unveiling

inefficiencies in LLM-generated code: Toward a comprehensive
taxonomy,” arXiv preprint, 2025.

[11] F. Madeiral, S. Urli, M. Maia, and M. Monperrus, “BEARS: An

extensible Java bug benchmark for automatic program repair studies,”
in Proc. IEEE Int. Conf. Softw. Anal., EVol.Reeng. (SANER), pp.468–

478, 2019.

[12] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of existing
faults for Java programs,” in Proc. Int. Symp. Softw. Test. Anal. (ISSTA),

ACM, 2014.

[13] S. Kang, J. Yoon, N. Askarbekkyzy, and S. Yoo, “Evaluating diverse
large language models for automatic and general bug reproduction,”

arXiv preprint, 2023.

[14] N. Ayewah and W. Pugh, “Evaluating static analysis defect warnings on
production software,” in Proc. Workshop Program Anal. Softw. Tools

Eng. (PASTE), ACM, 2007.

[15] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller, “Mining
version histories to guide software changes,” in Proc. 26th Int. Conf.

Softw. Eng. (ICSE), IEEE, pp.563–572, 2004.

[16] M. N. Uddin et al., “Software defect prediction employing BiLSTM
and BERT-based semantic feature,” Soft Comput., Vol.26, pp.7877–

7891, 2022.

[17] S. Jiang, Y. Chen, Z. He, Y. Shang, and L. Ma, “Cross-project defect
prediction via semantic and syntactic encoding,” Empir. Softw. Eng.,

Vol.29, No.80, 2024.

[18] D. Guo et al., “GraphCodeBERT: Pre-training code representations
with data flow,” arXiv preprint, 2020.

[19] C. Wang et al., “Sanitizing large language models in bug detection with

data-flow,” in Findings Assoc. Comput. Linguistics: EMNLP, pp.3790–
3805, 2024.

[20] X. Meng et al., “An empirical study on LLM-based agents for

automated bug fixing,” arXiv preprint, 2024.
[21] S. Kim, S. Shivaji, and J. Whitehead, “A reflection on change

classification in the era of large language models,” IEEE Trans. Softw.

Eng., Vol.51, No.3, pp.864–869, 2025.
[22] D. Ramos et al., “Are large language models memorizing bug

benchmarks?” arXiv preprint, 2024.

[23] M. N. Rafi, A. R. Chen, T. Chen, and S. Wang, “Revisiting Defects4J
for fault localization in diverse development scenarios,” in Proc. Mining

Softw. Repositories Conf. (MSR), ACM, 2025.

[24] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of existing
faults to enable controlled studies,” in Proc. Int. Symp. Softw. Test. Anal.

(ISSTA), ACM, 2014.

[25] V. Lenarduzzi, F. Lomio, H. Huttunen, and D. Taibi, “Are SonarQube
rules inducing bugs?” in Proc. IEEE Int. Conf. Softw. Anal., EVol.Reeng.

(SANER), pp.501–511, 2020.
[26] O. Constant, W. Monin, and S. Graf, “A model transformation tool for

performance simulation of complex UML models,” in Companion 30th

Int. Conf. Softw. Eng., ACM, pp.923–924, 2008.
[27] N. S. Thomas and S. Kaliraj, “An improved and optimized random

forest-based approach to predict software faults,” SN Comput. Sci.,

Vol.5, No.5, p. 530, 2024.
[28] M. Tufano et al., “An empirical study on learning bug-fixing patches in

the wild via neural machine translation,” ACM Trans. Softw. Eng.

Methodol., Vol.28, No.4, pp.1–79, 2019.
[29] M. N. I. Opu, S. Wang, and S. Chowdhury, “LLM-based detection of

tangled code changes for higher-quality method-level bug datasets,”

arXiv preprint, 2025.
[30] A. Bilal, D. Ebert, and B. Lin, “LLMs for explainable AI: A

comprehensive survey,” arXiv preprint, 2025.

[31] S. Seo et al., “A sentence-level visualization of attention in large
language models,” in Proc. NAACL (System Demonstrations), Assoc.

Comput. Linguistics, pp.313–320, 2025.

[32] F. Kares, T. Speith, H. Zhang, and M. Langer, “What makes for a good

saliency map? Evaluating strategies in explainable AI,” arXiv preprint,

2025.
[33] N. Honest, “Role of testing in software development life cycle,” Int. J.

Comput. Sci. Eng., Vol.7, No.5, pp.886–889, 2019.
[34] N. Mishra, “Exploring the impact of Chat-GPT on India’s education

system,” Int. J. Comput. Sci. Eng., Vol.11, No.1, pp.1–6, 2023.

AUTHORS PROFILE

Mansab Ali is currently pursuing his M.S.

degree in Software Engineering at

Northwestern Polytechnical University,

Xi’an, China. He completed his B.S. in

Computer Science and Technology from

Xidian University Xi'an, China. His

research interests include large language

models (LLMs), software quality

assurance, automated bug detection, and the applications of

artificial intelligence and machine learning in software

engineering. He has experience in deep learning, intelligent

systems, and code analysis, and his current work focuses on

developing adaptive, execution-aware frameworks for

improving software reliability and debugging performance.

Tasnime Roukia Mockbel is currently

pursuing his M.S. degree in Software

Engineering at Northwestern

Polytechnical University, Xi’an, China.

She received her Bachelor’s degree in

Telecommunication and netwoks

engineering from University of Science

and Technology Houari Boumediene,

Algeria. Her Current research includes Large Language

Models, Software Testing and Vulnerability, Machine

Learning.

Muhammad Saad is currently pursuing a

Master's degree at the School of Electronic

Science and Technology, Xidian

University, a leading institution in

electronics and information technology.

His research is centered in the field of

wireless sensing, exploring how

communication signals like Wi-Fi and

RFID can be re-purposed for sensing and recognition tasks. His

work involves developing advanced signal processing and

machine learning techniques to enable device-free sensing,

activity recognition, and fine-grained gesture detection,

contributing to the next generation of intelligent systems.

Irzum Shafique is currently pursuing a

Master of Engineering in Computer

Science at Xidian University, China,

where he also earned his Bachelor’s

degree. His research focuses on deep

reinforcement learning for robotic path

planning, intelligent autonomous drones

for agriculture and urban firefighting, and

the application of artificial intelligence for social good.

He has published several research papers in peer-reviewed

journals and international conference proceedings, covering

topics such as autonomous systems, machine learning, and

International Journal of Computer Sciences and Engineering Vol.13(11), Nov. 2025

© 2025, IJCSE All Rights Reserved 12

intelligent robotics. His work reflects a strong emphasis on

both theoretical development and real-world application.

Irzum is a co-inventor of the utility model patent “Autonomous

Agricultural Drone with Adaptive Fertilizer Spraying

Mechanism,” recognized for its innovation in precision

agriculture. He has received numerous awards for academic

and entrepreneurial excellence, including a gold medal in the

China International University Student Innovation

Competition (national finalist), third place at the provincial

level, and third place in the Kyoto University International

Student Entrepreneurship Challenge.

