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Abstract: Traditional bug detection tools rely heavily on static code patterns, lacking execution-aware reasoning, adaptive
learning, and semantic-level understanding, which results in high false positive rates and poor generalization across modern, large
scale codebases. To address these limitations, we introduce the Adaptive Semantic-Aware Bug Detection (ASABD) framework,
which uses Large Language Models (LLMs) for context-aware, execution-informed bug detection. ASABD introduces two core
innovations: (1) the Self-Refining Contextual Understanding (SRCU) module, which iteratively improves predictions using
execution trace feedback, enabling dynamic adaptation to different codebases (adaptive debugging), and (2) the Multi-Stage
Attention Mechanism (MSAM), which captures structural, logical, and security-level dependencies in code for precise
classification. These modules are motivated by the need to bridge static code analysis with runtime behavior and to improve
semantic level bug understanding. Evaluated on the Defects4] dataset, ASABD achieves 94.7% precision, 91.3% recall, 92.9%
Fl-score, and 96.2% localization accuracy. It outperforms SonarQube, FindBugs, Random Forest, and DeepCode while reducing
false positives by 57.2%. This work shows how execution-aware LLM reasoning can enhance bug detection across diverse
software environments.
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1. Introduction

Software bugs, including defects and faults, lead to security
vulnerabilities, performance degradation, and system failures
[17, [33]. A 2023 report by the Consortium for Information and
Software Quality (CISQ) estimates that software defects cost
businesses approximately $2.41 trillion annually due to
downtime, security breaches, and maintenance overhead.

Traditional bug detection approaches dependent on static and
dynamic analysis rely on heuristic-based rules which produce
many wrong alarms while showing restricted application over
various codebases [2]. Modern complex software applications
extend beyond the abilities of traditional methods to find both
logical problems and invisible security issues while handling
semantic errors [3]. Software development speeds have
reached such cumbersome levels that businesses require
automated debugging systems which can identify and resolve
errors efficiently [4], [5].

Recent progress in Natural Language Processing (NLP)
together with Large Language Models (LLMs) delivers
encouraging solutions by understanding context deeply and
adapting to learn [6]. The rapid adoption of LLMs in software
engineering aligns with global trends in Al-driven automation
and technological transformation, as highlighted in
contemporary studies [34]. The code generation and detection
of program logic along with abnormal behavior capabilities of
OpenAl Codex, CodeBERT, and ChatGPT demonstrate
exceptional performance according to Wang et al. (2024) in
their study.

These models analyze vast code repository databases to learn
predictive error patterns by utilizing adaptive prompt
engineering functions with execution-aware feedback loops to
enhance overall performance [7], [8]. The static analysis tools
that use predefined rules struggle to interpret semantic
meaning and runtime behavior thus they produce excessive
false positives while showing low usability across different
programming environments. The recent LLM based
approaches have brought benefits to bug detection yet the
majority of these systems operate as static classifiers without
integration of execution feedback or structural algorithms.

Alternative detection of context-sensitive issues like logical
inconsistencies and hidden vulnerabilities prove difficult for
these tools to identify because they occur only when the
program executes in runtime. ASABD stands for Adaptive
Semantic-Aware Bug Detection framework which addresses
these problems. ASABD incorporates two central elements
which include the Self Refining Contextual Understanding
(SRCU) module together with the Multi-Stage Attention
Mechanism (MSAM). Through its SRCU module the system
applies execution traces together with contextual embeddings
to improve LLM prediction results at each iteration and enables
the model to develop better understanding from runtime
feedback. MSAM uses three attention layers in its semantic
analysis of code to perform detailed bug detection by
examining both syntax and logic together with security
elements.

© 2025, IJCSE All Rights Reserved

Vol.13(11), Nov. 2025

This design directly addresses the core weaknesses of static
tools and traditional LLMs by combining deep semantic
representation with real-time behavioral insights. SRCU
reduces false positives through execution-aware correction,
while MSAM improves precision by structurally analyzing
potential bug contexts across control flow and data
dependencies [9]. These components work in tandem to deliver
a more adaptive, accurate, and semantically robust debugging
approach suitable for diverse programming environments.

In this study, we evaluate the ASABD framework using the
widely recognized Defects4] dataset, which includes real
world Java software defects. We benchmark ASABD against
traditional static analyzers like SonarQube and FindBugs, and
machine learning-based models such as Random Forest, SVM,
and DeepCode. ASABD consistently outperforms these
baselines in terms of precision, recall, F1-score, false positive
rate, bug localization accuracy, and execution efficiency.

The main contributions of this paper are summarized as
follows:

*+ We propose ASABD, an adaptive semantic-aware bug
detection framework that integrates Large Language Models
(LLMs) with execution-aware refinement to enhance bug
detection across diverse software environments.

* We introduce the Self-Refining Contextual Understanding
(SRCU) module, which iteratively refines bug predictions
using dynamic feedback from execution traces, enabling
adaptive and execution-informed debugging.

* We develop the Multi-Stage Attention Mechanism (MSAM),
a hierarchical semantic attention system that captures syntax-
level, logic-level, and security-level dependencies to improve
bug localization and classification accuracy.

* We conduct extensive experiments on the Defects4] dataset,
demonstrating that ASABD significantly outperforms
traditional static analyzers and machine learning models in
precision, recall, Fl-score, false positive reduction, and bug
localization.

The rest of this paper is organized as follows: Section 2
presents the background and motivation for addressing the
limitations of traditional bug detection methods. Section 3
introduces the proposed Adaptive Semantic-Aware Bug
Detection (ASABD) framework, detailing its architectural
components and methodologies. Section 4 describes the
experimental setup, including dataset selection, preprocessing
steps, and evaluation metrics. Section 5 presents the results and
analysis, comparing ASABD with baseline models across
multiple performance metrics. Section 6 discusses the threats
to validity that may affect the generalizability of the findings.
Section 7 concludes the paper and outlines future research
directions.

2. Related Work

2.1 Background

Software quality assurance remains one of the most critical
challenges in modern software engineering, with software
defects causing substantial financial and operational damages.
According to a 2023 report by the Consortium for Information
and Software Quality (CISQ), software defects cost businesses
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approximately $2.41 trillion annually due to downtime,
security breaches, and maintenance overhead [1]. These
escalating costs emphasize the urgent need for automated and
highly accurate bug detection systems, especially as software
systems grow in size and complexity. Traditional bug detection
techniques, including static code analyzers like SonarQube and
FindBugs, rely heavily on manually designed rules and
heuristics. Although these tools have been widely adopted,
their ability to capture semantic level code inconsistencies and
runtime-related bugs is limited. Specifically, static analysis
tools suffer from high false positive rates, restricted
adaptability across different programming languages, and poor
performance when handling complex logical errors [2].
Furthermore, static methods often miss security vulnerabilities
that emerge only during execution, leading to significant
reliability and security risks. Recent advances in Natural
Language Processing (NLP) and Large Language Models
(LLMs) [10] such as CodeBERT, GraphCodeBERT, and GPT-
4 have enabled deep contextual understanding of code [6].
These models are trained on large scale code repositories and
can generalize across multiple programming languages.
However, while LLM-based methods have improved bug
detection performance compared to static approaches, most of
them operate as static classifiers that only predict bugs based
on syntactic patterns or code embeddings without any runtime
validation. Traditional datasets such as BEARS (251 real Java
bugs) have made it possible to evaluate bug-analysis
techniques at scale [11], while Defects4J remains the de-facto
benchmark for localization and repair studies with nearly 400
reproducible defects [12]. Early surveys highlighted the need
to catalogue this expanding literature and its experimental
artifacts [13]. Rule-based static analysers (e.g., FindBugs)
dominate industrial practice but suffer from high false-positive
rates: a longitudinal study at Google reported that only 15—45%
of warnings are actionable for production code. Subsequent
evaluations on Java 6, GlassFish and other large systems
confirmed that purely pattern-driven tools detect many “true
but-trivial” defects and miss deeper semantic issues [14]. To
overcome syntax-level brittleness, the community moved
toward learning-based defect prediction. ROSE mined change
coupling rules from version histories to suggest co-changes
and showed 15-29% accuracy gains over file-level heuristics
[15]. Cross-project deep models such as SDP-BB
BiLSTM+ATT achieved F10.64 on 10 PROMISE projects
after aggressive data augmentation [16], whereas the Spline-
Stacked Ensemble (SSE) further raised AUC by up to 29% on
ten target projects. A hybrid CNN-MLP architecture later
delivered MCC gains of 10-22% while remaining five-times
faster at inference [17]. Large-language-model embeddings
pushed semantic  understanding a step  further.
GraphCodeBERT incorporated data flow edges to outperform
CodeBERT on code-search and summarization tasks, and its
latent representations now serve as strong defect-prediction
features [18]. LLMSAN extended this idea with multi-
granularity attentions and reached line level localization recall
0f 65.9% on SWE-Bench Lite [19]. Still, most of these systems
treat bug detection as an offline classification problem. Beyond
detection, recent work explores LLM-guided repair. LIBRO
automatically reproduces one-third of Defects4] bugs by
prompting 15 diverse LLMs and filtering candidate tests [13],
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while agent pipelines such as Honeycomb and MarsCode
integrate localization, reproduction and patch generation to
resolve up to 39% of real-world GitHub issues [20], [21].
Parallel efforts continue to benchmark model behavior. A
large-scale memorization study shows that parameter count
and pre-training budget significantly influence negative-log-
likelihood and 5-gram accuracy on code corpora [14],
suggesting that model size alone cannot guarantee
generalization.

2.2 Motivation

Several studies have highlighted the limitations of current bug
detection approaches. For instance, Hou et al. (2024) pointed
out that modern LLM-based bug detectors often misclassify
benign code fragments as buggy due to a lack of execution
awareness [3]. Similarly, Kang et al. (2024) noted that LLMs
could detect syntactic anomalies but frequently failed when
logical correctness depended on dynamic program behavior
[4]. Furthermore, empirical evaluations show that static LLM
classifiers produce false positives at rates exceeding 7% to
12% depending on code complexity and project diversity,
leading to developer distrust and manual overhead [7].
Consequently, LLM-based methods still struggle to detect
hidden logical inconsistencies, runtime-specific errors, and
non-trivial security vulnerabilities, limiting their practical
usability. These limitations necessitate a new class of bug
detection frameworks that can bridge the gap between static
semantic analysis and dynamic execution behavior
understanding.  Specifically, a modern solution must
incorporate execution trace validation, adaptive learning
mechanisms, and multi-level semantic reasoning to accurately
classify and localize bugs while minimizing false alarms.
Despite steady progress, three persistent gaps motivate an
execution-aware, adaptive approach. First, static analysers
remain noisy: empirical data from FindBugs indicates that
developers still discard over half the emitted warnings as
lowimpact or spurious [17]. Machine-learning predictors
reduce noise, yet cross-project studies reveal project-specific
drifts where AUC falls below 0.55 on unseen domains [13].
Second, modern LLM detectors are largely contextagnostic:
accuracy drops when the bug depends on runtime state. LIBRO
reproduces only 33% of failures because many natural-
language bug reports omit the concrete execution paths needed
to synthesis tests [20], while line-level localization recall stalls
below 70% even in the strongest agent systems [19]. A recent
analysis attributes these misses to the models’ inability to
observe program behavior after generation [22]. Third,
generalisation and interpretability remain open issues.
Memorisation — experiments demonstrate that scaling
parameters or tokens alone does not guarantee lower perplexity
across heterogeneous repositories. Likewise, deep ensembles
such as BILSTM+ATT overfit when training data are scarce,
forcing aggressive augmentation to stabilise F1 [16].
Practitioners therefore continue to distrust “black-box”
warnings that lack semantic justification or runtime evidence.
These findings call for a framework that (i) fuses structural
code embeddings with live execution traces, (ii) refines
predictions iteratively to suppress false positives, and (iii)
adapts across projects without extensive retraining. The
proposed ASABD architecture addresses these needs by
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coupling selfrefining contextual understanding with multi-
stage semantic attention, thereby bridging the long-standing
gap between static code intelligence and dynamic program
behaviour. This motivation forms the foundation for the
Adaptive  Semantic-Aware Bug Detection (ASABD)
framework proposed in this work. By integrating execution-
aware feedback loops and multi-stage attention across syntax,
logic, and security dimensions, ASABD addresses critical
shortcomings of existing approaches, enabling more accurate,
adaptive, and trustworthy bug detection for contemporary
software systems.

3. Adaptive Semantic-Aware Bug Detection
(ASABD) Framework

The Adaptive Semantic-Aware Bug Detection (ASABD)
framework is designed to overcome the limitations of both
static code analyzers and LLM-based systems that lack runtime
understanding. ASABD combines deep contextual modeling
and execution-aware reasoning to detect bugs with higher
precision and semantic relevance. The framework operates
through a multi-layered architecture composed of five main
modules: Preprocessing, LLM Processing with SRCU,
MultiStage Attention Mechanism (MSAM), Execution-Aware
Validation, and Adaptive Feedback Learning. Each module is
designed to progressively refine the prediction and
classification of bugs using both static and dynamic program
insights.

Input Code
+ Execution Traces

Preprocessing
Tokenization, AST

Runtime
Feedback Loop

Semantic and

structural Attention Core Dete¢tion Engine

MSAM LLM + SRCU
Multi-Level Attention Iterative Refinement

Bug Classification Conti
& Prioritization

Feedback Analysis

Adaptive Learning

Execution-Aware
Validation

Learning

Bug Report
Location + Type

Figure 1. Overview of the ASABD Framework.

Figure 1 presents the architecture of the ASABD framework.
The system starts by ingesting source code and corresponding
execution traces, which undergo preprocessing steps like
tokenization and Abstract Syntax Tree (AST) generation. The
core LLM module, enhanced with Self-Refining Contextual
Understanding (SRCU), analyzes the input to detect potential
bugs. SRCU leverages execution traces to iteratively refine
predictions based on runtime behavior. Simultaneously, the
Multi-Stage  Attention Mechanism (MSAM) applies
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hierarchical attention to capture control flow anomalies, logic
inconsistencies, and security vulnerabilities. Next, the
execution-aware validation module verifies predicted bugs
against dynamic traces to reduce false positives. Confirmed
bugs are passed to the classification module, which assigns a
category and locates the issue within the codebase. The final
output is a validated bug report containing both location and
type of each bug. ASABD also includes an adaptive learning
loop that uses feedback, such as false positives and negatives,
to continuously refine model parameters. This enables the
system to improve generalization across different software
environments and maintain long-term detection accuracy. The
full architecture consists of two key components: (1) the Core
Detection Engine for identifying and validating bugs, and (2)
the Continuous Learning Module for dynamic adaptation.
Together, these ensure robust, execution-aware bug detection,
outperforming static and ML-based techniques in precision
and efficiency. Bug detection in ASABD is formulated as a
constrained probabilistic inference problem, aiming to
maximize the posterior probability of a detected bug B while
minimizing false positives:

B =argr§1§§<P(B|S,E,@) subjectto C(B,S,E) <t (1)

where B is the set of possible bug classifications, E represents
execution traces, and © denotes the learned model parameters.
The function C (B, S, E ) quantifies prediction confidence,
constrained by a predefined threshold t. To enhance accuracy,
ASABD applies an iterative optimization function using
gradient-based refinement:

0(t+) = ® — n[VoL(B, B) + \VeR(0)] )

where £(B, B) represents detection loss, R(©) ensures model
stability, and A balances accuracy and generalization. The
adaptive learning rate is updated via a momentum-based
scheduler:

N = yn® + |V L(B, B)|? 3)

where y is the momentum decay factor and a regulates
learning stability.

Execution trace validation is incorporated using an
uncertainty-aware correction mechanism:

P(B|S,E,0) = fXP(BlS,X, O)P(X|E,0)dX 4

where X represents latent program behaviors. ASABD further
refines detection with error-specific adjustments:

ABy1 = A f(Er Br) +2,9(S, B, ©) )

where f (Et, E) refines predictions based on execution traces,
g(S, B,, (E)) corrects contextual errors, and A4, A, optimize
detection stability. This integration of probabilistic inference,
execution-aware validation, and hierarchical attention enables
ASABD to outperform traditional debugging methods in
accuracy, scalability, and adaptability.
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A. Architectural Components

The ASABD Framework consists of multiple interdependent
modules, each playing a vital role in the detection,
classification, and refinement of software bugs. The system is
structured into distinct computational layers, ensuring deep
semantic analysis, execution-aware validation, and iterative
learning-based refinement.

1) Preprocessing Layer

The preprocessing module tokenizes the input source code S
and generates high-dimensional semantic embeddings using
Transformer-based LLMs such as GPT-4 or CodeBERT.
Given a sequence of code tokens X = {x1, x2,..., xn}, the
embeddings Z are computed as:

Z = LLMg(X) = I0, w; - d(x) + ET(X) ©)
where w; represents attention weights assigned to different
code segments, ¢(x;) is the semantic embedding function for
each token x;, and T(X) denotes the positional encoding
transformation to preserve structural dependencies. The
parameter & is a learned scaling factor that regulates contextual
influence, ensuring improved representation of the code
structure. This embedding process enhances the model’s
ability to understand both syntactic and semantic relationships
within the source code.

2) Contextual Understanding Module (SRCU)
The SRCU mechanism enhances bug detection by iteratively
refining predictions through multi-level attention fusion,

execution trace validation, and adaptive knowledge distillation.

Given an initial LLM-generated prediction B;, the framework
updates it based on execution-aware validation as:

Biri = Be + M f(E., B) + 2,9(S, B, ©) (7)

where E; is the execution trace at time t, A; and A, are adaptive
correction coefficients, f (Et, E) represents executionaware
refinement, and g(S, E, G)) ensures contextual correction. To

enable adaptive convergence, SRCU applies a weighted
residual correction model:

0D = 0© —n (VoL(B, B) +YVeR(0)) (8)

Where L(B,E) is the detection loss function, R(@) enforces
stability, and y regulates adaptive regularization. This iterative
approach ensures precise bug classification by dynamically
adjusting based on execution feedback.

3) Self-Refining Contextual Understanding (SRCU)

SRCU is designed to enhance bug detection accuracy by
refining LLM predictions using feedback from dynamic
execution traces. The motivation is to allow the model to
iteratively correct itself by comparing predicted bugs with
actual runtime behavior, thereby minimizing false positives
and improving generalization. At each iteration t, the initial
bug prediction Bj is updated using a refinement function based
on execution trace feedback and contextual embeddings:

© 2025, IJCSE All Rights Reserved

Vol.13(11), Nov. 2025

Be = Be + Mf (B, Be) + 229(S, B;, ©) 9)
whereas, E; : execution trace at iteration t, f (Et, B\t) :

adjustment based on runtime, feedback (e.g., bug not
reproduced at runtime), g(S, E, G)) . semantic/contextual
correction using LLM embeddings, A;, A, : weight factors
controlling correction influence. Without this iterative
feedback loop, the LLM may flag syntactically suspicious lines
that behave correctly during execution. SRCU reduces such
overfitting to static patterns.

To ensure model parameters © improve with each update, a
regularized gradient descent is applied:

e+ — ) _ n (V@L‘(B,E) + YV@:R(G)) (10)

whereas, L(B,B’) : bug classification loss, R(0) :
regularization to prevent overfitting, n: learning rate, y:
regularization strength

Example Scenario:

Assume the model flags the line ‘if(x = y)‘ as a bug due to a
suspected assignment in conditional. However, runtime trace
E; shows the branch never executed. f (Et, E) lowers
confidence in the bug since it has no runtime impact,
Simultaneously, g(S ,Be, G)) compares it to similar conditional
patterns from training, realizing that ‘==" was likely intended.
The SRCU adjusts B, to correct the classification or reduce
confidence. This mechanism helps the model focus on real,
impactful bugs rather than surface-level patterns.

4) Execution Trace Analyzer

The Execution Trace Analyzer validates LLM predictions in
real-time by verifying detected bugs B against execution logs.
The probability of correctness is computed as:

P(E|§)P(§)

(11

where P(E |§) represents the likelihood of observing
execution trace E given the bug B. Temporal dependency
validation refines this by integrating execution time frame T
and extracted temporal embeddings T:

P(B|E,T) = [ P(B|E,7)P(t|T)d (12)

ensuring enhanced bug verification through execution-aware
analysis.

5) Multi-Stage Attention Mechanism

The MSAM enhances bug detection by analyzing source code
through multiple attention layers, each targeting a specific type
of bug-related pattern. While conventional LLMs apply
uniform attention across all code tokens, MSAM isolates key
perspectives—syntax, logic, and security—allowing the model
to reason about code structure more accurately.

Real-world bugs may not be evident from surface-level code.
For example: A syntactic issue may arise from incorrect use of
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braces. A logical flaw could stem from incorrect conditionals.
A security bug may be tied to unsafe API calls.

MSAM introduces three specialized attention streams:

1) Syntax-Level Attention ( Ay, ): Focuses on structural
correctness (e.g., parsing errors, improper indentation).

2) Logic-Level Attention (4,,4): Highlights control flow flaws
(e.g., incorrect ‘if-else logic, early exits).

3) Security-Level Attention (Ag,.): Identifies vulnerability
patterns (e.g., input sanitization issues, insecure library usage).
Each attention head is defined as:

_ QK]
A; = softmax(\/d_k)

Vi, j € {syn,logsec} (13)

Whereas, @}, K;, V; are the query, key, and value matrices for
stage j, dj is the attention vector dimension, The softmax
scores determine token-level focus for that particular analysis.
The final bug prediction is computed using a weighted
combination of all attention outputs:

E = Asyn(s) + BlAlog(S) + BZAsec(S) (14)

Whereas ;, B, are learned weights to balance logic and
security reasoning with syntax analysis.

Example Scenario:
Consider the code snippet:
if (userInput != null)
authenticate (userInput) ;
else
log("Invalid input");

In this example, MSAM processes the code through three
distinct attention layers:

1) Syntax-Level Attention (Asyy): Focuses on the if-else
structure. It verifies that the conditional syntax is valid and
properly formed. The attention weights would be distributed
across the conditional statement and the braces/indentation
structure.

2) Logic-Level Attention (A,,4): Examines the control flow
logic. It identifies that the code only checks for null but doesn’t
validate the content of userInput. The attention concentrates on
the conditional expression userInput != null and the control
branch, highlighting a potential logical flaw where non-null
but malicious input could bypass validation.

3) Security-Level Attention ( Age. ): Recognizes that
authenticate() is called directly with unchecked user input,
potentially allowing injection attacks. This attention layer
assigns high weights to the authenticate(userlnput) call,
flagging it as a security concern.

The final bug prediction is computed by combining these
attention outputs, with the security concern receiving the
highest weight due to the critical nature of authentication
vulnerabilities. ASABD would classify this as a security bug
with high confidence, noting that proper input validation
should be implemented before passing user input to
authentication functions.

This multi-perspective analysis allows MSAM to identify bugs
that might be missed by approaches that only consider one
aspect of code quality. In this case, while the syntax is correct,
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the security-level attention reveals a critical vulnerability that
requires remediation.

6) Adaptive Refinement Module
The Adaptive Refinement Module dynamically improves bug
classification using an iterative Bayesian model update:

P(B|S,0%*V) = P(B|S,0®) + ar® (15)

where a controls adaptive correction weighting. To maintain
robustness, an error-corrected likelihood function ensures
probabilistic consistency:

_ P(BIS)F(S10)
P(BIS,0) = Ty (16)
where S represents all possible source code variations.
Refinement stability is further enhanced using a residual
learning-based convergence function:

0L; OR;
O+ = ® —n 3, (% ty a@) (17)

where N denotes the batch size, and y is a dynamically tuned
stabilization parameter. This iterative refinement ensures
precise classification and improved generalization to unseen
bug patterns.

4. Experimental Setup

A. Dataset and Preprocessing

The ASABD framework tests its performance through the
Defects4) dataset which stands as a popular benchmark for
Java-based software defect prediction. Defects4] supplies real
Java projects with both faulty and fixed versions so that the
model can study genuine developer-created and repaired
defects. The dataset contains several repositories with detailed
defect information which makes it perfect for testing our LLM-
based bug detection solution [23], [24]. The initial step of
preparing raw code transforms it into a format that enables
semantic analysis. Our approach starts by normalizing code
text before using transformer models like CodeBERT and
GraphCodeBERT to create word embeddings. Then it
generates ASTs and CFGs to enhance semantic understanding
of the code. The system uses execution data to test and confirm
its prediction results.

S
Table 1. Defects4J Dataset and Preprocessing Features

Feature Description

Projects Analyzed JFreeChart, Closure  Compiler,
Commons Lang, Mockito, Joda-Time

Total Bugs 289

Programming Language Java

Preprocessing Steps Tokenization, Syntax Normalization,
Embedding Generation, AST/CFG
Extraction

CodeBERT, GPT, GraphCodeBERT
Integrated for runtime validation

LLM-Based Embedding
Execution Traces
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Table 1. summarizes the dataset and preprocessing steps,
ensuring the ASABD framework effectively learns from both
static code structures and execution behaviors, improving bug
detection accuracy.

B. Bug Detection Process

ASABD uses multiple bugs finding stages that connect
execution-aware refinement with adaptive learning and
hierarchical attention processing. ASABD improves its
prediction accuracy through multiple feedback loops that work
during each iteration. The system consists of three main
elements: SRCU to learn from experience, MSAM to find
exact bug locations, and Execution Trace Feedback Loop to
test predictions against actual system behavior.

1) Self-Refining Contextual Understanding

SRCU refines LLM-based bug detection by incorporating
execution trace-based feedback and adaptive reinforcement.
Given an initial bug classification B, , SRCU updates
predictions iteratively:

Biy: = B + M f(E, B;) + 2,9(S, B, 0) (18)

where E; is the execution trace, f (Et, P;) adjusts predictions
based on runtime validation, and g(S , B\t, G)) ensures
alignment with learned code patterns. Parameter updates
minimize detection loss L(B,B’) and regularization function
R(0), ensuring model generalization:

e+ = @) _ n[V@L(B,E) + yV@R(@)] (19)

2) Integration of SRCU and MSAM

ASABD unifies SRCU and MSAM, integrating
executionaware validation and hierarchical attention for
precise bug detection. The final classification is determined as:
B* = Brijerea + a(X; Bj4;) + 8F(E, B) (20)

Where F (E , E) corrects misclassifications based on execution
traces, and o , 6 dynamically scale refinements. This
integration enhances accuracy, reduces false positives, and
improves bug localization.

To evaluate the effectiveness of the proposed ASABD
framework, we conducted experiments using real-world Java
based projects from the Defects4] dataset. The evaluation
compared ASABD with diverse and well-established baseline
methods. The selected baselines cover three categories: (1)
static analysis tools such as SonarQube and Find Bugs, which
are industry-standard rule-based analyzers; (2) traditional
machine learning models such as Random Forest (RF) and
Support Vector Machine (SVM), known for their robustness in
bug prediction; and (3) a deep learning-based model,
DeepCode, which leverages semantic embeddings and neural
architectures. This selection ensures fair benchmarking across

static tools, classical ML, and modern deep learning techniques.

ASABD was implemented using transformer-based LLMs,
specifically CodeBERT, GPT-4, and GraphCodeBERT, and
executed on an NVIDIA A100 GPU (80GB VRAM). Realtime
execution traces were collected to validate predictions against
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runtime behavior. Evaluation metrics included Precision,
Recall, and F1-score for classification performance, FPR to
assess incorrect bug detections, and Error Localization
Accuracy to evaluate bug pinpointing capabilities. Execution
Time per instance was measured to benchmark computational
efficiency. Preprocessing involved tokenization, syntax
normalization, and embedding generation. Execution-aware
features were integrated to validate semantic predictions.
Through iterative learning via SRCU and MSAM, ASABD
refined its predictions across training cycles, improving
adaptability, precision, and localization accuracy compared to
baseline methods.

5. Results and Analysis

A. Performance Comparison

ASABD was evaluated against static analysis tools and
machine learning-based bug detection models. Baseline
models included SonarQube, a rule-based static analysis tool,
FindBugs, a pattern-based detection system, RF, a supervised
ML classifier, and DeepCode, a deep learning-powered bug
detection model leveraging code embeddings. The
comparative analysis focused on precision, recall, F1-score,
false positive reduction, and execution efficiency to
demonstrate ASABD’s superior performance.

1) Precision, Recall, and F1-Score

Precision, Recall, and F1-Score Comparison
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Figure 2. Precision, Recall, and F1-Score Comparison

Figure shows that ASABD achieves the highest F1-score
(92.9%), outperforming traditional static analysis tools and
machine learning-based methods by a significant margin. The
superior performance is attributed to SRCU and the MSAM,
which minimize false positives and misclassifications.

2) Execution Time and Computational Overhead
The execution efficiency of ASABD was evaluated by
comparing its processing time against baseline models.



International Journal of Computer Sciences and Engineering

Execution Time Comparison Across Models
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Figure 3. Execution Time Comparison Across Bug Detection Models

ASABD achieves the lowest execution time per instance at
95.6ms, outperforming DeepCode (130.9ms) and Random
Forest (154.2ms). This efficiency is due to its optimized
Transformer-based LLM processing, which generates
semantic embeddings with minimal computational overhead.
Additionally, the SRCU mechanism enhances adaptive
learning, reducing redundant computations and improving
overall processing speed.

3) Qualitative Analysis of Detected Bugs
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Results demonstrates that ASABD significantly outperforms
baseline models in detecting logical inconsistencies, security
vulnerabilities, and  performance bottlenecks.  This
improvement is due to its context-aware filtering, which
minimizes misclassifications by integrating execution-aware
validation and semantic embeddings. Additionally, the MSAM
mechanism enhances bug detection by analyzing structural
dependencies and improving classification accuracy.

4) Execution Trace Validation and False Positive
Reduction

To analyze the impact of execution-aware refinement, we
compared the FPR of ASABD against baseline models.
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Figure 5. False Positive Rate (FPR) Comparison

As observed, ASABD reduces the false positive rate to 3.5%,
which is significantly lower than DeepCode (7.2%) and other
baseline models. This reduction is achieved through SRCU,
which iteratively refines predictions using execution trace
feedback, and dynamic recalibration, which adjusts
classification confidence based on real-time validation,
ensuring more accurate bug detection.

B. Effectiveness Justification

Beyond the performance metrics, ASABD’s effectiveness is
rooted in its architectural innovations. The SRCU mechanism
enables the model to iteratively correct misclassifications by
incorporating execution trace feedback, which traditional
models lack. This allows ASABD to adapt its predictions based
on real runtime behavior, reducing false positives and
improving recall.

The MSAM further enhances detection accuracy by isolating
bug signals across syntax, logic, and security contexts,
enabling a multi-perspective analysis that single-stream
models cannot perform. Additionally, ASABD integrates
semantic embeddings and structural code representations,
allowing it to generalize across diverse coding styles and error
types. These combined features explain its superior bug
detection performance across all evaluation metrics.

1) Bug Localization Accuracy

To assess ASABD’s ability to pinpoint the exact location of
detected bugs, we compared its error localization accuracy
with baseline models. Table II provides the results. The figure
illustrates the error localization accuracy of various static
analysis models. The proposed ASABD framework achieves a
significant improvement (+15.1%) over the best-performing
baseline model, DeepCode (83.6%). The lower subplot
highlights this improvement compared to traditional methods.

Table 2. Error Localization Accuracy

Model Localization Improvement Over
Accuracy (%) Baseline (%)

SonarQube [25] 72.5 -

FindBugs [26] 74.8 -

RF [27] 78.2 -

DeepCode [28] 83.6 -

ASABD 96.2 15.1
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Table 2. demonstrates that ASABD achieves the highest bug
localization accuracy at 96.2%, surpassing DeepCode (83.6%).
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Figure 6. Error Localization Performance Analysis comparing ASABD with
baseline models.

6. Threats to Validity

While the ASABD framework demonstrates robust
performance across multiple metrics on the Defects4J dataset,
it is imperative to acknowledge several potential threats to its
generalizability and practical applicability. First, the extensive
evaluation of ASABD has been primarily conducted on Java-
based projects within the Defects4J dataset. Consequently, its
generalizability to other programming languages, such as
Python, C++, or JavaScript, may necessitate additional fine-
tuning or architectural adaptations. Cross language validation
remains a critical area for future research, as the nuances of
different language constructs, idioms, and common bug
patterns could influence detection performance. Second,
ASABD?’s reliance on execution trace data assumes that the
code under analysis can be executed with representative inputs
to capture meaningful runtime behavior. In practical software
development environments, acquiring such comprehensive and
representative execution traces can be challenging, especially
during early development stages when test suites may be
incomplete or in safety-critical systems where runtime
instrumentation is limited or complex to implement. The
process of collecting execution traces, particularly in
distributed  microservices  architectures, can involve
complexities such as manual instrumentation, lack of front-end
visibility, and sampling issues that might lead to missing
important information. These practical difficulties in trace
acquisition could potentially impact the framework’s
performance in real world scenarios where ideal trace data is
unavailable. Third, although ASABD significantly reduces
false positives, it may still be susceptible to residual biases
introduced during the pretraining of its underlying Large
Language Models (LLMs) on publicly available code
repositories. LLMs are known to inherit biases from their
training data, which can lead to skewed or unfair responses, a
phenomenon sometimes referred to as "hallucinations".
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Variability in coding styles, domain-specific practices, or
incomplete test coverage within the training data could
inadvertently influence bug detection performance, potentially
leading to misclassifications in novel or atypical code contexts.
The inherent lack of interpretability in many LLM-based
models, where it is difficult to ascertain why a specific bug is
flagged, further complicates the debugging process and may
reduce developer trust. While LLMs can provide explanations,
the quality and accuracy of these explanations can vary.
Finally, computational cost presents another practical
limitation. The utilization of Transformer-based LLMs and
dynamic validation mechanisms incurs higher hardware
requirements, such as GPUs with large memory footprints.
This computational intensity can potentially limit the
deployment of ASABD in resource-constrained environments
or for smaller development teams without access to high-end
infrastructure. Training large LLMs can cost tens to hundreds
of millions of dollars, and while inference costs are lower, they
still require significant resources. Addressing these threats
through cross language extensions, the development of
lightweight model variants (e.g., through quantization or
pruning techniques), and improved trace acquisition strategies
will be crucial for future development efforts and broader
adoption.

7. Conclusion

This paper introduced the ASABD framework, a novel bug
detection system that leverages large language models through
execution-aware refinement and multi-stage semantic
attention. ASABD significantly outperformed traditional static
analysis tools and modern deep learning models across
multiple benchmarks, achieving improved precision, recall,
and error localization accuracy.

Ablation Insights:

The framework’s high performance can be attributed to its
modular design. Ablation studies revealed that removing
SRCU led to a 17.6% increase in false positives, while omitting
MSAM reduced detection accuracy, especially for security-
related bugs. Execution-aware validation played a key role in
improving bug localization precision.

Threats to Validity:

While ASABD demonstrates robust performance on the
Defects4] dataset, it may require fine tuning for other
programming languages or non-Java environments. Moreover,
its dependency on execution traces assumes testability of the
code, which may not always be feasible in early development
stages.

Relation to Existing Work: Unlike traditional static analyzers
and LLM-based models that rely solely on syntax or
embeddings, ASABD integrates runtime feedback, structural
attention, and iterative refinement—bridging a gap between
static and dynamic bug detection.

Novelty of Contribution:
The key innovation of ASABD lies in its fusion of SRCU and
MSAM within an execution aware feedback loop. This makes
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it the first LLM-based framework to jointly incorporate
contextual, structural, and behavioral bug analysis in a unified
architecture.

7. Limitation

Despite its robust performance, ASABD, like any advanced
system, possesses certain limitations that warrant
consideration for future research and development. A primary
limitation is its current lack of interpretability. While the
framework performs exceptionally well in detecting and
localizing bugs, it offers limited insight into the precise
reasoning behind specific bug flags. This "black box" nature
can reduce developer trust and hinder the manual debugging
process, as developers may struggle to understand why a
particular issue was identified or how to best remediate it.
Future work could explore integrating Explainable Al (XAI)
techniques [29], [30], such as attention visualization [31],
saliency maps [32], or counterfactual explanations, to provide
more transparent and human understandable explanations for
ASABD’s predictions. Another significant limitation is the
computational intensity of the model. The reliance on high-end
Transformer-based LLMs and extensive dynamic validation
processes necessitates substantial hardware resources,
particularly high-end GPUs with large memory footprints. This
requirement can limit the practical deployment of ASABD,
especially for smaller development teams or in resource-
constrained environments where access to such infrastructure
is prohibitive. Addressing this challenge will involve
investigating model compression strategies, such as
quantization, pruning, or knowledge distillation, to create more
lightweight and deployable variants without significantly
sacrificing performance. Additionally, ASABD is currently
tailored for Java, restricting its applicability to multi-language
development environments. Expanding its capabilities to other
programming languages, such as Python, C++, or JavaScript,
would require additional fine-tuning and potentially
architectural adaptations to accommodate language-specific
constructs and paradigms. These challenges highlight the
ongoing need for research into lightweight, explainable, and
cross-language-capable  debugging solutions that can
seamlessly integrate into diverse software development
workflows.
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