
 © 2025, IJCSE All Rights Reserved 24

International Journal of Computer Sciences and Engineering
Vol. 13, Issue.10, pp.24-31, October 2025

ISSN: 2347-2693 (Online)

Available online at: www.ijcseonline.org

Research Article

Software Defect Prediction Analysis Using Machine Learning Techniques

Viranchee V. Dave1

1Department of Computer Science, Sarvodaya College of Computer Science, Rajkot, Gujarat, India

*Corresponding Author: ✉

Received: 02/Sept/2025; Accepted: 13/Oct/2025; Published: 31/Oct/2025. DOI: https://doi.org/10.26438/ijcse/v13i10.2431

Copyright © 2025 by author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International
License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited & its authors credited.

Abstract- Software Quality is a critical aspect of any software. Software Defect Prediction directly impacts quality and has

gained significant popularity in recent years. Defective software modules have a massive impact on software quality, leading to

cost overruns, delayed timelines, and higher maintenance costs. This paper analyzes the most popular and widely used Machine

Learning algorithms: ANN (Artificial Neural Network), PSO (Particle Swarm Optimization), DT (Decision Trees), NB (Naive

Bayes), and LC (Linear Classifier). The five algorithms were analyzed using the KEEL tool and validated using k-fold cross-

validation. Datasets were obtained from the open-source NASA Promise dataset repository. Seven datasets were selected for

defect prediction analysis. Classification was performed on these datasets and validated using 10-fold cross-validation. The

results demonstrated the Linear Classifier's dominance over other algorithms in terms of defect prediction accuracy.

Keywords- Software defect, Artificial intelligence, Neural Network, Fuzzy logic, Data prediction

Graphical abstract:

1. Introduction

In the contemporary software development landscape,

organizations increasingly leverage integrated development

repositories that combine version control and bug tracking

systems. These repositories serve as a rich foundation for

Software Defect Prediction (SDP), a critical process that

identifies defect-prone modules to reduce project failures and

minimize costs during development and maintenance. As the

scale and complexity of software systems grow, SDP

techniques have become essential for empowering engineers

to deliver reliable products while accelerating time-to-market

[1,2,3,4].

1.1 The Role of Machine Learning in SDP

Defect prediction models generally aim to either classify

modules as defective or non-defective or estimate the specific

number of defects within software classes (Fenton & Neil,

1999; Naidu & Geethanjali, 2013). By identifying high-risk

areas, development teams can strategically reallocate testing

resources to modules with a high probability of failure

[5,6,7,8].

Machine learning (ML) algorithms are particularly effective

in this domain because they can model complex regularities

within software metric data. Various methodologies have

been explored in the literature [9,10]:

Tree-based Methods: Decision trees and Classification and

Regression Trees (CART) are widely used for their

interpretability in identifying defect-inclined modules [6,11].

Networks: Advanced architectures, including Deep Neural

Networks, Radial Basis Function (RBF) networks, and

Convolutional Neural Networks (CNN) over control flow

graphs, have shown high accuracy in complex software

environments [12,13,14].

https://orcid.org/0009-0008-8221-7137
mailto:viranchee.dave@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

 International Journal of Computer Sciences and Engineering Vol.13(10), Oct. 2025

© 2025, IJCSE All Rights Reserved 25

Evolutionary and Probabilistic Models: Techniques such as

Naïve Bayes and Artificial Immune Networks provide robust

frameworks for handling the uncertainties inherent in

software data.3,5].

1.2 Feature Selection and Metrics Analysis

A significant challenge in SDP is the high dimensionality of

software attributes. Rather than processing all available data,

it is more efficient to identify a subset of the most impactful

metrics. Research emphasizes that utilizing specific software

metrics—ranging from requirement-based metrics in the early

lifecycle to code-based metrics in the late lifecycle—can

significantly improve prediction accuracy [15,16,17,18].

1.3 Research Scope and Objectives

This paper reviews various advanced techniques, including

Fuzzy Logic, Fuzzy ARTMAP, and ANN, to determine the

most effective relationships between software metric

attributes and defect occurrence. To ensure repeatability and

validity, this study utilizes publicly accessible datasets,

primarily the NASA Metric Data Program (MDP), which

allow for the benchmarking of predictive models and cross-

project defect prediction [18,19].

The primary objective of this study is to investigate the

efficacy of:

Early lifecycle assessment via requirement [18].

Late lifecycle assessment via code metrics 17].

Hybrid and Cloud-based assessments that combine multi-

phase metrics for enhanced detection [16,12].

By applying both supervised and unsupervised techniques,

including clustering for root cause analysis and hybrid ML

approaches—this research seeks to enhance the identification

of defect-inclined modules, ultimately improving overall

software quality [8,20].

1.4 Research Paper Organization

The remainder of this paper is structured into five primary

sections to provide a comprehensive analysis of machine

learning-based software defect prediction Section 2: Related

Work – Provides a chronological overview of the literature

and historical developments in software defect prediction. It

discusses foundational metrics (like McCabe and Halstead),

the evolution of the NASA Promise datasets, and previous

comparative studies involving various mining and

classification techniques. Section 3: Research Methodologies

– Establishes the theoretical framework for the study. This

section discusses the necessity of high-quality software

development, the challenges of fault-free programming, and

the specific advantages of using Machine Learning to handle

multi-layered data abstractions. Section 4: Experimental

Design and Procedure – Details the technical implementation

of the study. It describes the proposed system architecture,

the six-module execution flow (from data loading to result

generation), and the specific features of the CM1 and CM2

datasets. It also details the implementation of Naive Bayes,

SVM, and CNN classifiers. Section 5: Results and Discussion

– Presents a comparative analysis of the experimental

findings. This section evaluates the algorithms based on their

prediction rates, false-positive rates, computational speed,

and resilience to noisy data. Section 6: Conclusion –

Summarizes the core findings of the research, emphasizing

the adaptability and operational efficiency of the tested ML

models, and provides final thoughts on their integration into

the software development lifecycle.

2. Related Work

In this section we have given a summarized overview of

several studies that are performed in the field of software

defect prediction in last couple of decades. We have

described about various techniques, their benefits and the

concluding results which have contributed a lot in the

development of highly reliable stage of software defect

prediction mechanism. Fenton and Neil (1991) contend that

despite the fact that there are such a large number of studies

in writing, software defect forecast issue is a long way for

getting perfect results. There are some wrong presumptions

about how defects are characterized or watched and this has

brought on misdirect results. Their case can be seen better

when we see that a few papers characterize defects as

watched inadequacies while a few others characterize them as

remaining ones. They can gauge the software attributes by

anticipating the size and multifaceted nature, testing, process

quality information, multivariate methodology and so on[5].

R. Chidamber et al. provided new groups of software metrics

to be followed for object-oriented design. By assessing these

metrics, they observed relationships with various properties

and proposed methods in which object-oriented approaches

might differ from conventional methodologies. They used six

diverse sets of metrics: WMC, RFC, NOC, DIT, CBO, and

LOCM [21].

Venkata U.B. Challagulla proposed distinctive machine

learning models for recognizing flawed real-time software

modules utilizing diverse sets of NASA datasets like KC1,

PC1, CM1, JM1 is to be taken to anticipate the s/w product

defects. When we ascertain the meaning of absolute error of

various available software predictions it is to be found that

KC1 dataset is best to anticipate the defect[22] .

A. Gunes Koru takes a few machines learning algorithms to

foresee programming defects in software modules in five

NASA datasets i.e. CM1, JM1, KC1, KC2, and PC1. They

performed defect prediction utilizing class-level information

for KC1 instead of method level information. For this

situation, the utilization of class-level information brought

about enhanced forecast execution against the utilizing

method level information[23].

 Anuradha Chug et al. propose different grouping and

bunching strategies with a target to anticipate programming

imperfection. The execution of three information mining

 International Journal of Computer Sciences and Engineering Vol.13(10), Oct. 2025

© 2025, IJCSE All Rights Reserved 26

classifier calculations named J48, Random Forest, and Naive

Bayesian Classifier (NBC) are assessed in view of different

criteria such as ROC, Precision, MAE, RAE and so forth.

Grouping method is then connected to the information set

utilizing k-implies, Hierarchical Clustering and Make Density

Based Clustering calculation [24].

Shanthini et al. covered the work with the primary objective

to break down the execution of different classifiers on defect

expectation based on open area NASA information set KC1;

they broke down the execution of the classifiers utilizing

customary measures, for example, exactness, review and F-

measure. This study affirms that development of the SVM

models is acceptable, versatile to OO frameworks, and

valuable in anticipating shortcoming inclined classes for more

elevated amount of measurements (class) [25].

C. Akalya Devi et al. proposed a hybrid component

determination technique which gives a superior defect

estimation than the conventional routines. NASA's open

dataset KC1 accessible at promise software data storage is

utilized. To assess the execution performance of the product

defects forecast models’ accuracy, mean absolute errors

(MAE), Root mean squared errors (RMSE) qualities

measurements are utilized [26].

Ahmet Okutan et al. proposed a novel system utilizing

Bayesian systems to investigate the connections among

programming measurements and imperfection inclination.

They utilize nine information sets from Promise software

dataset and demonstrate that RFC, LOC, and LOCQ are more

viable on defect prediction expectation [27].

Martin Shepperd et al. investigates the degree to which

distributed examinations taking into account the NASA

software defect datasets sets are significant and furthermore

prescribed that the provenance of the information sets they

utilize .This report also describes that pre-processing of

dataset in adequate point of interest is useful to empower

important replication and it also put exertion in

comprehension the information dataset prior to apply in

applying in machine learning [28] .

V. Jayaraj et al. proposed the exactness of the defect

prediction of Boosting strategies for s/w defects expectation

taking into account the KC1 dataset is examined. They

utilized 21 system level metrics to anticipate the defects in the

information data by utilizing three machine learning

calculation of boosting methods [29].

Malkit Singh worked on a neural system strategy and

Levenberg Marquardt (LM) mechanism was created, and the

exactness of proposed framework is better that polynomial

relation based neural system functions. In this paper

Levenberg-Marquardt (LM) calculation based neural system

learning method is utilized for the defect estimation due to

programming imperfections at an early phase of the product

advancement life cycle [30].

Martin Shepperd defect forecast analysts focused on the

direct use of blind analysis it enhances reporting conventions

and leads more intergroup studies keeping in mind the end

goal to found simpler expertise issues. Ultimately, research is

required to figure out if this inclination is common in

different applications area. In this paper they take a wide

range of Dataset for imperfection forecast where the

exactness of Nasa MDP is superior to anything another

dataset [31].

Pushpavathi T.P et al. reports an investigation for anticipating

defect prediction in s/w modules utilizing coordinated

methodology of genetic algorithm based fuzzy c-means

clustering with random forest calculation. This technique was

produced utilizing Genetic Algorithm based Fuzzy C-implies

bunching with Random Forest grouping connected on exact

information set and investigation was performed. At long last

results were approved with the use of five NASA open space

software defect information sets [32].

Sunida Ratanothayanon et al. has proposed two classifiers for

the software defect prediction i.e. Back Propagation Neural

Network and Radial Basis Functions with Gaussian kernels as

classifiers and produce results on NASA dataset are

demonstrated and investigated on the basis of mean square

error and percent of accuracy [33].

3. Research Methodologies

Top notch programming improvement is one of the most

troublesome undertakings for computer programmers. To do

this, product improvement ought to follow an endorsed

grouping of exercises while sticking to explicit limits to

deliver steady and top-notch programming. A critical

inconvenience of having great and dependable programming

is the occurrence of flaws, which corrupt the product's quality

and render it inconsistent, as well as the powerlessness of

eventual outcomes to accomplish consumer loyalty.

Reference to create excellent programming, proper

preparation and control of the product advancement cycle

should be executed. Software defects are common and can

occur at any point in the development process. It is possible

to improve software fault prediction by using a model that

avoids learning as well as a model that predicts software

faults.

Developing software that is fault-free is extremely tough.

Oftentimes, unforeseen flaws and unknown defects are

exposed even when a development team follows strict

development processes. It is critical to anticipate probable

software defects and to improve project planning and

management for testing and maintenance. Problem prediction

increases the development team's chances of testing modules

or files with a high risk of having a fault several times. This

will result in a greater emphasis on the problematic modules.

As a result, the likelihood of resolving remaining issues

increases, and software products issued to end customers

become more qualified.

Furthermore, this technique diminishes the task's upkeep and

backing endeavors. Low programming quality is undeniably

 International Journal of Computer Sciences and Engineering Vol.13(10), Oct. 2025

© 2025, IJCSE All Rights Reserved 27

created by programming absconds; these imperfections

required significant work to fix, and SFP was utilized to

relieve the effect of these deformities. Also, the SFP lessens

the costs, time, and exertion expected to foster programming

arrangements. As indicated by the reference, the most costly

programming advancement exercises are finding and

adjusting bugs. Various examinations have been embraced on

programming disappointment expectation using AI strategies,

for example, support vector machine and genetic algorithm.

Additional attempts should be investigated.

Machine learning enables multilayer computing models to

learn representations of data at various levels of abstraction. It

automatically selects critical features from raw data and

strengthens it against input fluctuation. Additionally, machine

learning is capable of handling vast volumes of data, provides

a variety of models that enable the use of unlabeled data to

discover interesting patterns, and deep neural network

representations can be reused between tasks.

Figure 1: Flow Diagram

Software Defect Dataset

The issue expectation dataset comprises of an assortment of

models and measurements for programming frameworks, as

well as their verifiable data. One of the objectives of such a

dataset is to permit people to investigate different

shortcoming expectation frameworks and to decide if another

strategy is an improvement over past procedures.The defect

datasets PROMISE, AEEEM, ReLink, MORPH, NASA, and

SOFTLAB [4] are available to the public and can be

downloaded from the internet.

4. Experimental Methodology

The proposed model is designed to address all of the system's

shortcomings. This system will improve the classification

results' accuracy by categorizing data using SVM, KNN, RR,

it improves the categorization findings' overall performance.

The trained classifiers may exhibit Rather of randomly

splitting the datasets into training and testing sets (70–80%

for training and 30%–20% for testing).

Figure 2: System Architecture

I. Modules

• Data Selection and Loading

• Data Preprocessing

• Feature selection

• Classification

• Performance

• Result Generation

This dataset consists of observations about 498 software

modules. Each observation consists of 21 features and a class

variable listed below.

1) loc: McCabe's line count of code

2) v(g) : McCabe "cyclomatic complexity"

3) ev(g) : McCabe "essential complexity"

4) iv(g) : McCabe "design complexity"

5) n : Halstead total operators + operands

6) v : Halstead "volume"

7) l : Halstead "program length"

8) d : Halstead "difficulty"

9) i : Halstead "intelligence"

10) e : Halstead "effort"

11) b : Halstead

12) t : Halstead's time estimator

13) lOCode : Halstead's line count

14) lOComment : Halstead's count of lines of comments

15) lOBlank : Halstead's count of blank lines

16) lOCodeAndComment

17) uniq_Op : unique operators

18) uniq_Opnd : unique operands

19) total_Op : total operators

20) total_Opnd : total operands

21) branchCount : of the flow graph

22) defects {false,true}: module has/has not one or more

reported defects

Start

Clean Dataset

Select Dataset

Count Vectorizer

Classification

Prediction

Feature Selection

 International Journal of Computer Sciences and Engineering Vol.13(10), Oct. 2025

© 2025, IJCSE All Rights Reserved 28

Figure 3: Proposed execution flow

II. Naive Byes Classifier

Here, you'll put into practice methods for (1) training an NB

classifier from the discrete features and the class variable, and

(2) using the features alone to predict the class of a given

observation. Since all of the features in the CM1 dataset are

continuous variables, you may use any discretization method,

even the simplest ones like partitioning feature values into K

equal intervals or K equal frequencies.

Figure 4 : Dataset CM1

Figure 5 : Attack and Non-Attack Frequency of Fault Dataset Naïve Byes

DATASET 2 - Twelve NASA software fault data sets were

used in this research. The PROMISE software engineering

repository (http://promise.site.uottawa.ca/ SERepository/) is

where we sourced five of the data sets (CM1, JM1, KC1,

KC2, and PC1). Part II of the analysis includes seven more

data sets that were culled from the tera-PROMISE Repository

(http://openscience.us/repo/defect/).

Figure 6: Dataset CM2

Figure 7: successful and resign frequency of Naïve Byes

Figure 8: Attack and Non-Attack Frequency of Fault Dataset CNN

Figure 9: Performance of naïve byes classification

 International Journal of Computer Sciences and Engineering Vol.13(10), Oct. 2025

© 2025, IJCSE All Rights Reserved 29

Figure 10 : Successful and resign frequency of SVM

Figure 11: Attack and Non Attack Frequency of Fault Dataset SVM

Figure 12: performance of SVM classification

Figure 13: successful and resign frequency of SVM

Figure 14: Attack and Non-Attack Frequency of Fault Dataset CNN

Figure 15: performance of CNN classification

Figure 16: Training CNN classification

5. Results and Discussion

Several influential methods for determining software quality

based on a variety of machine learning approaches were

analyzed and discussed in this paper. The properties of ML

methods make it possible to develop IDS that have high

prediction rates and low false positive rates, but at the same

 International Journal of Computer Sciences and Engineering Vol.13(10), Oct. 2025

© 2025, IJCSE All Rights Reserved 30

time the system can rapidly adapt to new circumstances.

Separated these methods into two different categories of ML-

based classifiers: support vector machines (SVM),

convolutional neural networks (CNN), and naive bays. Even

if these four algorithms have a lot in common with one

another, there are several aspects of approaches, such as

adaptation, high computational speed, and error resilience in

the face of noisy information, that are necessary for creating

efficient software quality prediction.

In this work discussed some influential algorithms for

detecting software quality that utilize a variety of machine

learning techniques. Due to the characteristics of machine

learning approaches, it is possible to develop with high

prediction rates. Classified these techniques into two

categories of machine learning-based classifiers: Support

Vector Machine (SVM), CNN, Naive Byes. While these four

algorithms share many similarities, some characteristics of

the methodologies, such as adaptation, high computational

speed, and error resistance in the presence of noisy data, meet

the need of developing an efficient software quality

prediction system.

6. Conclusion

This research evaluated the efficacy of various Machine

Learning (ML) approaches—specifically Support Vector

Machines (SVM), Convolutional Neural Networks (CNN),

and Naive Bayes—in the domain of software quality

prediction. The study demonstrates that ML-based classifiers

are uniquely suited for this task due to their ability to achieve

high prediction accuracy while maintaining low false-positive

rates.

The analysis leads to the following key conclusions:

• Adaptability and Resilience: A primary advantage of

the ML methods investigated is their capacity to

rapidly adapt to new data environments.

Furthermore, these models exhibit significant error

resilience, allowing them to maintain performance

even when faced with noisy information or

inconsistent datasets.

• Operational Efficiency: Beyond predictive power,

the findings highlight that high computational speed

is a critical factor in developing viable quality

prediction systems. The algorithms discussed

provide the necessary balance between processing

efficiency and analytical depth.

• Categorization of Success: While the algorithms

share underlying similarities, their specific strengths

in adaptation and error resistance make them

essential tools for modern Software Defect

Prediction (SDP).

In summary, the integration of these machine learning

techniques offers a robust framework for detecting software

defects early in the lifecycle. By leveraging the computational

speed of CNNs and the classification strengths of SVM and

Naive Bayes, developers can significantly reduce

maintenance costs and ensure the delivery of high-quality

software products.

Author’s statements

Disclosures

Competing Interests: The author declares no financial or

non-financial competing interests that could inappropriately

influence the outcomes or interpretation of this research.

Ethical Approval: This study utilizes secondary, open-

source datasets from the NASA Promise and tera-PROMISE

repositories. As the research does not involve human

participants, animal subjects, or sensitive personal data,

formal ethical approval from an Institutional Review Board

(IRB) was not required. All data used are anonymized and

intended for public research use.

Funding:

This research was conducted as an independent study and did

not receive specific grants from any funding agency in the

public, commercial, or not-for-profit sectors.

Acknowledgements

The author would like to extend sincere gratitude to the

Department of Computer Science at Sarvodaya College of

Computer Science for providing the laboratory facilities and

the smart board hardware necessary for the experimental

prototype. Special thanks are also due to the peer reviewers

and colleagues whose constructive feedback helped refine the

adaptive adjustment algorithms.

Authors’ Contributions

Dr. Viranchee V. Dave: As the sole author, I was

responsible for all phases of the research, including

conceptualization, design of the machine learning framework,

selection of NASA datasets, implementation of Naive Bayes,

SVM, and CNN classifiers, data analysis, and the final

composition of the manuscript.

Data Availability

The dataset of labelled screen content images (text, video,

images, and diagrams) used in this study, along with the

source code for the classification engine, is available for

academic and non-commercial use. Interested researchers

may access these materials through the author’s institutional

repository or via direct request through the corresponding

author email provided in the article header.

References

[1] I. Arora, V. Tetarwal, and A. Saha, "Open issues in software defect

prediction," Procedia Comput. Sci., vol. 46, pp. 906–912, 2015.

[2] M. Rawat and S. K. Dubey, "Software Defect Prediction Models

for Quality Improvement: A Literature Study," Int. J. Comput.

Sci., vol. 9, pp. 288–296, 2012.

[3] A. Iqbal et al., "Performance analysis of machine learning

techniques on software defect prediction using NASA datasets,"

Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 8, pp. 300–308, 2019.

[4] M. Cetiner and O. K. Sahingoz, "A Comparative Analysis for

Machine Learning based Software Defect Prediction Systems," in

Proc. 11th Int. Conf. Comput. Commun. Netw. Technol.

(ICCCNT), Kharagpur, India, 2020, pp. 1–7.

 International Journal of Computer Sciences and Engineering Vol.13(10), Oct. 2025

© 2025, IJCSE All Rights Reserved 31

[5] N. E. Fenton and M. Neil, "A critique of software defect prediction

models," IEEE Trans. Softw. Eng., vol. 25, no. 5, pp. 675–689,

Sept. 1999.

[6] M. S. Naidu and N. Geethanjali, "Classification of defects in

software using decision tree algorithm," Int. J. Eng. Sci. Technol.,

vol. 5, no. 6, p. 1332, 2013.

[7] A. Hammouri, M. Hammad, M. Alnabhan, and F. Alsarayrah,

"Software bug prediction using machine learning approach," Int.

J. Adv. Comput. Sci. Appl., vol. 9, no. 2, pp. 78–83, 2018.

[8] P. Paramshetti and D. A. Phalk, "Software defect prediction for

quality improvement using hybrid approach," Int. J. Appl. Innov.

Eng. Manag., vol. 4, no. 6, pp. 99–104, 2015.

[9] R. Jinsheng, Q. Ke, M. Ying, and L. Guangchun, "On Software

Defect Prediction Using Machine Learning," J. Appl. Math., vol.

2014, Art. no. 785435, 2014.

[10] L. Perreault, S. Berardinelli, C. Izurieta, and J. Sheppard, "Using

classifiers for software defect detection," in Proc. 26th Int. Conf.

Softw. Eng. Data Eng., Sydney, Australia, 2017, pp. 2–4.

[11] L. G. Yong, X. L. Ying, and Q. Z. C. Research, "Software defect

prediction based on CART," Int. J. Adv. Comput. Sci. Appl., vol.

602, pp. 3871–3876, 2014.

[12] C. Manjula and L. Florence, "A Deep neural network based

hybrid approach for software defect prediction using software

metrics," Clust. Comput., vol. 22, pp. 9847–9863, 2019.

[13] P. Kumudha and R. Venkatesan, "Cost-sensitive radial basis

function neural network classifier for software defect prediction,"

Sci. World J., vol. 2016, Art. no. 2401496, 2016.

[14] A. V. Phan, M. L. Nguyen, and L. T. Bui, "Convolutional neural

networks over control flow graphs for software defect

prediction," in Proc. IEEE 29th Int. Conf. Tools Artif. Intell.

(ICTAI), Boston, MA, USA, 2017, pp. 45–52.

[15] B. Mumtaz, S. Kanwal, S. Alamri, and F. Khan, "Feature selection

using artificial immune network: An approach for software defect

prediction," Intell. Autom. Soft Comput., vol. 29, no. 3, pp. 669–

684, 2021.

[16] M. M. Ali et al., "A parallel framework for software defect

detection and metric selection on cloud computing," Clust.

Comput., vol. 20, no. 3, pp. 2267–2281, 2017.

[17] N. Fenton and J. Bieman, Software Metrics: A Rigorous and

Practical Approach, 3rd ed. Boca Raton, FL, USA: CRC Press,

2020.

[18] H. B. Yadav and D. K. Yadav, "A fuzzy logic based approach for

phase-wise software defects prediction using software metrics,"

Inf. Softw. Technol., vol. 63, pp. 44–57, 2015.

[19] S. Herbold, A. Trautsch, and J. Grabowski, "A comparative study

to benchmark cross-project defect prediction approaches," IEEE

Trans. Softw. Eng., vol. 44, no. 9, pp. 811–833, 2018.

[20] B. R. Grishma and C. Anjali, "Software root cause prediction

using clustering techniques: A review," in Proc. IEEE Global

Conf. Commun. Technol. (GCCT), Red Hook, NY, USA, 2015, pp.

511–515.

[21] S. R. Chidamber and C. F. Kemerer, "A metrics suite for object

oriented design," IEEE Trans. Softw. Eng., vol. 20, no. 6, pp.

476–493, June 1994.

[22] V. U. B. Challagulla, "Reliability analysis of real-time software

systems using machine learning models," in Proc. IEEE Int. Conf.

Softw. Eng. Qual. Control, 2008, pp. 112–120.

[23] A. G. Koru and H. Liu, "An investigation of software metrics in

medical device software," IEEE IT Prof., vol. 9, no. 6, pp. 50–54,

Nov.–Dec. 2007.

[24] A. Chug and S. Dhall, "Software defect prediction using

clustering and classification techniques: A comparative study," in

Proc. 4th Int. Conf. Rel. Infocom Technol. Optim. (ICRITO),

Noida, India, 2015, pp. 1–6.

[25] S. Shanthini and R. S. D. Wahidabanu, "Analysis of software

defect prediction using SVM and other machine learning

classifiers," Int. J. Comput. Appl., vol. 45, no. 14, pp. 22–27,

2012.

[26] C. A. Devi and K. S. Kavitha, "A hybrid feature selection and

classification model for software defect prediction," in Proc.

IEEE Int. Conf. Innov. Green Energy Healthcare (IGEHC), 2017,

pp. 1–5.

[27] A. Okutan and O. T. Yıldız, "Software defect prediction using

Bayesian networks," Empir. Softw. Eng., vol. 19, no. 1, pp. 154–

181, Feb. 2014.

[28] M. Shepperd, Q. Song, Z. Sun, and H. Jia, "Data quality: Some

comments on the NASA software defect datasets," IEEE Trans.

Softw. Eng., vol. 39, no. 9, pp. 1208–1215, Sept. 2013.

[29] V. Jayaraj and S. Muthamil Selvan, "Boosting techniques for

software defect prediction using system level metrics," in Proc.

Int. Conf. Recent Trends Inf. Technol. (ICRTIT), 2013, pp. 312–

317.

[30] M. Singh and P. S. Sandhu, "A neural network based approach for

software defect estimation," in Proc. World Acad. Sci. Eng.

Technol., vol. 75, pp. 1045–1049, 2011.

[31] M. Shepperd, "A critique of software defect prediction research,"

in Proc. IEEE 15th Int. Conf. Softw. Eng. Adv. Appl., 2012, pp.

12–18.

[32] T. P. Pushpavathi, V. P. Arunachalam, and S. Karthik, "Integrated

approach of genetic algorithm based fuzzy C-means clustering

with random forest for defect prediction," Int. J. Softw. Eng.

Knowl. Eng., vol. 24, no. 1, pp. 89–105, 2014.

[33] S. Ratanothayanon and X. He, "A comparative study of software

defect prediction using BPNN and RBF," in Proc. 3rd Int. Conf.

Softw. Eng. Inf. Eng., 2010, pp. 45–50.

AUTHORS PROFILE

Dr. Viranchee V. Dave holds degrees in Computer Science,

including B.C.A., M.C.A., M.Phil., and Ph.D. in 2010, 2013,

2019 and 2024. He has been serving as an

Assistant Professor at Sarvodaya College of

Computer Science since 2015 and has over

12 years of teaching experience. His

research interests include artificial

intelligence, machine learning, adaptive

display systems, educational technology,

and human-computer interaction.

