International Journal of Computer Sciences and Engineering

Vol. 13, Issue.10, pp.24-31, October 2025
ISSN: 2347-2693 (Online)
Available online at: www.ijcseonline.org

¢
AJCSE

ISSN: 2347-2693 (E)

Research Article
Software Defect Prediction Analysis Using Machine Learning Techniques
Viranchee V. Dave!

'Department of Computer Science, Sarvodaya College of Computer Science, Rajkot, Gujarat, India

*Corresponding Author:

Received: 02/Sept/2025; Accepted: 13/Oct/2025; Published: 31/0ct/2025. DOI: https://doi.org/10.26438/ijcse/v13110.2431

Copyright © 2025 by author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International
@l | icense which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited & its authors credited.

Abstract- Software Quality is a critical aspect of any software. Software Defect Prediction directly impacts quality and has
gained significant popularity in recent years. Defective software modules have a massive impact on software quality, leading to
cost overruns, delayed timelines, and higher maintenance costs. This paper analyzes the most popular and widely used Machine
Learning algorithms: ANN (Artificial Neural Network), PSO (Particle Swarm Optimization), DT (Decision Trees), NB (Naive
Bayes), and LC (Linear Classifier). The five algorithms were analyzed using the KEEL tool and validated using k-fold cross-
validation. Datasets were obtained from the open-source NASA Promise dataset repository. Seven datasets were selected for
defect prediction analysis. Classification was performed on these datasets and validated using 10-fold cross-validation. The

results demonstrated the Linear Classifier's dominance over other algorithms in terms of defect prediction accuracy.

Keywords- Software defect, Artificial intelligence, Neural Network, Fuzzy logic, Data prediction

Graphical abstract:

104dd) Improved

INPUT DATA METHODLOGY & ALGORITHMS RESULTS & IMPACT
~ (’7\) _ | LCDominance:
Ly (ﬁ«sn Promise) d § | Highest Accurac
. ., (Datasets & ANN 3
N—) (Neural Network)
Ty R y
= < :
&

KEEL E lasfif N! PSO D NB Lc

Q 7 Datsets Selected 2N kfold I* o

\ Cress Valdat ‘N

Cost

1. Introduction

In the contemporary software development landscape,
organizations increasingly leverage integrated development
repositories that combine version control and bug tracking
systems. These repositories serve as a rich foundation for
Software Defect Prediction (SDP), a critical process that
identifies defect-prone modules to reduce project failures and
minimize costs during development and maintenance. As the
scale and complexity of software systems grow, SDP
techniques have become essential for empowering engineers
to deliver reliable products while accelerating time-to-market
[1,2,3,4].

© 2025, IJCSE All Rights Reserved

1.1 The Role of Machine Learning in SDP

Defect prediction models generally aim to either classify
modules as defective or non-defective or estimate the specific
number of defects within software classes (Fenton & Neil,
1999; Naidu & Geethanjali, 2013). By identifying high-risk
areas, development teams can strategically reallocate testing
resources to modules with a high probability of failure
[5.,6,7,8].

Machine learning (ML) algorithms are particularly effective
in this domain because they can model complex regularities
within software metric data. Various methodologies have
been explored in the literature [9,10]:

Tree-based Methods: Decision trees and Classification and
Regression Trees (CART) are widely used for their
interpretability in identifying defect-inclined modules [6,11].

Networks: Advanced architectures, including Deep Neural
Networks, Radial Basis Function (RBF) networks, and
Convolutional Neural Networks (CNN) over control flow
graphs, have shown high accuracy in complex software
environments [12,13,14].

24

https://orcid.org/0009-0008-8221-7137
mailto:viranchee.dave@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

International Journal of Computer Sciences and Engineering

Evolutionary and Probabilistic Models: Techniques such as
Naive Bayes and Artificial Immune Networks provide robust
frameworks for handling the uncertainties inherent in
software data.3,5].

1.2 Feature Selection and Metrics Analysis

A significant challenge in SDP is the high dimensionality of
software attributes. Rather than processing all available data,
it is more efficient to identify a subset of the most impactful
metrics. Research emphasizes that utilizing specific software
metrics—ranging from requirement-based metrics in the early
lifecycle to code-based metrics in the late lifecycle—can
significantly improve prediction accuracy [15,16,17,18].

1.3 Research Scope and Objectives

This paper reviews various advanced techniques, including
Fuzzy Logic, Fuzzy ARTMAP, and ANN, to determine the
most effective relationships between software metric
attributes and defect occurrence. To ensure repeatability and
validity, this study utilizes publicly accessible datasets,
primarily the NASA Metric Data Program (MDP), which
allow for the benchmarking of predictive models and cross-
project defect prediction [18,19].

The primary objective of this study is to investigate the
efficacy of:

Early lifecycle assessment via requirement [18].

Late lifecycle assessment via code metrics 17].

Hybrid and Cloud-based assessments that combine multi-
phase metrics for enhanced detection [16,12].

By applying both supervised and unsupervised techniques,
including clustering for root cause analysis and hybrid ML
approaches—this research seeks to enhance the identification
of defect-inclined modules, ultimately improving overall
software quality [8,20].

1.4 Research Paper Organization

The remainder of this paper is structured into five primary
sections to provide a comprehensive analysis of machine
learning-based software defect prediction Section 2: Related
Work — Provides a chronological overview of the literature
and historical developments in software defect prediction. It
discusses foundational metrics (like McCabe and Halstead),
the evolution of the NASA Promise datasets, and previous
comparative studies involving various mining and
classification techniques. Section 3: Research Methodologies
— Establishes the theoretical framework for the study. This
section discusses the necessity of high-quality software
development, the challenges of fault-free programming, and
the specific advantages of using Machine Learning to handle
multi-layered data abstractions. Section 4: Experimental
Design and Procedure — Details the technical implementation
of the study. It describes the proposed system architecture,
the six-module execution flow (from data loading to result

© 2025, IJCSE All Rights Reserved

Vol.13(10), Oct. 2025

generation), and the specific features of the CM1 and CM2
datasets. It also details the implementation of Naive Bayes,
SVM, and CNN classifiers. Section 5: Results and Discussion
— Presents a comparative analysis of the experimental
findings. This section evaluates the algorithms based on their
prediction rates, false-positive rates, computational speed,
and resilience to noisy data. Section 6: Conclusion —
Summarizes the core findings of the research, emphasizing
the adaptability and operational efficiency of the tested ML
models, and provides final thoughts on their integration into
the software development lifecycle.

2. Related Work

In this section we have given a summarized overview of
several studies that are performed in the field of software
defect prediction in last couple of decades. We have
described about various techniques, their benefits and the
concluding results which have contributed a lot in the
development of highly reliable stage of software defect
prediction mechanism. Fenton and Neil (1991) contend that
despite the fact that there are such a large number of studies
in writing, software defect forecast issue is a long way for
getting perfect results. There are some wrong presumptions
about how defects are characterized or watched and this has
brought on misdirect results. Their case can be seen better
when we see that a few papers characterize defects as
watched inadequacies while a few others characterize them as
remaining ones. They can gauge the software attributes by
anticipating the size and multifaceted nature, testing, process
quality information, multivariate methodology and so on[5].

R. Chidamber et al. provided new groups of software metrics
to be followed for object-oriented design. By assessing these
metrics, they observed relationships with various properties
and proposed methods in which object-oriented approaches
might differ from conventional methodologies. They used six
diverse sets of metrics: WMC, RFC, NOC, DIT, CBO, and
LOCM [21].

Venkata U.B. Challagulla proposed distinctive machine
learning models for recognizing flawed real-time software
modules utilizing diverse sets of NASA datasets like KCI,
PC1, CM1, JMI1 is to be taken to anticipate the s/w product
defects. When we ascertain the meaning of absolute error of
various available software predictions it is to be found that
KCI1 dataset is best to anticipate the defect[22] .

A. Gunes Koru takes a few machines learning algorithms to
foresee programming defects in software modules in five
NASA datasets i.e. CM1, JM1, KC1, KC2, and PC1. They
performed defect prediction utilizing class-level information
for KC1 instead of method level information. For this
situation, the utilization of class-level information brought
about enhanced forecast execution against the utilizing
method level information[23].

Anuradha Chug et al. propose different grouping and

bunching strategies with a target to anticipate programming
imperfection. The execution of three information mining

25

International Journal of Computer Sciences and Engineering

classifier calculations named J48, Random Forest, and Naive
Bayesian Classifier (NBC) are assessed in view of different
criteria such as ROC, Precision, MAE, RAE and so forth.
Grouping method is then connected to the information set
utilizing k-implies, Hierarchical Clustering and Make Density
Based Clustering calculation [24].

Shanthini et al. covered the work with the primary objective
to break down the execution of different classifiers on defect
expectation based on open area NASA information set KC1;
they broke down the execution of the classifiers utilizing
customary measures, for example, exactness, review and F-
measure. This study affirms that development of the SVM
models is acceptable, versatile to OO frameworks, and
valuable in anticipating shortcoming inclined classes for more
elevated amount of measurements (class) [25].

C. Akalya Devi et al. proposed a hybrid component
determination technique which gives a superior defect
estimation than the conventional routines. NASA's open
dataset KC1 accessible at promise software data storage is
utilized. To assess the execution performance of the product
defects forecast models’ accuracy, mean absolute errors
(MAE), Root mean squared errors (RMSE) qualities
measurements are utilized [26].

Ahmet Okutan et al. proposed a novel system utilizing
Bayesian systems to investigate the connections among
programming measurements and imperfection inclination.
They utilize nine information sets from Promise software
dataset and demonstrate that RFC, LOC, and LOCQ are more
viable on defect prediction expectation [27].

Martin Shepperd et al. investigates the degree to which
distributed examinations taking into account the NASA
software defect datasets sets are significant and furthermore
prescribed that the provenance of the information sets they
utilize .This report also describes that pre-processing of
dataset in adequate point of interest is useful to empower
important replication and it also put exertion in
comprehension the information dataset prior to apply in
applying in machine learning [28] .

V. Jayaraj et al. proposed the exactness of the defect
prediction of Boosting strategies for s/w defects expectation
taking into account the KC1 dataset is examined. They
utilized 21 system level metrics to anticipate the defects in the
information data by utilizing three machine learning
calculation of boosting methods [29].

Malkit Singh worked on a neural system strategy and
Levenberg Marquardt (LM) mechanism was created, and the
exactness of proposed framework is better that polynomial
relation based neural system functions. In this paper
Levenberg-Marquardt (LM) calculation based neural system
learning method is utilized for the defect estimation due to
programming imperfections at an early phase of the product
advancement life cycle [30].

© 2025, IJCSE All Rights Reserved

Vol.13(10), Oct. 2025

Martin Shepperd defect forecast analysts focused on the
direct use of blind analysis it enhances reporting conventions
and leads more intergroup studies keeping in mind the end
goal to found simpler expertise issues. Ultimately, research is
required to figure out if this inclination is common in
different applications area. In this paper they take a wide
range of Dataset for imperfection forecast where the
exactness of Nasa MDP is superior to anything another
dataset [31].

Pushpavathi T.P et al. reports an investigation for anticipating
defect prediction in s/w modules utilizing coordinated
methodology of genetic algorithm based fuzzy c-means
clustering with random forest calculation. This technique was
produced utilizing Genetic Algorithm based Fuzzy C-implies
bunching with Random Forest grouping connected on exact
information set and investigation was performed. At long last
results were approved with the use of five NASA open space
software defect information sets [32].

Sunida Ratanothayanon et al. has proposed two classifiers for
the software defect prediction i.e. Back Propagation Neural
Network and Radial Basis Functions with Gaussian kernels as
classifiers and produce results on NASA dataset are
demonstrated and investigated on the basis of mean square
error and percent of accuracy [33].

3. Research Methodologies

Top notch programming improvement is one of the most
troublesome undertakings for computer programmers. To do
this, product improvement ought to follow an endorsed
grouping of exercises while sticking to explicit limits to
deliver steady and top-notch programming. A critical
inconvenience of having great and dependable programming
is the occurrence of flaws, which corrupt the product's quality
and render it inconsistent, as well as the powerlessness of
eventual outcomes to accomplish consumer loyalty.
Reference to create excellent programming, proper
preparation and control of the product advancement cycle
should be executed. Software defects are common and can
occur at any point in the development process. It is possible
to improve software fault prediction by using a model that
avoids learning as well as a model that predicts software
faults.

Developing software that is fault-free is extremely tough.
Oftentimes, unforeseen flaws and unknown defects are
exposed even when a development team follows strict
development processes. It is critical to anticipate probable
software defects and to improve project planning and
management for testing and maintenance. Problem prediction
increases the development team's chances of testing modules
or files with a high risk of having a fault several times. This
will result in a greater emphasis on the problematic modules.
As a result, the likelihood of resolving remaining issues
increases, and software products issued to end customers
become more qualified.

Furthermore, this technique diminishes the task's upkeep and
backing endeavors. Low programming quality is undeniably

26

International Journal of Computer Sciences and Engineering

created by programming absconds; these imperfections
required significant work to fix, and SFP was utilized to
relieve the effect of these deformities. Also, the SFP lessens
the costs, time, and exertion expected to foster programming
arrangements. As indicated by the reference, the most costly
programming advancement exercises are finding and
adjusting bugs. Various examinations have been embraced on
programming disappointment expectation using Al strategies,
for example, support vector machine and genetic algorithm.
Additional attempts should be investigated.

Machine learning enables multilayer computing models to
learn representations of data at various levels of abstraction. It
automatically selects critical features from raw data and
strengthens it against input fluctuation. Additionally, machine
learning is capable of handling vast volumes of data, provides
a variety of models that enable the use of unlabeled data to
discover interesting patterns, and deep neural network
representations can be reused between tasks.

8!

Select Dataset

=

Clean Dataset

=

Count Vectorizer

=

Feature Selection

Ve

Classification

<

Prediction

Figure 1: Flow Diagram

Software Defect Dataset

The issue expectation dataset comprises of an assortment of
models and measurements for programming frameworks, as
well as their verifiable data. One of the objectives of such a
dataset is to permit people to investigate different
shortcoming expectation frameworks and to decide if another
strategy is an improvement over past procedures.The defect
datasets PROMISE, AEEEM, ReLink, MORPH, NASA, and
SOFTLAB [4] are available to the public and can be
downloaded from the internet.

© 2025, IJCSE All Rights Reserved

Vol.13(10), Oct. 2025

4. Experimental Methodology

The proposed model is designed to address all of the system's
shortcomings. This system will improve the classification
results' accuracy by categorizing data using SVM, KNN, RR,
it improves the categorization findings' overall performance.
The trained classifiers may exhibit Rather of randomly
splitting the datasets into training and testing sets (70—80%
for training and 30%—20% for testing).

Dataset Pre-p data Feature Selection

Prediction Classi

Figure 2: System Architecture
I. Modules

e Data Selection and Loading
e Data Preprocessing

e Feature selection

e (lassification

e Performance

e Result Generation

This dataset consists of observations about 498 software
modules. Each observation consists of 21 features and a class
variable listed below.

1) loc: McCabe's line count of code

2) v(g) : McCabe "cyclomatic complexity"
3) ev(g): McCabe "essential complexity"
4) iv(g) : McCabe "design complexity"

5) n: Halstead total operators + operands
6) v :Halstead "volume"

7) 1:Halstead "program length"

8) d: Halstead "difficulty"

9) i: Halstead "intelligence"

10) e : Halstead "effort"

11) b : Halstead

12) t: Halstead's time estimator

13) 10Code : Halstead's line count

14) 10Comment : Halstead's count of lines of comments

15) 10Blank : Halstead's count of blank lines

16) 10CodeAndComment

17) uniq_Op : unique operators

18) uniq Opnd : unique operands

19) total Op : total operators

20) total Opnd : total operands

21) branchCount : of the flow graph

22) defects {false,true}: module has/has not one or more
reported defects

27

International Journal of Computer Sciences and Engineering

SOFTWARE FAULT DETECTION

K mean and hierarchical clustering algorithm

Navie Bayies

SWMm

CNN Algorithm

Figure 3: Proposed execution flow

II. Naive Byes Classifier

Here, you'll put into practice methods for (1) training an NB
classifier from the discrete features and the class variable, and
(2) using the features alone to predict the class of a given
observation. Since all of the features in the CM1 dataset are
continuous variables, you may use any discretization method,
even the simplest ones like partitioning feature values into K
equal intervals or K equal frequencies.

1 2 3 4 5 6
1 LOC_BLAMK BRAMCH_C... LOC_CODE_.. LOC_COMM... CYCLOMATI.. DESIGM_ ~
2 1 7 0 o 4
3 5 37 o 6 18
4 2 1 o o 1
5 16 1 o o 1
6 1] T o 1] 4
7 =3 s o o 3
8 1 7 o o 4
9 12 25 o 6 13
1o 12 13 o 2] 7
11 3 18 o 18 10
12 8 12 o 1 10
13 22 a7 o o 19
14 2 5 2 1] 3
15 49 11 o & &
16 1 1 o o 1
7 3 & o o 5
jit:] 2 s o o 3
19 o 4 o o 3
20 1 3 = o 2
21 2 1 o o 1
22 16 27 2 12 14
23 9 o9 o 2 s
24 2 5 o 1 3
25 1 3 o o 2
L o 1 n el 11 i
< >
Figure 4 : Dataset CM1
- F|
File Edit View Insert Tools Desktop Window Help -~

Accuracy: 78.24%

NON-ATTACK

Output Class

5.6% 19. 1%
680 638

ATTACK

NOMN-AT TACK
Target Class

ATTACK

Figure 5 : Attack and Non-Attack Frequency of Fault Dataset Naive Byes

© 2025, IJCSE All Rights Reserved

Vol.13(10), Oct. 2025

DATASET 2 - Twelve NASA software fault data sets were
used in this research. The PROMISE software engineering
repository (http://promise.site.uottawa.ca/ SERepository/) is
where we sourced five of the data sets (CM1, JM1, KC1,
KC2, and PC1). Part II of the analysis includes seven more
data sets that were culled from the tera-PROMISE Repository
(http://openscience.us/repo/defect/).

c D E F G H 1 J K L M N 0|
1 lev(g) ivig) n v 1 d i e b t I0Code 10Comme 10Bal
2 14 14 13 13 13 13 13 13 13 13 2 2
3 1 1 1 1 1 1 1 1 1 1 1 1
a 1 E] 63 209.13 0.11 9.5 3254 2936.77 0.1 163.15 1 o
5 4 2 47 215.49 0.06 16 13.47 3447.89 0.07 191.55 0 0
6 6 2 72 246.13 0.06 17.33 19.97 5999.58 0.12 333.31 o o
7 6 2 72 346.13 0.06 17.33 19.97 5999.58 0.12 333.31 0 0
8 1 1 11 34.87 0.5 2 17.43 69.74 0.01 3.87 o o
9 1 2 23 94.01 0.16 6.43 14.62 604.36 0.03 33.58 0 0
10 5 5 107 548.83 0.07 14.25 38.51 7820.87 0.18 434.49 12 16
1 3 1 239 136241 0.04 223 61.1 30377.95 0.45 1687.66 8 35
12 5 1 155 856.15 0.05 20.76 41.24 17773.08 0.29 987.39 11 28
13 1 1 35 143.06 0.11 9 15.9 1287.55 0.05 71.53 2 a4
14 5 1 157 770.38 0.04 28.12 27.4 21659.58 0.26 1203.31 10 17
15 5 1 105 474.97 0.04 27.22 17.45 12929.85 0.16 718.32 10 17
16 1 2 231 1303.73 0.04 275 47.41 35852.6 0.43 1991.81 2 15
17 1 2 120 655.13 0.07 15.2 43.1 9958 0.22 553.22 3 20
18 1 1 57 271.03 0.11 9.15 29.61 2480.95 0.09 137.83 6 5
Figure 6: Dataset CM2
-
File Edit View Insert Tools Desktop Window Help el

D -k e |= | 08| & E

Succesful-Redesign ~ "]|

14000

12000 .

10000 .

8000 .

6000 .

4000 4

2000 .

o

Succesful Redesign

Figure 7: successful and resign frequency of Naive Byes

-

File Edit Wiew Insert Tools Desktop Window Help ™

Accuracy: 84.74%

NON-ATTACK

Output Class

8.5% 22.4%
38 11

ATTACK

NON-AT TACK
Target Class

Figure 8: Attack and Non-Attack Frequency of Fault Dataset CNN

ATTACK

=
| File Edit View Insert Tools Desktop Window Help ~

Dads | @ 0EB | kE

100

i 20 1
80 1
70 1
60 1
50 1
40 1
30 1
zZ0 1

10 1

0
Accuracy Semsitivity Specificity

Figure 9: Performance of naive byes classification

28

International Journal of Computer Sciences and Engineering

Vol.13(10), Oct. 2025

=] Figure 2 — = >

File Edit View Insert Tools Desktop Window Help ~

EEE I

[#] Figure 6 —] = E

File Edit View Insert Tools Desktop Window Help »

Succesful-Redesign .~ .~ =] & & 4}

14000

12000

10000

8000

6000

4000

2000

Succesful Redesign

Figure 10 : Successful and resign frequency of SVM

[Figure 3 — o =

File Edit Wiew Insert Tools Desktop Window Help ™

Accuracy: 93.15%

NON-ATTACK

%]
o i
s
o

=

=

i=3

=}
o

°
ATTACK 0.1% 2.6%
1 2
NON-ATTACK ATTACK

Target Class

Accuracy: 89.00%

NON-ATTACK

en
7]
g
[&)
=
=%
=
(=]
6.6% 29.9%
ATTACK &8 53
MNOM-AT TACK ATTACK

Target Class

Figure 14: Attack and Non-Attack Frequency of Fault Dataset CNN

[#] Performance Measures — [m] x
File Edit View Insert Tools Desktop Window Help k]
Dade @08 E

Figure li Attack and Non Attack Frequency of Fault Dataset SVM

<] Performance Measures for SVM Algorithm

File Edit View Insert Tools Desktop Window Help Y

EErE ERIERIEEE

100 T T T

20 1
80 1
70 1
60 - q
50 1
40 q

30 1

Accuracy Sensitivity Specificity

Performance Measures Softare Fault Detection

100

90 | b
80 b
70 b
60 b
50 b
40 - b
30 - b
20 b
10 b
0 .

Accuracy Sensitivity Specificity Precision Accuracy

Figure 15: performance of CNN classification

Figure 12: performance of SVM classification

& Figure 2 — =) =

File Edit View Insert Tools Desktop Window Help

Do HdS |20 & E

Succesful-Redesign =, .~ =] & ©) 7

14000

12000

10000

8000

6000

4000

2000

Succesful Redesign

Training Progress (15-Dec-2022 19:36:12)

Resuits
il Valaston acousey s
Training finished Stopped manuaty
80 | WAL I i Traming Time.
= { Starttime: 150002022 19.3612
£ Elapsedtime: 3mns7sec
z 60
g ’ S
§ © Epoch 10201500
l nerason 1221015000
feratons pecspoch. 12
= Madmum iteratons: 6000
A A | i I ¢ Valdation
0 200 400 600 80 1000 1200 =
teration g
al Traeing (smexshed)
Traeing
3 — 8= - Vaidtion
g,
32 Loss
Traing (smaed)
)
Tracing
0 ~ &~ - Vaidation
0 00 400 © 800 1000 1200

Figure 13: successful and resign frequency of SVM

© 2025, IJCSE All Rights Reserved

Figure 16: Training CNN classification

5. Results and Discussion

Several influential methods for determining software quality
based on a variety of machine learning approaches were
analyzed and discussed in this paper. The properties of ML
methods make it possible to develop IDS that have high
prediction rates and low false positive rates, but at the same

29

International Journal of Computer Sciences and Engineering

time the system can rapidly adapt to new circumstances.
Separated these methods into two different categories of ML-
based classifiers: support vector machines (SVM),
convolutional neural networks (CNN), and naive bays. Even
if these four algorithms have a lot in common with one
another, there are several aspects of approaches, such as
adaptation, high computational speed, and error resilience in
the face of noisy information, that are necessary for creating
efficient software quality prediction.

In this work discussed some influential algorithms for
detecting software quality that utilize a variety of machine
learning techniques. Due to the characteristics of machine
learning approaches, it is possible to develop with high
prediction rates. Classified these techniques into two
categories of machine learning-based classifiers: Support
Vector Machine (SVM), CNN, Naive Byes. While these four
algorithms share many similarities, some characteristics of
the methodologies, such as adaptation, high computational
speed, and error resistance in the presence of noisy data, meet
the need of developing an efficient software quality
prediction system.

6. Conclusion

This research evaluated the efficacy of various Machine
Learning (ML) approaches—specifically Support Vector
Machines (SVM), Convolutional Neural Networks (CNN),
and Naive Bayes—in the domain of software quality
prediction. The study demonstrates that ML-based classifiers
are uniquely suited for this task due to their ability to achieve
high prediction accuracy while maintaining low false-positive
rates.

The analysis leads to the following key conclusions:

e Adaptability and Resilience: A primary advantage of
the ML methods investigated is their capacity to
rapidly adapt to new data environments.
Furthermore, these models exhibit significant error
resilience, allowing them to maintain performance
even when faced with noisy information or
inconsistent datasets.

e Operational Efficiency: Beyond predictive power,
the findings highlight that high computational speed
is a critical factor in developing viable quality
prediction systems. The algorithms discussed
provide the necessary balance between processing
efficiency and analytical depth.

e Categorization of Success: While the algorithms
share underlying similarities, their specific strengths
in adaptation and error resistance make them
essential tools for modern Software Defect
Prediction (SDP).

In summary, the integration of these machine learning
techniques offers a robust framework for detecting software
defects early in the lifecycle. By leveraging the computational
speed of CNNs and the classification strengths of SVM and
Naive Bayes, developers can significantly reduce
maintenance costs and ensure the delivery of high-quality

software products.

© 2025, IJCSE All Rights Reserved

Vol.13(10), Oct. 2025

Author’s statements

Disclosures

Competing Interests: The author declares no financial or
non-financial competing interests that could inappropriately
influence the outcomes or interpretation of this research.

Ethical Approval: This study utilizes secondary, open-
source datasets from the NASA Promise and tera-PROMISE
repositories. As the research does not involve human
participants, animal subjects, or sensitive personal data,
formal ethical approval from an Institutional Review Board
(IRB) was not required. All data used are anonymized and
intended for public research use.

Funding:

This research was conducted as an independent study and did
not receive specific grants from any funding agency in the
public, commercial, or not-for-profit sectors.

Acknowledgements

The author would like to extend sincere gratitude to the
Department of Computer Science at Sarvodaya College of
Computer Science for providing the laboratory facilities and
the smart board hardware necessary for the experimental
prototype. Special thanks are also due to the peer reviewers
and colleagues whose constructive feedback helped refine the
adaptive adjustment algorithms.

Authors’ Contributions

Dr. Viranchee V. Dave: As the sole author, I was
responsible for all phases of the research, including
conceptualization, design of the machine learning framework,
selection of NASA datasets, implementation of Naive Bayes,
SVM, and CNN classifiers, data analysis, and the final
composition of the manuscript.

Data Availability

The dataset of labelled screen content images (text, video,
images, and diagrams) used in this study, along with the
source code for the classification engine, is available for
academic and non-commercial use. Interested researchers
may access these materials through the author’s institutional
repository or via direct request through the corresponding
author email provided in the article header.

References

[1] I. Arora, V. Tetarwal, and A. Saha, "Open issues in software defect
prediction," Procedia Comput. Sci., vol. 46, pp. 906-912, 2015.

[2] M. Rawat and S. K. Dubey, "Software Defect Prediction Models
for Quality Improvement: A Literature Study," Int. J. Comput.
Sci., vol. 9, pp. 288-296, 2012.

[3] A. Igbal et al., "Performance analysis of machine learning
techniques on software defect prediction using NASA datasets,"
Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 8, pp. 300-308, 2019.

[4] M. Cetiner and O. K. Sahingoz, "A Comparative Analysis for
Machine Learning based Software Defect Prediction Systems," in
Proc. 1ith Int. Conf. Comput. Commun. Netw. Technol.
(ICCCNT), Kharagpur, India, 2020, pp. 1-7.

30

International Journal of Computer Sciences and Engineering

[5] N. E. Fenton and M. Neil, "A critique of software defect prediction
models," IEEE Trans. Softw. Eng., vol. 25, no. 5, pp. 675-689,
Sept. 1999.

[6] M. S. Naidu and N. Geethanjali, "Classification of defects in
software using decision tree algorithm," Int. J. Eng. Sci. Technol.,
vol. 5, no. 6, p. 1332, 2013.

[7] A. Hammouri, M. Hammad, M. Alnabhan, and F. Alsarayrah,
"Software bug prediction using machine learning approach," Int.
J. Adv. Comput. Sci. Appl., vol. 9, no. 2, pp. 78-83, 2018.

[8] P. Paramshetti and D. A. Phalk, "Software defect prediction for
quality improvement using hybrid approach," Int. J. Appl. Innov.
Eng. Manag., vol. 4, no. 6, pp. 99-104, 2015.

[9] R. Jinsheng, Q. Ke, M. Ying, and L. Guangchun, "On Software
Defect Prediction Using Machine Learning," J. Appl. Math., vol.
2014, Art. no. 785435, 2014.

[10] L. Perreault, S. Berardinelli, C. Izurieta, and J. Sheppard, "Using
classifiers for software defect detection," in Proc. 26th Int. Conf.
Softw. Eng. Data Eng., Sydney, Australia, 2017, pp. 2—4.

[11] L. G. Yong, X. L. Ying, and Q. Z. C. Research, "Software defect
prediction based on CART," Int. J. Adv. Comput. Sci. Appl., vol.
602, pp. 3871-3876, 2014.

[12] C. Manjula and L. Florence, "A Deep neural network based
hybrid approach for software defect prediction using software
metrics," Clust. Comput., vol. 22, pp. 9847-9863, 2019.

[13] P. Kumudha and R. Venkatesan, "Cost-sensitive radial basis
function neural network classifier for software defect prediction,"
Sci. World J., vol. 2016, Art. no. 2401496, 2016.

[14] A. V. Phan, M. L. Nguyen, and L. T. Bui, "Convolutional neural
networks over control flow graphs for software defect
prediction," in Proc. IEEE 29th Int. Conf. Tools Artif. Intell.
(ICTAI), Boston, MA, USA, 2017, pp. 45-52.

[15] B. Mumtaz, S. Kanwal, S. Alamri, and F. Khan, "Feature selection
using artificial immune network: An approach for software defect
prediction," Intell. Autom. Soft Comput., vol. 29, no. 3, pp. 669—
684, 2021.

[16] M. M. Ali et al.,, "A parallel framework for software defect
detection and metric selection on cloud computing," Clust.
Comput., vol. 20, no. 3, pp. 2267-2281, 2017.

[17] N. Fenton and J. Bieman, Software Metrics: A Rigorous and
Practical Approach, 3rd ed. Boca Raton, FL, USA: CRC Press,
2020.

[18] H. B. Yadav and D. K. Yadav, "A fuzzy logic based approach for
phase-wise software defects prediction using software metrics,"
Inf. Softw. Technol., vol. 63, pp. 44-57, 2015.

[19] S. Herbold, A. Trautsch, and J. Grabowski, "A comparative study
to benchmark cross-project defect prediction approaches," IEEE
Trans. Softw. Eng., vol. 44, no. 9, pp. 811-833, 2018.

[20] B. R. Grishma and C. Anjali, "Software root cause prediction
using clustering techniques: A review," in Proc. IEEE Global
Conf. Commun. Technol. (GCCT), Red Hook, NY, USA, 2015, pp.
511-515.

[21] S. R. Chidamber and C. F. Kemerer, "A metrics suite for object
oriented design," IEEE Trans. Softw. Eng., vol. 20, no. 6, pp.
476-493, June 1994.

[22] V. U. B. Challagulla, "Reliability analysis of real-time software
systems using machine learning models," in Proc. IEEE Int. Conf.
Softw. Eng. Qual. Control, 2008, pp. 112-120.

[23] A. G. Koru and H. Liu, "An investigation of software metrics in
medical device software," IEEE IT Prof., vol. 9, no. 6, pp. 50-54,
Nov.—Dec. 2007.

[24] A. Chug and S. Dhall, "Software defect prediction using
clustering and classification techniques: A comparative study," in

© 2025, IJCSE All Rights Reserved

Vol.13(10), Oct. 2025

Proc. 4th Int. Conf. Rel. Infocom Technol. Optim. (ICRITO),
Noida, India, 2015, pp. 1-6.

[25] S. Shanthini and R. S. D. Wahidabanu, "Analysis of software
defect prediction using SVM and other machine learning
classifiers," Int. J. Comput. Appl., vol. 45, no. 14, pp. 22-27,
2012.

[26] C. A. Devi and K. S. Kavitha, "A hybrid feature selection and
classification model for software defect prediction," in Proc.
IEEE Int. Conf. Innov. Green Energy Healthcare (IGEHC), 2017,
pp. 1-5.

[27] A. Okutan and O. T. Yildiz, "Software defect prediction using
Bayesian networks," Empir. Sofiw. Eng., vol. 19, no. 1, pp. 154—
181, Feb. 2014.

[28] M. Shepperd, Q. Song, Z. Sun, and H. Jia, "Data quality: Some
comments on the NASA software defect datasets," IEEE Trans.
Softw. Eng., vol. 39, no. 9, pp. 1208-1215, Sept. 2013.

[29] V. Jayaraj and S. Muthamil Selvan, "Boosting techniques for
software defect prediction using system level metrics," in Proc.
Int. Conf. Recent Trends Inf. Technol. (ICRTIT), 2013, pp. 312—
317.

[30] M. Singh and P. S. Sandhu, "A neural network based approach for
software defect estimation," in Proc. World Acad. Sci. Eng.
Technol., vol. 75, pp. 1045-1049, 2011.

[31] M. Shepperd, "A critique of software defect prediction research,"
in Proc. IEEE 15th Int. Conf. Softw. Eng. Adv. Appl., 2012, pp.
12-18.

[32] T. P. Pushpavathi, V. P. Arunachalam, and S. Karthik, "Integrated
approach of genetic algorithm based fuzzy C-means clustering
with random forest for defect prediction," Int. J. Sofiw. Eng.
Knowl. Eng., vol. 24, no. 1, pp. 89—-105, 2014.

[33] S. Ratanothayanon and X. He, "A comparative study of software
defect prediction using BPNN and RBE," in Proc. 3rd Int. Conf.
Softw. Eng. Inf. Eng., 2010, pp. 45-50.

AUTHORS PROFILE

Dr. Viranchee V. Dave holds degrees in Computer Science,
including B.C.A., M.C.A., M.Phil.,, and Ph.D. in 2010, 2013,
2019 and 2024. He has been serving as an
Assistant Professor at Sarvodaya College of
Computer Science since 2015 and has over
12 years of teaching experience. His
research interests include artificial
intelligence, machine learning, adaptive
display systems, educational technology,
and human-computer interaction.

31

