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Abstract- Software Quality is a critical aspect of any software. Software Defect Prediction directly impacts quality and has 

gained significant popularity in recent years. Defective software modules have a massive impact on software quality, leading to 

cost overruns, delayed timelines, and higher maintenance costs. This paper analyzes the most popular and widely used Machine 

Learning algorithms: ANN (Artificial Neural Network), PSO (Particle Swarm Optimization), DT (Decision Trees), NB (Naive 

Bayes), and LC (Linear Classifier). The five algorithms were analyzed using the KEEL tool and validated using k-fold cross-

validation. Datasets were obtained from the open-source NASA Promise dataset repository. Seven datasets were selected for 

defect prediction analysis. Classification was performed on these datasets and validated using 10-fold cross-validation. The 

results demonstrated the Linear Classifier's dominance over other algorithms in terms of defect prediction accuracy. 
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1. Introduction 

  
In the contemporary software development landscape, 

organizations increasingly leverage integrated development 

repositories that combine version control and bug tracking 

systems. These repositories serve as a rich foundation for 

Software Defect Prediction (SDP), a critical process that 

identifies defect-prone modules to reduce project failures and 

minimize costs during development and maintenance. As the 

scale and complexity of software systems grow, SDP 

techniques have become essential for empowering engineers 

to deliver reliable products while accelerating time-to-market 

[1,2,3,4]. 

 

1.1 The Role of Machine Learning in SDP 

 

Defect prediction models generally aim to either classify 

modules as defective or non-defective or estimate the specific 

number of defects within software classes (Fenton & Neil, 

1999; Naidu & Geethanjali, 2013). By identifying high-risk 

areas, development teams can strategically reallocate testing 

resources to modules with a high probability of failure 

[5,6,7,8]. 

 

Machine learning (ML) algorithms are particularly effective 

in this domain because they can model complex regularities 

within software metric data. Various methodologies have 

been explored in the literature [9,10]: 

 

Tree-based Methods: Decision trees and Classification and 

Regression Trees (CART) are widely used for their 

interpretability in identifying defect-inclined modules [6,11]. 

 

Networks: Advanced architectures, including Deep Neural 

Networks, Radial Basis Function (RBF) networks, and 

Convolutional Neural Networks (CNN) over control flow 

graphs, have shown high accuracy in complex software 

environments [12,13,14]. 
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Evolutionary and Probabilistic Models: Techniques such as 

Naïve Bayes and Artificial Immune Networks provide robust 

frameworks for handling the uncertainties inherent in 

software data.3,5]. 

 

1.2 Feature Selection and Metrics Analysis 

 

A significant challenge in SDP is the high dimensionality of 

software attributes. Rather than processing all available data, 

it is more efficient to identify a subset of the most impactful 

metrics. Research emphasizes that utilizing specific software 

metrics—ranging from requirement-based metrics in the early 

lifecycle to code-based metrics in the late lifecycle—can 

significantly improve prediction accuracy [15,16,17,18]. 

 

1.3 Research Scope and Objectives 

 

This paper reviews various advanced techniques, including 

Fuzzy Logic, Fuzzy ARTMAP, and ANN, to determine the 

most effective relationships between software metric 

attributes and defect occurrence. To ensure repeatability and 

validity, this study utilizes publicly accessible datasets, 

primarily the NASA Metric Data Program (MDP), which 

allow for the benchmarking of predictive models and cross-

project defect prediction [18,19]. 

 

The primary objective of this study is to investigate the 

efficacy of: 

 

Early lifecycle assessment via requirement [18]. 

Late lifecycle assessment via code metrics 17]. 

Hybrid and Cloud-based assessments that combine multi-

phase metrics for enhanced detection [16,12]. 

 

By applying both supervised and unsupervised techniques, 

including clustering for root cause analysis and hybrid ML 

approaches—this research seeks to enhance the identification 

of defect-inclined modules, ultimately improving overall 

software quality [8,20]. 

 

1.4 Research Paper Organization 

The remainder of this paper is structured into five primary 

sections to provide a comprehensive analysis of machine 

learning-based software defect prediction Section 2: Related 

Work – Provides a chronological overview of the literature 

and historical developments in software defect prediction. It 

discusses foundational metrics (like McCabe and Halstead), 

the evolution of the NASA Promise datasets, and previous 

comparative studies involving various mining and 

classification techniques. Section 3: Research Methodologies 

– Establishes the theoretical framework for the study. This 

section discusses the necessity of high-quality software 

development, the challenges of fault-free programming, and 

the specific advantages of using Machine Learning to handle 

multi-layered data abstractions. Section 4: Experimental 

Design and Procedure – Details the technical implementation 

of the study. It describes the proposed system architecture, 

the six-module execution flow (from data loading to result 

generation), and the specific features of the CM1 and CM2 

datasets. It also details the implementation of Naive Bayes, 

SVM, and CNN classifiers. Section 5: Results and Discussion 

– Presents a comparative analysis of the experimental 

findings. This section evaluates the algorithms based on their 

prediction rates, false-positive rates, computational speed, 

and resilience to noisy data. Section 6: Conclusion – 

Summarizes the core findings of the research, emphasizing 

the adaptability and operational efficiency of the tested ML 

models, and provides final thoughts on their integration into 

the software development lifecycle. 

 

2. Related Work  
 

In this section we have given a summarized overview of 

several studies that are performed in the field of software 

defect prediction in last couple of decades. We have 

described about various techniques, their benefits and the 

concluding results which have contributed a lot in the 

development of highly reliable stage of software defect 

prediction mechanism. Fenton and Neil (1991) contend that 

despite the fact that there are such a large number of studies 

in writing, software defect forecast issue is a long way for 

getting perfect results. There are some wrong presumptions 

about how defects are characterized or watched and this has 

brought on misdirect results. Their case can be seen better 

when we see that a few papers characterize defects as 

watched inadequacies while a few others characterize them as 

remaining ones. They can gauge the software attributes by 

anticipating the size and multifaceted nature, testing, process 

quality information, multivariate methodology and so on[5].  

 

R. Chidamber et al. provided new groups of software metrics 

to be followed for object-oriented design. By assessing these 

metrics, they observed relationships with various properties 

and proposed methods in which object-oriented approaches 

might differ from conventional methodologies. They used six 

diverse sets of metrics: WMC, RFC, NOC, DIT, CBO, and 

LOCM [21]. 

 

Venkata U.B. Challagulla proposed distinctive machine 

learning models for recognizing flawed real-time software 

modules utilizing diverse sets of NASA datasets like KC1, 

PC1, CM1, JM1 is to be taken to anticipate the s/w product 

defects. When we ascertain the meaning of absolute error of 

various available software predictions it is to be found that 

KC1 dataset is best to anticipate the defect[22] .  

 

A. Gunes Koru takes a few machines learning algorithms to 

foresee programming defects in software modules in five 

NASA datasets i.e. CM1, JM1, KC1, KC2, and PC1. They 

performed defect prediction utilizing class-level information 

for KC1 instead of method level information. For this 

situation, the utilization of class-level information brought 

about enhanced forecast execution against the utilizing 

method level information[23]. 

 

 Anuradha Chug et al. propose different grouping and 

bunching strategies with a target to anticipate programming 

imperfection. The execution of three information mining 
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classifier calculations named J48, Random Forest, and Naive 

Bayesian Classifier (NBC) are assessed in view of different 

criteria such as ROC, Precision, MAE, RAE and so forth. 

Grouping method is then connected to the information set 

utilizing k-implies, Hierarchical Clustering and Make Density 

Based Clustering calculation [24].  

 

Shanthini et al. covered the work with the primary objective 

to break down the execution of different classifiers on defect 

expectation based on open area NASA information set KC1; 

they broke down the execution of the classifiers utilizing 

customary measures, for example, exactness, review and F-

measure. This study affirms that development of the SVM 

models is acceptable, versatile to OO frameworks, and 

valuable in anticipating shortcoming inclined classes for more 

elevated amount of measurements (class) [25].  

 

C. Akalya Devi et al. proposed a hybrid component 

determination technique which gives a superior defect 

estimation than the conventional routines. NASA's open 

dataset KC1 accessible at promise software data storage is 

utilized. To assess the execution performance of the product 

defects forecast models’ accuracy, mean absolute errors 

(MAE), Root mean squared errors (RMSE) qualities 

measurements are utilized [26].  

 

Ahmet Okutan et al. proposed a novel system utilizing 

Bayesian systems to investigate the connections among 

programming measurements and imperfection inclination. 

They utilize nine information sets from Promise software 

dataset and demonstrate that RFC, LOC, and LOCQ are more 

viable on defect prediction expectation [27]. 

 

Martin Shepperd et al. investigates the degree to which 

distributed examinations taking into account the NASA 

software defect datasets sets are significant and furthermore 

prescribed that the provenance of the information sets they 

utilize .This report also describes that pre-processing of 

dataset in adequate point of interest is useful to empower 

important replication and it also put exertion in 

comprehension the information dataset prior to apply in 

applying in machine learning [28] .  

 

V. Jayaraj et al. proposed the exactness of the defect 

prediction of Boosting strategies for s/w defects expectation 

taking into account the KC1 dataset is examined. They 

utilized 21 system level metrics to anticipate the defects in the 

information data by utilizing three machine learning 

calculation of boosting methods [29].  

 

Malkit Singh worked on a neural system strategy and 

Levenberg Marquardt (LM) mechanism was created, and the 

exactness of proposed framework is better that polynomial 

relation based neural system functions. In this paper 

Levenberg-Marquardt (LM) calculation based neural system 

learning method is utilized for the defect estimation due to 

programming imperfections at an early phase of the product 

advancement life cycle [30].  

 

Martin Shepperd defect forecast analysts focused on the 

direct use of blind analysis it enhances reporting conventions 

and leads more intergroup studies keeping in mind the end 

goal to found simpler expertise issues. Ultimately, research is 

required to figure out if this inclination is common in 

different applications area. In this paper they take a wide 

range of Dataset for imperfection forecast where the 

exactness of Nasa MDP is superior to anything another 

dataset [31].  

 

Pushpavathi T.P et al. reports an investigation for anticipating 

defect prediction in s/w modules utilizing coordinated 

methodology of genetic algorithm based fuzzy c-means 

clustering with random forest calculation. This technique was 

produced utilizing Genetic Algorithm based Fuzzy C-implies 

bunching with Random Forest grouping connected on exact 

information set and investigation was performed. At long last 

results were approved with the use of five NASA open space 

software defect information sets [32].  

 

Sunida Ratanothayanon et al. has proposed two classifiers for 

the software defect prediction i.e. Back Propagation Neural 

Network and Radial Basis Functions with Gaussian kernels as 

classifiers and produce results on NASA dataset are 

demonstrated and investigated on the basis of mean square 

error and percent of accuracy [33]. 

 

3. Research Methodologies 

Top notch programming improvement is one of the most 

troublesome undertakings for computer programmers. To do 

this, product improvement ought to follow an endorsed 

grouping of exercises while sticking to explicit limits to 

deliver steady and top-notch programming. A critical 

inconvenience of having great and dependable programming 

is the occurrence of flaws, which corrupt the product's quality 

and render it inconsistent, as well as the powerlessness of 

eventual outcomes to accomplish consumer loyalty. 

Reference to create excellent programming, proper 

preparation and control of the product advancement cycle 

should be executed. Software defects are common and can 

occur at any point in the development process. It is possible 

to improve software fault prediction by using a model that 

avoids learning as well as a model that predicts software 

faults. 

Developing software that is fault-free is extremely tough. 

Oftentimes, unforeseen flaws and unknown defects are 

exposed even when a development team follows strict 

development processes. It is critical to anticipate probable 

software defects and to improve project planning and 

management for testing and maintenance. Problem prediction 

increases the development team's chances of testing modules 

or files with a high risk of having a fault several times. This 

will result in a greater emphasis on the problematic modules. 

As a result, the likelihood of resolving remaining issues 

increases, and software products issued to end customers 

become more qualified. 

Furthermore, this technique diminishes the task's upkeep and 

backing endeavors. Low programming quality is undeniably 
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created by programming absconds; these imperfections 

required significant work to fix, and SFP was utilized to 

relieve the effect of these deformities. Also, the SFP lessens 

the costs, time, and exertion expected to foster programming 

arrangements. As indicated by the reference, the most costly 

programming advancement exercises are finding and 

adjusting bugs. Various examinations have been embraced on 

programming disappointment expectation using AI strategies, 

for example, support vector machine and genetic algorithm. 

Additional attempts should be investigated. 

Machine learning enables multilayer computing models to 

learn representations of data at various levels of abstraction. It 

automatically selects critical features from raw data and 

strengthens it against input fluctuation. Additionally, machine 

learning is capable of handling vast volumes of data, provides 

a variety of models that enable the use of unlabeled data to 

discover interesting patterns, and deep neural network 

representations can be reused between tasks. 

 

Figure 1: Flow Diagram 

Software Defect Dataset 

The issue expectation dataset comprises of an assortment of 

models and measurements for programming frameworks, as 

well as their verifiable data. One of the objectives of such a 

dataset is to permit people to investigate different 

shortcoming expectation frameworks and to decide if another 

strategy is an improvement over past procedures.The defect 

datasets PROMISE, AEEEM, ReLink, MORPH, NASA, and 

SOFTLAB [4] are available to the public and can be 

downloaded from the internet. 

 

4. Experimental Methodology 

 

The proposed model is designed to address all of the system's 

shortcomings. This system will improve the classification 

results' accuracy by categorizing data using SVM, KNN, RR, 

it improves the categorization findings' overall performance. 

The trained classifiers may exhibit Rather of randomly 

splitting the datasets into training and testing sets (70–80% 

for training and 30%–20% for testing). 

 

 
Figure 2:  System Architecture 

I. Modules 

• Data Selection and Loading 

• Data Preprocessing 

• Feature selection 

• Classification 

• Performance 

• Result Generation 

This dataset consists of observations about 498 software 

modules. Each observation consists of 21 features and a class 

variable listed below. 

1) loc: McCabe's line count of code 

2) v(g) : McCabe "cyclomatic complexity" 

3) ev(g) : McCabe "essential complexity" 

4) iv(g) : McCabe "design complexity" 

5) n : Halstead total operators + operands 

6) v : Halstead "volume" 

7) l : Halstead "program length" 

8) d : Halstead "difficulty" 

9) i : Halstead "intelligence" 

10) e : Halstead "effort" 

11) b : Halstead 

12) t : Halstead's time estimator 

13) lOCode : Halstead's line count 

14) lOComment : Halstead's count of lines of comments 

15) lOBlank : Halstead's count of blank lines 

16) lOCodeAndComment 

17) uniq_Op : unique operators 

18) uniq_Opnd : unique operands 

19) total_Op : total operators 

20) total_Opnd : total operands 

21) branchCount : of the flow graph 

22) defects {false,true}: module has/has not one or more 

reported defects 

Start 

Clean Dataset 

Select Dataset 

Count Vectorizer 

Classification 

Prediction 

Feature Selection 
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Figure 3:  Proposed execution flow 

II. Naive Byes Classifier 

Here, you'll put into practice methods for (1) training an NB 

classifier from the discrete features and the class variable, and 

(2) using the features alone to predict the class of a given 

observation. Since all of the features in the CM1 dataset are 

continuous variables, you may use any discretization method, 

even the simplest ones like partitioning feature values into K 

equal intervals or K equal frequencies. 

 
Figure 4 :  Dataset CM1 

 
Figure 5 :  Attack and Non-Attack Frequency of Fault Dataset Naïve Byes 

DATASET 2 - Twelve NASA software fault data sets were 

used in this research. The PROMISE software engineering 

repository (http://promise.site.uottawa.ca/ SERepository/) is 

where we sourced five of the data sets (CM1, JM1, KC1, 

KC2, and PC1). Part II of the analysis includes seven more 

data sets that were culled from the tera-PROMISE Repository 

(http://openscience.us/repo/defect/). 

 
Figure 6: Dataset CM2 

 

 
Figure 7:  successful and resign frequency of Naïve Byes 

 

 
Figure 8:  Attack and Non-Attack Frequency of Fault Dataset CNN 

 

 
Figure 9: Performance of naïve byes classification 
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Figure 10 :  Successful and resign frequency of SVM 

 

 
Figure  11:  Attack and Non Attack Frequency of Fault Dataset SVM 

 

 
Figure 12: performance of SVM classification 

 

 
Figure 13: successful and resign frequency of SVM 

 
Figure 14:  Attack and Non-Attack Frequency of Fault Dataset CNN 

 

 
Figure 15:  performance of CNN classification 

 

 
Figure 16: Training CNN classification 

 

5. Results and Discussion 
 

Several influential methods for determining software quality 

based on a variety of machine learning approaches were 

analyzed and discussed in this paper. The properties of ML 

methods make it possible to develop IDS that have high 

prediction rates and low false positive rates, but at the same 
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time the system can rapidly adapt to new circumstances. 

Separated these methods into two different categories of ML-

based classifiers: support vector machines (SVM), 

convolutional neural networks (CNN), and naive bays. Even 

if these four algorithms have a lot in common with one 

another, there are several aspects of approaches, such as 

adaptation, high computational speed, and error resilience in 

the face of noisy information, that are necessary for creating 

efficient software quality prediction. 

In this work discussed some influential algorithms for 

detecting software quality that utilize a variety of machine 

learning techniques. Due to the characteristics of machine 

learning approaches, it is possible to develop with high 

prediction rates. Classified these techniques into two 

categories of machine learning-based classifiers: Support 

Vector Machine (SVM), CNN, Naive Byes. While these four 

algorithms share many similarities, some characteristics of 

the methodologies, such as adaptation, high computational 

speed, and error resistance in the presence of noisy data, meet 

the need of developing an efficient software quality 

prediction system. 

 

6. Conclusion 

This research evaluated the efficacy of various Machine 

Learning (ML) approaches—specifically Support Vector 

Machines (SVM), Convolutional Neural Networks (CNN), 

and Naive Bayes—in the domain of software quality 

prediction. The study demonstrates that ML-based classifiers 

are uniquely suited for this task due to their ability to achieve 

high prediction accuracy while maintaining low false-positive 

rates. 

The analysis leads to the following key conclusions: 

• Adaptability and Resilience: A primary advantage of 

the ML methods investigated is their capacity to 

rapidly adapt to new data environments. 

Furthermore, these models exhibit significant error 

resilience, allowing them to maintain performance 

even when faced with noisy information or 

inconsistent datasets. 

• Operational Efficiency: Beyond predictive power, 

the findings highlight that high computational speed 

is a critical factor in developing viable quality 

prediction systems. The algorithms discussed 

provide the necessary balance between processing 

efficiency and analytical depth. 

• Categorization of Success: While the algorithms 

share underlying similarities, their specific strengths 

in adaptation and error resistance make them 

essential tools for modern Software Defect 

Prediction (SDP). 

In summary, the integration of these machine learning 

techniques offers a robust framework for detecting software 

defects early in the lifecycle. By leveraging the computational 

speed of CNNs and the classification strengths of SVM and 

Naive Bayes, developers can significantly reduce 

maintenance costs and ensure the delivery of high-quality 

software products. 
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