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Abstract: The domain of medical image analysis (MIA) within Machine Learning (ML), Artificial Intelligence (AI), and Deep
Learning (DL), the significance of employing advanced methods cannot be overstated. Several methods have attained better
outcomes in several fields, making it especially noteworthy for MIA in healthcare. The combination of these fields with MIA
gives real-time analysis of prior and different databases, comprehensive insights that are important to improve healthcare results,
and operational efficacy in the industry. This analysis article of existing literature considers a thorough examination of the most
current ML, DL, and Al methods designed to identify the complexities faced in medical healthcare, specifically focusing on the
utilization of DL, ML, and Al methods in MIA. The main contribution of this paper is how AI, ML and DL is used in medical
field for early disease detection, drug discovery, and robotic-assisted surgeries. Comparative Analysis Based on the Different
models and Algorithm is properly defined in this paper. It analysed the different methods, such as convolutional neural
networks(CNNs), Support Vector Machine (SVM), Logistic Regression (LR), Decision Tree (DT), etc. This paper review the
existing result was analysed, by other authors with a high accuracy achieved with the CNN method of 94%, XGBoost achieved
the maximum accuracy of 91%, and Logistic Regression an accuracy of 79% and compared with the existing models.

Keywords: Medical Image Analysis (MIA), Machine Learning (ML), Artificial Intelligence (Al), Deep Learning (DL),
Convolutional Neural Networks (CNN)

Graphical Abstract- 1. Introduction
ATl vs ML vs DL Nowadays, Medical (X-ray, MRI, and CT-Scan) Images are
crucial tools in the medical field, offering comprehensive
Machine Learning (ML) insights into the internal organization and condition of a
Systems thatcan eam by themseies fiom patient’s tissues. They are widely used for diagnosis,

data without the need for human intervention (programming),
Artificial Intelligence (Al)
The broad discipline of performing
intellectual tasks usually

treatment strategy, monitoring disease, etc. Basically, the
different types of images include X-rays, MRI, ultrasound,

carried out by a human. Deep Learning (DL) nuclear medicine, pathology slides, and ophthalmological
:j;f;zt‘mélbﬂﬁfvgﬂ(s images [1]. Traditionaﬂy, interpretir.lg these images relies
that can process complex deeply on the capability of medical experts, such as

rlllstips e GG pg diologists and pathologists. Various imaging techniques are

employed to obtain these medical images, each suited for
different clinical purposes. For example, X-rays are often

Artificial Neural Networks (ANNs) used for bone and chest examinations, CT scans provide
A M I in works, sometimes just called neural etk . . . .
n approach to ML based on a model of how the brain works, sometimes just called neural networks, comprehenswe cross-sectional images, and MRI prov1des
Natural Language Processing (NLP) high-contrast medical images of soft tissues. Ultrasound

Methods used to get computers to understand human speech and text, usually involving ML s . . . .
S ’ VI utilizes sound waves for real-time imaging, while nuclear

medicine  highlights  physiological functions. These
techniques differ in complexity, resolution, and the type of
information they provide [2]. Despite their importance,
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medical image analysis faces several challenges. High-
dimensional data, noise, artifacts, and variability in imaging
quality complicate interpretation. The sheer volume of data
and the requirement for rapid, precise diagnosis put immense
pressure on healthcare professionals. Additionally, manual
analysis is time-consuming and subject to human expectation,
that may impact diagnostic consistency and treatment
outcomes.

To solve these challenges, optimization algorithms have been
increasingly applied in medical image analysis. These
algorithms improve image enhancement, segmentation,
feature extraction, and classification by adjustment metrics to
exploit precision and efficacy [3]. Techniques such as
gradient descent, genetic algorithms, and Bayesian
optimization help automatically identify the best algorithm
settings. Optimization also plays a key role in feature
selection by reducing dimensionality and focusing on the
most relevant image attributes, thus improving model
interpretability and robustness. Beyond image processing,
optimization methods support healthcare resource allocation,
including staff scheduling, supply chain management, and
emergency response [4]. These applications ensure efficient
use of limited resources while maintaining high-quality
patient care. As medical imaging (MI) technology advances,
optimization techniques will continue to be integral in
enhancing diagnostic precision, workflow efficiency, and
personalized treatment strategies.

In parallel, Several domains, such as Artificial Intelligence
(AI), especially Machine Learning (ML) and Deep Learning
(DL), have developed as a powerful tool to support and
improve medical image analysis. ML allows systems to study
designs from data and make detection and classification
decisions without explicit programming. It encompasses
methods, such as supervised, unsupervised, and semi-
supervised learning, and often requires domain expertise for
feature extraction and optimizing the features [5]. To
overcome the limitations of manual feature engineering, DL
has gained traction. DL models can automatically extract
meaningful features from raw medical images and learn
complex representations through multiple layers of
abstraction [88]. DL has proven especially valuable in
medical domains such as MRI, Radiology, Cardiology, and
Neurology.

Several DL architectures, originally developed in computer
vision (CV), have been adapted for MIA. Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs) are DL models applied to tasks like segmentation,
object detection, classification, and image registration. In
addition, unsupervised models, including Restricted
Boltzmann Machines (RBMs), Autoencoders, Generative
Adversarial Networks (GANs), and Deep Belief Networks
(DBNs), are utilized for feature learning and image
generation tasks [6]. The applications of DL in MI are
visually summarized in Figure 1, which demonstrates how
these technologies contribute to various stages of MIA.
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Deep Learning based applications in medical images
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Figure 2 Protests of important growths in the history of NNs [5]

The advance of DL is rooted in decades of progress in neural
network research, beginning with early models by McCulloch
and Pitts in the 1940s. Milestones such as the Perceptron by
Rosenblatt, the ADALINE model by Widrow, and the
Neocognitron by Fukushima laid the groundwork for modern
architectures. Breakthroughs such as back propagation, CNNs
for handwritten digit recognition by LeCun, and Deep Belief
Networks by Hinton et al., shaped today’s DL systems. These
key advancements are depicted in As MI data continues to be
produced in complexity and volume, the integration of Al,
DL, and optimization algorithms will play a major role in
improving diagnostic accuracy, reducing human error,
streamlining clinical workflows, and enabling more
personalized and data-driven healthcare provision.

Lastly, the addition of optimization techniques and artificial
intelligence—particularly DL—has revolutionized MIA by
addressing challenges like data complexity, variability, and
diagnostic delays. These advancements have enabled
automated, accurate, and efficient interpretation of medical
images, as illustrated in Figures 1 and 2, marking a significant
shift toward more intelligent and scalable healthcare
solutions.

The rest of the article is defined as shadows: Section 2
explains the different ML, DL, Al, and Optimization-based
Medical Image Analysis (MIA) methods. Section 3 discusses
the comparative analysis based on the different methods (Al,
ML, and DL). The existing result analysis based on different
Al, ML, and DL methods -elaborates the different
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performance metrics, such as accuracy, precision, etc., with
other comparison methods.

2. Related Work

Recent developments in medical image processing leverage
ML, DL, Al, and optimization methods to improve discase
classification and segmentation. ML focuses on feature
selection and algorithm design, while DL, particularly CNNs,
excels in learning from complex image data. Al integrates
these approaches to enable personalized and predictive
healthcare. Optimization methods help enhance model
accuracy and generalization. Despite promising results,
limitations, such as limited data, interpretability, and ethical
concerns, endure in key research areas.

2.1 Medical Image Processing Using Machine Learning
(ML)

Recent advances in MI processing have increasingly
leveraged ML techniques to improve disease detection,
segmentation, and classification. Various studies have
addressed challenges ranging from feature selection and
algorithm design to ethical considerations and clinical
applicability, driving meaningful progress in the field. [10]
used ML in medical imaging to select the most relevant
features for precise detection of disease, though many
features were often irrelevant and slowed computation. This
research presented a Congruent Feature Selection technique
based on similarity and correlation of pixel intensities and
textures to improve feature relevance and consistency. The
method significantly increased ML performance, precision,
boosting accuracy, and training speed by over 10%, while
reducing error and selection time by more than 12%
compared to existing methods. Another author, [11], aimed to
present the role of values specific to medical image analysis.
The article defined main technical choices in ML, especially
the end-to-end versus separable learning techniques, and
presented a clear, organized framework linking these values
to technical decisions. By doing so, it sought to deepen the
understanding of how philosophical perspectives influenced
research design and outcomes. This approach highlighted
how the philosophy of science clarified and improved
important aspects of MIA research, ultimately guiding better
practices in the field. In this study [12] leveraged the K-
Nearest Neighbor (KNN) method combined with NNs for
effective MI segmentation and classification, utilizing gray-
level  co-occurrence  matrix  features. Tested on
echocardiographic images, the system showed improved
accuracy and performance over existing methods, validated
through metrics such as Mean Squared Error, PSNR, and
SSIM. Another study, [13] showed great potential to improve
patient outcomes; medical image analysis research was
hindered by problems, including biased data and research
focused more on publication than clinical value. Progress
slowed because models often demonstrated limited real-world
effectiveness and evaluation flaws. This study examined these
barriers, ongoing solutions, and suggested changes in
research practices to better align ML with healthcare needs.
Meaningful progress required shifting priorities and standards
across the field.

© 2025, IJCSE All Rights Reserved

Vol.13(10), Oct. 2025

2.2 Medical Image Processing Using Deep learning (DL)
Recent studies in MI processing using DL highlight the
efficiency of CNNs and transfer learning (TL) for accurate
disease diagnosis, while addressing challenges like limited
data, model interpretability, and adaptive techniques for
improved clinical applications. [14] explored the use of
CNNs for diagnosing lung nodules from chest X-rays,
indicating high accuracy, sensitivity, etc., on a large
annotated database. The results highlighted CNNs' potential
to support early lung cancer detection and improve clinical
decision-making. While promising, problems such as model
interpretability, data privacy, and regulatory compliance
remained. The research underscored CNNs' transformative
role in diagnostic medicine and emphasized the need for
further research to ensure safe and effective clinical adoption.
Similarly, [15] aimed to develop an automated method for
selecting the most suitable pooling method in CNNs for
image fusion tasks; the research based its method on the
characteristics of input images. The presented method
outperformed traditional approaches, such as DWT, NSCT,
and PCA in terms of image superiority parameters (PSNR,
MSE, VIF, etc.) and processing time. By enabling adaptive
pooling selection, it improved CNN convergence and
delivered more consistent performance across different
datasets. The results highlighted its potential for generalized
multi-modal image fusion, with future scope for integrating
newly developed pooling methods. In [16] focused on
improving CNN-based classification for medical image
analysis, solving problems including limited labeled data and
improving performance on large datasets. A high-performing
CNN architecture with fully connected layers was designed,
which achieved 95.77% accuracy across 24 medical image
classes and an average precision of 0.69 on the ROC curve.
Calculated using different parameters, such as precision,
recall, etc., the system showed strong potential for improving
image retrieval and supporting advanced computer-aided
diagnosis. [17] investigated the utilize of CNN-based
techniques for pneumonia classification using a small chest
X-ray dataset, solving issues related to limited labeled data. It
compared traditional SVM with ORB features, capsule
networks, and CNN-based transfer learning using VGGI16
and InceptionV3. The results demonstrated that transfer
learning (TL), especially with fine-tuned layers and proper
network complexity, outperformed the other methods. Data
augmentation proved to be essential for improving model
performance. The research concluded that CNN-based
approaches, especially transfer learning, were more effective
than traditional methods and emphasized the need for future
work on reducing overfitting, exploring advanced models,
and increasing model interpretability for clinical use.

2.3 Medical Image Processing Using Artificial Intelligence
(AD)

Al is converting MI by allowing more precise and efficient
analysis of complex medical data. Utilizing advanced
methods like deep learning and neural networks, Al increases
disease detection, classification, and personalized treatment
planning. This integration is reshaping healthcare by
improving diagnostic capabilities and supporting better
clinical decisions. [18] examined how Al revolutionized
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analytic imaging by enhancing efficiency, accuracy, and
personalized care in healthcare. Analyzing 30 studies, it
highlighted AI’s roles in increasing operational efficiency,
image interpretation, enabling predictive analytics, and
supporting clinical decisions. Despite its promise, problems,
such as ethical problems, security, and the need for
investment and training, remained. The study emphasized the
need for ongoing commitment to ethical Al development,
professional education, and collaboration to ensure effective
clinical integration and equitable healthcare outcomes.
Another author, [19] examined he integration of Al in
medical imaging, which drove a major transformation in
healthcare by enhancing diagnostic accuracy and efficiency.
Advanced methods such as DL, CNNs, and GANs enabled
faster, more precise detection of abnormalities across various
specialties, including radiology and cardiology. Al not only
accelerated image interpretation but also supported early
detection of disease and personalized treatment strategies,
ultimately increasing patient outcomes. This shift
underscored AI’s serious role in revolutionizing medical
diagnosis and determining the future of healthcare. This
study, [20], provided a study of medical imaging methods and
their use in Al-driven disease classification and segmentation,
explaining core Al, ML, and DL concepts. It systematically
examined research on Al applications across many
anatomical regions, highlighting key findings and emerging
trends. The paper emphasized challenges like limited data,
model generalization, and interpretability, advocating for
hybrid ML-DL techniques that showed strong potential. It
also identified medical image synthesis and transfer learning
as vital strategies to overcome data scarcity, pointing to
promising directions for future research in medical diagnosis.
Another study, [21], designed AI models to enable highly
accurate medical image diagnosis. This required properly
labeled and standardized images that were pre-processed
before analysis. To prevent overfitting from limited data,
augmentation methods, such as rotation and flipping, were
used to expand the datasets. Supervised learning (SL) handled
classification and regression, while unsupervised methods
solved clustering and generation. CNNs efficiently extracted
features for diagnosing diseases across many organs and
systems, demonstrating Al’s broad capabilities in MI.

2.4 Medical
Methods

Recent advancements used in medical image processing
through optimization techniques. It highlights innovative
models and algorithms that enhance disease diagnosis,
improve generalization, and address challenges like data
privacy and overfitting, demonstrating strong potential for
clinical application. In study [22] focused on developing an

Image Processing Using Optimization
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optimized Medical Image Analysis Model (MIAM) using
advanced data augmentation approaches within a CNN
framework to enhance disease diagnosis. By integrating 3D
and intensity-based augmentations, along with regularization
methods like dropout and batch normalization, the model
enhanced generalization and reduced overfitting. It was
assessed across multiple imaging modalities and diseases,
achieving notable gains in accuracy and segmentation
performance. These improvements showed their clinical
potential, with future work presented to increase
explainability, incorporate multi-modal data, and validate
outcomes through real-world trials. In study [13], solved
problems in medical image classification by exploring a novel
CLIP-based approach using multiple CNN and ViT
architectures, integrating federated learning for privacy, and
applying traditional ML methods to improve generalization. It
was tested on brain and skin cancer datasets, where models
like MaxViT and ConvNeXt L demonstrated strong
performance, particularly in multimodal and federated
settings. The results showed that combining dl with methods
like SVM further increased performance on unseen medical
data, showing a promising direction for developing privacy-
preserving, generalizable medical Al systems. In another
research [24] explored that medical image analysis played a
vital role in diagnosing and monitoring diseases by allowing
detailed examination of internal body structures through
imaging data. With developments in DL and computer vision,
the field saw improvements in automation, accuracy, and
real-time processing. Emerging techniques such as GANS,
self-supervised learning, and interpretability approaches
opened new research directions. This research focused on
optimization methods that enhanced the accuracy, efficiency,
and reliability of MIA systems. Lastly, [25] focused on a
specific class of robust nonconvex optimization problems
where the objective function, given certain parameters, was
represented as a difference of convex functions. It established
necessary optimality conditions under general assumptions
and introduced a sequential robust convex optimization
algorithm to solve the problem. The presented method
demonstrated global convergence to a stationary point under
broad uncertainty conditions. Its application to medical image
enhancement confirmed the algorithm’s effectiveness through
numerical results. Table I provides a comparative overview of
recent studies employing various machine learning, deep
learning, Al, and optimization methods for medical image
analysis. It highlights the datasets used, key limitations,
performance metrics, and proposed future research directions,
illustrating advances and ongoing challenges in improving
diagnostic accuracy, model generalization, privacy, and
clinical applicability.

Table 1. Analysis of ML, DL, Al, and Optimization methods in Medical Image Processing

Author & Years Method Used Database Limitations Performance Metrics Improvements
Anjum et al,, (2024) | Analytical learning | Dataset with brain, | Irrelevant features | Accuracy 113.19%, | Apply the method
[10] paradigm; Congruent | lung, eye  scans | increase computation | Precision 110.69%, | across diverse
Feature Selection | (multi-organ medical | time if not filtered; | Training rate 111.06%, | medical image
Method using | images) generalizability to | Mean error [12.56%, | datasets to validate
similarity and other datasets not | Selection time |13.56% | feature selection
correlation-based deeply discussed compared to  other | performance
features models
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Heena et al. (2023) K-Nearest Neighbor Echocardiographic Limited testing on Accuracy: Synthetic
[12] (KNN) for image datasets other medical imagin 89%, Echo 88%; | Apply algorithm to
. (Synthetic and Echo) . Eng Sensitivity: ~ Synthetic | real-time and other
segmentation; neural datasets; needs real- N o). .
networks for time validation on 97 A)’. . Echo 63 /f)’ unirained databases
) . . . Specificity: ~ Synthetic | for broader
classification;  gray untrained or diverse L
level  co-occurrence datasets 25%, Echo 81%. applicability;
. ’ enhance neural
matrix (GLCM) .
network  classifier
features for inteeration
extraction. & "
Varoquaux et al Systematic review of | Various public and | Bias in datasets; real- | NA Promote
(20;261)11[;13] N ” | challenges in medical | research-specific world clinical impact standardization,
image ML; Evaluates | medical imaging | is minimal; unbiased dataset
biases, data | datasets. performance plateaus curation, and
limitations, and in real-life cohorts; clinically  relevant
research incentives. publication-driven benchmarking.
development trends.

. Desai et al. roprietary . , abeled chest ceuracy: .8%, nhance mode
K. Desai 1. (2024) | Propri CNN Interpretabilit 10,000 labeled ch A 94.8%, | Enh: del
[14] model for lung nodule erpre Y X-ray images (lung | Sensitivity: 92.1%, | interpretability,

. . challenges data Y I
diagnosis from chest rivac co}lcerns and nodules). Specificity: 96.5%, | address
X-rays. ?egulailory hur dle; AUC, Precision, Recall, | privacy/regulatory
’ Fl-score compliance.

. J. Trivedi et al. with automate xisting methods are ultiple atasets : .82, : new optima
G. J. Trivedi . | CNN with d | Existi hod Multipl d PSNR: 36.82, MSE: | Add imal
(2022) [15] pooling for image | not generalizable | (varied) 0.53, Fusion Factor: | pooling  methods;

fusion. across datasets; they 4.62, VIF: 091, Avg. | expand to more
are  dependent on Time: 29.66s. image fusion
fixed pooling applications.
techniques
P. Kalyani et al. | CNN with 3 fully - .. . Large multimodal | Accuracy: 95.77%, | Improve  retrieval
Limited precision in L L
(2021) [16] connected layers for retrieval;  challenges medical image dataset | Avg. ROC Precision: | accuracy;  further
medl_cal _ image | o limodal data. (24 classes). 0.69. development of
classification & CADe systems.
retrieval.
(52'0189') [T;]d av et al Medical image Small chest X-ray | Normal vs Pneumonia:e
Transfer learning with datasets are small and dataset. Best accuracy: 0.938 | Investigate methods
VGG16, InceptionV3, hard to label- Risk of (VGG1§ . v3)* Best to stabilize training
and CapsNet on chest overfitting with deep specificity: 0.944 | in transfer learning
X-ray images for (VGG16  v3)» Best | (avoid overfitting)-
. networks on small
pneumonia datasets- Model recall: 0.939 (YGG16 Evaluate  stronger
o ng | comley mist b et s Vi | okl ik
ORB features; data | Clanced: too simple (Statc-ofar)e Best | cnsemblesy-  Add
catures,  dad |, 15w accuracy, t0o ae-ora cs | ensembles)-
augmentation applied. complex —  overfit- specificity: 0.917 | visualization for
P (VGG16  v3)* Best | model

Limited model types
tested (e.g., no ResNet
or ensemble).

recall: 0.886 (State-of-
art).

interpretability and
clinical adoption.

Khalifa, M. et al. | Al in diagnostic | Various medical Ethical concerns. data Accuracy, efficiency, | Ethical guidelines,
(2024) [18] imaging (various Al | imaging datasets. rivac nee d, for cost-effectiveness. training, patient-
domains) prvacy, centered Al, and

training & investment. .

collaborative

integration.

Pinto-Coelho, L. et al. | Deep learning, CNN, | Diverse medical Integration Diagnostic accurac Continued
(2023) [19] GANs image datasets. £ . £ . Y> | innovation and
challenges, rapid | early detection rates. broader Al
technology evolution. S .
applications in

healthcare.
Azizi, A. et al. (2023) | Hybrid ML and DL | Disease-specific Data availability, Classification & Medical image
[20] approaches annotated datasets. model generalization, seomentation accurac synthesis, transfer
and interpretability. & Y. learning, and hybrid

model optimization.

Yoon, H. et al. (2019) . Labeled medical | Overfitting due to | Classification and | Improved data
Deep learning (CNN), | . . O . .
[21] ) images (various | limited labeled data. regression accuracy. augmentation,
data augmentation
organs). expanded  dataset
labeling, and
diverse disease
diagnosis.
© 2025, IJCSE All Rights Reserved 18
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Nyvlzua Felix Optimized CNN with MRI, “CT ~scans, X_ Data scarcity, model . . Explainable Al,
Kingsley et al. (2025) . . rays (pneumonia, | . o 7.3% classification .
3D/intensity-based interpretability, and o . multi-modal
[22] . . breast cancer, heart L . accuracy, 17.0% Dice | . . ..
augmentation,  Dice . . .| clinical integration. . integration, clinical
disease, diabetic Score, improved AUC. =
loss, dropout, and L2 . validation.
L retinopathy,
regularization. . .
intracranial
hemorrhage).
g;‘] Y. et al. (2025) g;ﬁs Vzr‘amvﬂs(;‘ HAM10000, Data privacy, domain | MaxViT: 87.03% AVG; E;’hf;f: with SVM,
i .72 | ISIC2018 (brain and | generalization, and | ConvNeXt L: Fl1 = prove
federated  learning, . : generalization  to
. . skin cancer | large data | 83.98% in FL model. .
ML integration. . . . unseen domains.
classification). requirements.
Wang et al. (2023) | GANs, self- | NA Real-time application Advance GAN:S,
[24] supervised learning, needs and | Improved automation, | increase
and DL optimization interpretability accuracy, and | explainability, and
methods. challenges. multimodal integration. | enable real-time
systems.
Li, X. et al. (2021) | Robust  nonconvex | NA Complex nonconvex | Global convergence to a | Apply to broader
[25] optimization via formulations. stationary point, | medical image
sequential convex numerical efficiency. problems.
optimization.

3. Comparative Analysis Based on the Different
Al, Machine Learning, and Deep Learning
Models

Nowadays, Al, ML, and DL have become central to
technological innovation, widely used to mechanize tasks,
generate insights, and handle large-scale data analysis. While
they are interrelated—with ML and DL being subsets of AI—
they differ significantly in scope, methodology, and
complexity. The following subsections explore these
distinctions in detail.

3.1 Artificial Intelligence (AI)

It is a self-motivated field in computer science motivated by
building machines capable of executing tasks that mimic
human cognitive functions. These comprise learning from
experience, analyzing environments, making decisions,
solving problems, and even exhibiting creativity. Al systems
range from modest task automation to complex decision-
making applications. A historically significant concept in Al
is the Turing Test, proposed by Alan Turing, which evaluates
whether a machine can exhibit behavior indistinguishable
from a human. Contemporary examples, such as Apple’s Siri,
demonstrate how Al has evolved to support natural human-
computer interaction. Al incorporates various techniques,
including rule-based systems and data-driven approaches, to
simulate intelligent behavior across diverse applications.

3.2 Machine Learning (ML)

It is an essential subset of Al, primarily focused on
identifying patterns within data to allow systems to make
forecasts and decisions without being explicitly programmed.
It improves over time by learning from data and adjusting to
changing conditions. Although many ML algorithms have
existed for decades, recent advancements in parallel
computing have dramatically expanded their capabilities,
allowing them to analyze vast datasets with high efficiency.
ML methods are typically classified into:

© 2025, IJCSE All Rights Reserved

o Supervised learning, which uses labeled datasets to train
models on input-output relationships (e.g., classifying
images of cats and dogs).

¢ Unsupervised learning analyzes unlabeled data to uncover
hidden structures or patterns.

ML models like Decision Trees (DTs) or Support Vector
Machines (SVMs) are known for their transparency, offering
clear, interpretable decision-making paths. These models are
especially useful in scenarios requiring explainability, such as
in healthcare or finance.

3.3 Deep Learning (DL)

It is a particular branch of ML that utilizes DNNs composed
of multiple layers of interconnected nodes. These layers
enable DL models to process data hierarchically, learning
increasingly complex features as information moves through
each layer.

Al involves techniques
that equip computers to
emulate human
behavior, enabling them

ML is a subset of Al
uses advanced
algorithms to  detect

Deep
DL is a subset of ML Learni
which  uses  neural ng
networks for in-depth
data  processing and

Figure 3. View of Al, ML, and DL [27]

DL excels in working with unbalanced data such as images,
audio, and natural language (NL) and powers uses like image
and speech recognition, and language translation. While DL
has demonstrated remarkable accuracy and performance, it
also presents several challenges:

19
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e Lack of interpretability: It is difficult to understand
how deep models reach decisions due to their
complex structure.

e High computational demands: DL models require
powerful hardware and longer training times
compared to traditional ML models.

Despite these challenges, DL’s ability to remove deep
insights from large and composite databases makes it a
critical tool in modern Al development.

Vol.13(10), Oct. 2025

Table 2 presents a comprehensive comparison of various
models categorized under Al, ML, and DL. Each model is
described by its core definition, benefits, drawbacks, and
evaluated performance metrics (such as accuracy, precision,
etc. The aim is to provide a complete view of traditional and
advanced modeling approaches, highlighting their suitability
for different tasks such as classification, segmentation, and
prediction. While deep learning models like ResNet and CNN
offer the highest performance, traditional methods like
Logistic Regression (LR) and DTs remain valuable for their
interpretability and efficiency in simpler problems.

Table 2. Comparative Overview of Artificial Intelligence (Al) Different Methods

Methods

Definition

Benefits

Drawbacks

Generalized Linear Model
[26]

A regression model that handles various
types of response distributions beyond
normal.

Easy to interpret and fast to train
for linear relationships.

Performs poorly on complex,
non-linear data.

Gradient Boosted Trees | Builds trees sequentially to correct previous | Handles non-linear data well and | It can overfit and requires careful
[26] errors using gradients. improves accuracy. tuning.
KNN [27] Classifies data based on the closest | Simple, no training time, effective | Slow on large data, sensitive to

neighbors in the training set.

on small datasets.

irrelevant features.

XGBoost [28]

An optimized gradient boosting with
regularization and parallel processing.

High accuracy, handles missing
data, and reduces overfitting.

Complex tuning and resource-
intensive.

Naive Bayes

Probabilistic classifier based on Bayes’
theorem, assuming feature independence.

Fast, simple, and it works well
with small datasets.

Assumes feature
(rarely true).

independence

Logistic Regression

Statistical model for binary classification
predicting probabilities using a logistic
function.

Easy to implement, interpretable
coefficients.

Limited to linear relationships.

Decision Tree

Tree-structured model splitting data based
on feature thresholds to classify.

Intuitive, interpretable, handles

nonlinear data

Prone to overfitting, sensitive to
data variations

Random Forest

An ensemble of decision trees built on
random subsets of data/features,
aggregating predictions.

Reduces overfitting and achieves
high accuracy.

Less interpretable than single
trees, computationally intensive.

Support Vector Machine Finds the optimal hyperplane maximizing | Effective in high-dimensional | Can be slow with large datasets,
the margin between classes in the feature | spaces, robust to overfitting. sensitive to kernel and parameter
space. choice.

CNN [29] A deep learning model that wuses | High accuracy for image | Requires large datasets; GPU-
convolutional layers to extract spatial | classification; automatic feature | intensive.
features from images. learning.

U-shaped  Convolutional | Specialized  for  biomedical image | Works well with limited data; | Limited use for -classification;

Network(U-Net) [30]

segmentation using a symmetric encoder-
decoder architecture.

precise segmentation.

sensitive to input variability.

Residual Neural
Network(ResNet) [31]

Deep neural network using identity shortcut
connections to allow very deep
architectures.

Very accurate; mitigates the
vanishing gradient problem.

More  complex  architecture;
training time is longer.

Densely Connected
Convolutional

Network(DenseNet) [32]

Each layer connects to all previous layers to
improve information flow.

Efficient; fewer parameters and
better feature reuse.

High memory use; slower during
inference.

GAN (Generative
Adversarial Network) [33]

Uses two networks (generator +
discriminator) to generate synthetic but
realistic data.

Useful for medical image
enhancement and augmentation.

Unstable training; requires tuning.

This section delivers a detailed proportional analysis of
different AI, ML, and DL models, highlighting their
definitions, advantages, limitations, and performance metrics
to guide their appropriate use in tasks like classification,
prediction, and image segmentation.

4. Existing Result Analysis

This section presents
performance of numerous Al,

a complete examination of the
ML, and DL models

© 2025, IJCSE All Rights Reserved

constructed on key classification metrics, such as accuracy,
precision, etc. The evaluation covers traditional Al
algorithms, conventional ML methods, and advanced DL
architectures applied across different data complexities and
application domains, including image analysis. Through
comparative tables and corresponding visualizations, the
effectiveness, assets, and restrictions of each model are
highlighted, providing visions into their appropriateness for
diverse tasks.
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Table 3. Performance Comparison of Al Models

Method Accuracy Precision Recall
Generalized

Linear  Model | 79.2% 66.5% 61.8%
[26]

Gradient

Boosted 75.4% 53% 49.1%
Trees[26]

KNN[27] 85% 83.5% 82%
XGBoost [28] 91.5% 89% 88%

Table 3 presents a comparative analysis of Al algorithms,
Generalized Linear Model (GLM), Gradient Boosted Trees,
KNN, and XGBoost based on their classification presentation
metrics. The models are evaluated using accuracy, precision,
and recall to assess their efficiency in handling various types
of data and complexities. XGBoost demonstrates the highest
performance across all metrics, while Gradient Boosted Trees
show relatively lower scores.

Figure 4 below shows the performance comparison of Al
models (Generalized Linear Model, Gradient Boosted Trees,
KNN, and XGBoost) using Accuracy, Precision, and Recall
metrics. XGBoost shows the maximum performance through
all evaluation parameters, while Gradient Boosted Trees
exhibit lower scores in comparison.
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Figure 4. Performance Metrics Comparison of Different Al Classification
Models

Table 4. Performance Metrics of Traditional Machine Learning Algorithms
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These models are generally faster and easier to interpret
compared to advanced ensemble methods, though their
performance varies depending on data characteristics.
Logistic Regression offers balanced performance with
interpretability, while Naive Bayes provides simplicity at the
cost of lower recall and precision.

80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00%

%

M Accuracy
B Precision

Recall

Figure 5. Performance Comparison of Different Machine Learning Models

Figure 5 below compares the different metrics, accuracy,
precision, and recall, of various ML techniques, including
NB, LR, DT, RF, and SVM methods. The regression model
shows the highest precision, while NB and Regression
models lead in accuracy. Recall values are generally lower
across all models, highlighting potential areas for
improvement in sensitivity.

Table 5. Performance Comparison of Deep Learning Models in Image

Analysis
Method Accuracy | Precision Recall
Convolutional Neural o o o
Network (CNN) 94.0% 91.5% 90.0%
U-Net 92.0% 90.0% 87.5%
Residual Neural o o o
Network (ResNet) 94.5% 92.5% 91.0%
DenseNet 93.0% 90.0% 88.5%
Generative
Adversarial Network | 88.5% 86.5% 84.0%
(GAN)

Method Accuracy Precision Recall
I[\;*;‘]V e Bayes | o5 6, 56.5% 55.2%
Logistic o o 0
Regression [30] 79.2% 73.1% 52.5%
'[)3‘;C]151°“ Tree | 76 5% 66.0% 44.5%
Ez"]dom Forest | 75 0% 54.9% 49.4%
Support Vector o o o
Machine [33] 76.1% 55.8% 48.8%

Table 4 summarizes the performance of traditional ML
algorithms, like Naive Bayes (NB), Logistic Regression (LR),
DT, Random Forest (RF), and SVM, based on key
classification metrics, such as accuracy, precision, and recall.

© 2025, IJCSE All Rights Reserved

Table 5 offers a comparative indication of DL constructions:
CNN, U-Net, Residual Neural Network (ResNet), DenseNet,
and Generative Adversarial Network (GAN). These methods
are evaluated using accuracy, precision, and recall metrics,
focusing on tasks such as classification and segmentation,
particularly in medical imaging. ResNet and CNN exhibit the
highest performance, while U-Net is effective for
segmentation even with limited data. GANs offer unique
capabilities for data generation but require careful tuning and
are less stable during training.
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Figure 6. Performance Comparison of Different Deep Learning Models.

Figure 6 below compares the presentation of various DL
models, including CNN, U-Net, Residual Neural Networks
(ResNet), DenseNet, and Generative Adversarial Networks
(GAN). The comparison is based on three metrics, such as
accuracy, precision, and recall. ResNet demonstrates the
highest accuracy and recall, followed closely by CNN and
DenseNet. U-Net shows strong performance, especially in
precision, while GAN exhibits slightly lower but still
competitive results. Overall, this visualization highlights the
superior predictive capabilities of advanced DL architectures
in handling composite data tasks.

5. Conclusion

This article concluded that MI is an essential constituent of
current healthcare, providing critical insights for diagnosis,
treatment strategy, and disease monitoring. The complexity
and volume of medical image data pose significant challenges
for traditional manual analysis, often resulting in time-
consuming processes and potential diagnostic inconsistencies.
The integration of optimization algorithms has improved
medical image processing by enhancing image quality,
automating feature selection, and fine-tuning model
parameters to boost accuracy and efficiency. Al, particularly
ML and DL, has revolutionized MI analysis by enabling
automated, high-precision interpretation of complex images.
While traditional Al and ML methods offer interpretability
and efficiency in simpler scenarios, deep learning models
demonstrate superior performance in handling large, high-
dimensional medical image datasets, particularly in
classification and segmentation tasks. Though, these
advanced models require substantial computational resources
and large annotated datasets, and their interpretability remains
limited. Overall, the synergy of Al, optimization techniques,
and deep learning architectures is driving significant
advancements in medical imaging. This integration enhances
diagnostic accuracy, accelerates clinical workflows, and
supports personalized patient care. As research and
technology continue to evolve, these tools will become
increasingly vital in delivering scalable, intelligent healthcare
solutions. future scope could focus on advance Deep learning
models such as Convolutional Neural Networks (CNNs) and

© 2025, IJCSE All Rights Reserved
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Recurrent Neural Networks (RNNs) for higher efficiency in
medical fields.
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