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Abstract: The domain of medical image analysis (MIA) within Machine Learning (ML), Artificial Intelligence (AI), and Deep 

Learning (DL), the significance of employing advanced methods cannot be overstated. Several methods have attained better 

outcomes in several fields, making it especially noteworthy for MIA in healthcare. The combination of these fields with MIA 

gives real-time analysis of prior and different databases, comprehensive insights that are important to improve healthcare results, 

and operational efficacy in the industry.  This analysis article of existing literature considers a thorough examination of the most 

current ML, DL, and AI methods designed to identify the complexities faced in medical healthcare, specifically focusing on the 

utilization of DL, ML, and AI methods in MIA. The main contribution of this paper is how AI, ML and DL is used in medical 

field for early disease detection, drug discovery, and robotic-assisted surgeries. Comparative Analysis Based on the Different 

models and Algorithm is properly defined in this paper. It analysed the different methods, such as convolutional neural 

networks(CNNs), Support Vector Machine (SVM), Logistic Regression (LR), Decision Tree (DT), etc. This paper review the 

existing result was analysed, by other authors with a high accuracy achieved with the CNN method of 94%, XGBoost achieved 

the maximum accuracy of 91%, and Logistic Regression an accuracy of 79% and compared with the existing models. 

 

Keywords: Medical Image Analysis (MIA), Machine Learning (ML), Artificial Intelligence (AI), Deep Learning (DL), 

Convolutional Neural Networks (CNN) 
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1. Introduction  
 

Nowadays, Medical (X-ray, MRI, and CT-Scan) Images are 

crucial tools in the medical field, offering comprehensive 

insights into the internal organization and condition of a 

patient’s tissues. They are widely used for diagnosis, 

treatment strategy, monitoring disease, etc. Basically, the 

different types of images include X-rays, MRI, ultrasound, 

nuclear medicine, pathology slides, and ophthalmological 

images [1]. Traditionally, interpreting these images relies 

deeply on the capability of medical experts, such as 

radiologists and pathologists. Various imaging techniques are 

employed to obtain these medical images, each suited for 

different clinical purposes. For example, X-rays are often 

used for bone and chest examinations, CT scans provide 

comprehensive cross-sectional images, and MRI provides 

high-contrast medical images of soft tissues. Ultrasound 

utilizes sound waves for real-time imaging, while nuclear 

medicine highlights physiological functions. These 

techniques differ in complexity, resolution, and the type of 

information they provide [2]. Despite their importance, 
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medical image analysis faces several challenges. High-

dimensional data, noise, artifacts, and variability in imaging 

quality complicate interpretation. The sheer volume of data 

and the requirement for rapid, precise diagnosis put immense 

pressure on healthcare professionals. Additionally, manual 

analysis is time-consuming and subject to human expectation, 

that may impact diagnostic consistency and treatment 

outcomes. 

 

To solve these challenges, optimization algorithms have been 

increasingly applied in medical image analysis. These 

algorithms improve image enhancement, segmentation, 

feature extraction, and classification by adjustment metrics to 

exploit precision and efficacy [3]. Techniques such as 

gradient descent, genetic algorithms, and Bayesian 

optimization help automatically identify the best algorithm 

settings. Optimization also plays a key role in feature 

selection by reducing dimensionality and focusing on the 

most relevant image attributes, thus improving model 

interpretability and robustness. Beyond image processing, 

optimization methods support healthcare resource allocation, 

including staff scheduling, supply chain management, and 

emergency response [4]. These applications ensure efficient 

use of limited resources while maintaining high-quality 

patient care. As medical imaging (MI) technology advances, 

optimization techniques will continue to be integral in 

enhancing diagnostic precision, workflow efficiency, and 

personalized treatment strategies. 

 

In parallel, Several domains, such as Artificial Intelligence 

(AI), especially Machine Learning (ML) and Deep Learning 

(DL), have developed as a powerful tool to support and 

improve medical image analysis. ML allows systems to study 

designs from data and make detection and classification 

decisions without explicit programming. It encompasses 

methods, such as supervised, unsupervised, and semi-

supervised learning, and often requires domain expertise for 

feature extraction and optimizing the features [5]. To 

overcome the limitations of manual feature engineering, DL 

has gained traction. DL models can automatically extract 

meaningful features from raw medical images and learn 

complex representations through multiple layers of 

abstraction [88]. DL has proven especially valuable in 

medical domains such as MRI, Radiology, Cardiology, and 

Neurology. 

 

Several DL architectures, originally developed in computer 

vision (CV), have been adapted for MIA. Convolutional 

Neural Networks (CNNs) and Recurrent Neural Networks 

(RNNs) are DL models applied to tasks like segmentation, 

object detection, classification,  and image registration. In 

addition, unsupervised models, including Restricted 

Boltzmann Machines (RBMs), Autoencoders, Generative 

Adversarial Networks (GANs), and Deep Belief Networks 

(DBNs),  are utilized for feature learning and image 

generation tasks [6]. The applications of DL in MI are 

visually summarized in Figure 1, which demonstrates how 

these technologies contribute to various stages of MIA. 

 

 
Figure. 1.  Different Medial Image Technologies Images  [7] [8] [9] 

 

 

 
Figure 2 Protests of important growths in the history of NNs [5] 

 

The advance of DL is rooted in decades of progress in neural 

network research, beginning with early models by McCulloch 

and Pitts in the 1940s. Milestones such as the Perceptron by 

Rosenblatt, the ADALINE model by Widrow, and the 

Neocognitron by Fukushima laid the groundwork for modern 

architectures. Breakthroughs such as back propagation, CNNs 

for handwritten digit recognition by LeCun, and Deep Belief 

Networks by Hinton et al., shaped today’s DL systems. These 

key advancements are depicted in As MI data continues to be 

produced in complexity and volume, the integration of AI, 

DL, and optimization algorithms will play a major role in 

improving diagnostic accuracy, reducing human error, 

streamlining clinical workflows, and enabling more 

personalized and data-driven healthcare provision. 

 

Lastly, the addition of optimization techniques and artificial 

intelligence—particularly DL—has revolutionized MIA by 

addressing challenges like data complexity, variability, and 

diagnostic delays. These advancements have enabled 

automated, accurate, and efficient interpretation of medical 

images, as illustrated in Figures 1 and 2, marking a significant 

shift toward more intelligent and scalable healthcare 

solutions. 

 

The rest of the article is defined as shadows: Section 2 

explains the different ML, DL, AI, and Optimization-based 

Medical Image Analysis (MIA) methods. Section 3 discusses 

the comparative analysis based on the different methods (AI, 

ML, and DL). The existing result analysis based on different 

AI, ML, and DL methods elaborates the different 
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performance metrics, such as accuracy, precision, etc., with 

other comparison methods.  

 

2. Related Work  
 

Recent developments in medical image processing leverage 

ML, DL, AI, and optimization methods to improve disease 

classification and segmentation. ML focuses on feature 

selection and algorithm design, while DL, particularly CNNs, 

excels in learning from complex image data. AI integrates 

these approaches to enable personalized and predictive 

healthcare. Optimization methods help enhance model 

accuracy and generalization. Despite promising results, 

limitations, such as limited data, interpretability, and ethical 

concerns, endure in key research areas. 

 

2.1 Medical Image Processing Using Machine Learning 

(ML) 

Recent advances in MI processing have increasingly 

leveraged ML techniques to improve disease detection, 

segmentation, and classification. Various studies have 

addressed challenges ranging from feature selection and 

algorithm design to ethical considerations and clinical 

applicability, driving meaningful progress in the field. [10] 

used ML in medical imaging to select the most relevant 

features for precise detection of disease, though many 

features were often irrelevant and slowed computation. This 

research presented a Congruent Feature Selection technique 

based on similarity and correlation of pixel intensities and 

textures to improve feature relevance and consistency. The 

method significantly increased ML performance, precision, 

boosting accuracy, and training speed by over 10%, while 

reducing error and selection time by more than 12% 

compared to existing methods. Another author, [11], aimed to 

present the role of values specific to medical image analysis. 

The article defined main technical choices in ML, especially 

the end-to-end versus separable learning techniques, and 

presented a clear, organized framework linking these values 

to technical decisions. By doing so, it sought to deepen the 

understanding of how philosophical perspectives influenced 

research design and outcomes. This approach highlighted 

how the philosophy of science clarified and improved 

important aspects of MIA research, ultimately guiding better 

practices in the field. In this study [12] leveraged the K-

Nearest Neighbor (KNN) method combined with NNs for 

effective MI segmentation and classification, utilizing gray-

level co-occurrence matrix features. Tested on 

echocardiographic images, the system showed improved 

accuracy and performance over existing methods, validated 

through metrics such as Mean Squared Error, PSNR, and 

SSIM. Another study, [13] showed great potential to improve 

patient outcomes; medical image analysis research was 

hindered by problems, including biased data and research 

focused more on publication than clinical value. Progress 

slowed because models often demonstrated limited real-world 

effectiveness and evaluation flaws. This study examined these 

barriers, ongoing solutions, and suggested changes in 

research practices to better align ML with healthcare needs. 

Meaningful progress required shifting priorities and standards 

across the field. 

2.2 Medical Image Processing Using Deep learning (DL) 

Recent studies in MI processing using DL highlight the 

efficiency of CNNs and transfer learning (TL) for accurate 

disease diagnosis, while addressing challenges like limited 

data, model interpretability, and adaptive techniques for 

improved clinical applications. [14] explored the use of 

CNNs for diagnosing lung nodules from chest X-rays, 

indicating high accuracy, sensitivity, etc., on a large 

annotated database. The results highlighted CNNs' potential 

to support early lung cancer detection and improve clinical 

decision-making. While promising, problems such as model 

interpretability, data privacy, and regulatory compliance 

remained. The research underscored CNNs' transformative 

role in diagnostic medicine and emphasized the need for 

further research to ensure safe and effective clinical adoption. 

Similarly, [15] aimed to develop an automated method for 

selecting the most suitable pooling method in CNNs for 

image fusion tasks; the research based its method on the 

characteristics of input images. The presented method 

outperformed traditional approaches, such as DWT, NSCT, 

and PCA in terms of image superiority parameters (PSNR, 

MSE, VIF, etc.) and processing time. By enabling adaptive 

pooling selection, it improved CNN convergence and 

delivered more consistent performance across different 

datasets. The results highlighted its potential for generalized 

multi-modal image fusion, with future scope for integrating 

newly developed pooling methods. In [16] focused on 

improving CNN-based classification for medical image 

analysis, solving problems including limited labeled data and 

improving performance on large datasets. A high-performing 

CNN architecture with fully connected layers was designed, 

which achieved 95.77% accuracy across 24 medical image 

classes and an average precision of 0.69 on the ROC curve. 

Calculated using different parameters,  such as precision, 

recall, etc.,  the system showed strong potential for improving 

image retrieval and supporting advanced computer-aided 

diagnosis. [17] investigated the utilize of CNN-based 

techniques for pneumonia classification using a small chest 

X-ray dataset, solving issues related to limited labeled data. It 

compared traditional SVM with ORB features, capsule 

networks, and CNN-based transfer learning using VGG16 

and InceptionV3. The results demonstrated that transfer 

learning (TL), especially with fine-tuned layers and proper 

network complexity, outperformed the other methods. Data 

augmentation proved to be essential for improving model 

performance. The research concluded that CNN-based 

approaches, especially transfer learning, were more effective 

than traditional methods and emphasized the need for future 

work on reducing overfitting, exploring advanced models, 

and increasing model interpretability for clinical use. 

 
2.3 Medical Image Processing Using Artificial Intelligence 

(AI)  

AI is converting MI by allowing more precise and efficient 

analysis of complex medical data. Utilizing advanced 

methods like deep learning and neural networks, AI increases 

disease detection, classification, and personalized treatment 

planning. This integration is reshaping healthcare by 

improving diagnostic capabilities and supporting better 

clinical decisions. [18] examined how AI revolutionized 
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analytic imaging by enhancing efficiency, accuracy, and 

personalized care in healthcare. Analyzing 30 studies, it 

highlighted AI’s roles in increasing operational efficiency, 

image interpretation, enabling predictive analytics, and 

supporting clinical decisions. Despite its promise, problems, 

such as ethical problems, security, and the need for 

investment and training, remained. The study emphasized the 

need for ongoing commitment to ethical AI development, 

professional education, and collaboration to ensure effective 

clinical integration and equitable healthcare outcomes. 

Another author, [19] examined he integration of AI in 

medical imaging, which drove a major transformation in 

healthcare by enhancing diagnostic accuracy and efficiency. 

Advanced methods such as DL, CNNs, and GANs enabled 

faster, more precise detection of abnormalities across various 

specialties, including radiology and cardiology. AI not only 

accelerated image interpretation but also supported early 

detection of disease and personalized treatment strategies, 

ultimately increasing patient outcomes. This shift 

underscored AI’s serious role in revolutionizing medical 

diagnosis and determining the future of healthcare. This 

study, [20], provided a study of medical imaging methods and 

their use in AI-driven disease classification and segmentation, 

explaining core AI, ML, and DL concepts. It systematically 

examined research on AI applications across many 

anatomical regions, highlighting key findings and emerging 

trends. The paper emphasized challenges like limited data, 

model generalization, and interpretability, advocating for 

hybrid ML-DL techniques that showed strong potential. It 

also identified medical image synthesis and transfer learning 

as vital strategies to overcome data scarcity, pointing to 

promising directions for future research in medical diagnosis. 

Another study, [21], designed AI models to enable highly 

accurate medical image diagnosis. This required properly 

labeled and standardized images that were pre-processed 

before analysis. To prevent overfitting from limited data, 

augmentation methods,  such as rotation and flipping, were 

used to expand the datasets. Supervised learning (SL) handled 

classification and regression, while unsupervised methods 

solved clustering and generation. CNNs efficiently extracted 

features for diagnosing diseases across many organs and 

systems, demonstrating AI’s broad capabilities in MI. 

 

2.4 Medical Image Processing Using Optimization 

Methods  

Recent advancements used in medical image processing 

through optimization techniques. It highlights innovative 

models and algorithms that enhance disease diagnosis, 

improve generalization, and address challenges like data 

privacy and overfitting, demonstrating strong potential for 

clinical application. In study [22] focused on developing an 

optimized Medical Image Analysis Model (MIAM) using 

advanced data augmentation approaches within a CNN 

framework to enhance disease diagnosis. By integrating 3D 

and intensity-based augmentations, along with regularization 

methods like dropout and batch normalization, the model 

enhanced generalization and reduced overfitting. It was 

assessed across multiple imaging modalities and diseases, 

achieving notable gains in accuracy and segmentation 

performance. These improvements showed their clinical 

potential, with future work presented to increase 

explainability, incorporate multi-modal data, and validate 

outcomes through real-world trials. In study [13], solved 

problems in medical image classification by exploring a novel 

CLIP-based approach using multiple CNN and ViT 

architectures, integrating federated learning for privacy, and 

applying traditional ML methods to improve generalization. It 

was tested on brain and skin cancer datasets, where models 

like MaxViT and ConvNeXt_L demonstrated strong 

performance, particularly in multimodal and federated 

settings. The results showed that combining dl with methods 

like SVM further increased performance on unseen medical 

data, showing a promising direction for developing privacy-

preserving, generalizable medical AI systems. In another 

research [24] explored that medical image analysis played a 

vital role in diagnosing and monitoring diseases by allowing 

detailed examination of internal body structures through 

imaging data. With developments in DL and computer vision, 

the field saw improvements in automation, accuracy, and 

real-time processing. Emerging techniques such as GANs, 

self-supervised learning, and interpretability approaches 

opened new research directions. This research focused on 

optimization methods that enhanced the accuracy, efficiency, 

and reliability of MIA systems. Lastly, [25]  focused on a 

specific class of robust nonconvex optimization problems 

where the objective function, given certain parameters, was 

represented as a difference of convex functions. It established 

necessary optimality conditions under general assumptions 

and introduced a sequential robust convex optimization 

algorithm to solve the problem. The presented method 

demonstrated global convergence to a stationary point under 

broad uncertainty conditions. Its application to medical image 

enhancement confirmed the algorithm’s effectiveness through 

numerical results. Table I provides a comparative overview of 

recent studies employing various machine learning, deep 

learning, AI, and optimization methods for medical image 

analysis. It highlights the datasets used, key limitations, 

performance metrics, and proposed future research directions, 

illustrating advances and ongoing challenges in improving 

diagnostic accuracy, model generalization, privacy, and 

clinical applicability. 

 

Table 1. Analysis of ML, DL, AI, and Optimization methods in Medical Image Processing 
Author & Years  Method Used  Database  Limitations  Performance Metrics  Improvements 

Anjum et al., (2024) 

[10] 

Analytical learning 

paradigm; Congruent 

Feature Selection 

Method using 

similarity and 

correlation-based 

features 

Dataset with brain, 

lung, eye scans 

(multi-organ medical 

images) 

Irrelevant features 

increase computation 

time if not filtered; 

generalizability to 

other datasets not 

deeply discussed 

Accuracy ↑13.19%, 

Precision ↑10.69%, 

Training rate ↑11.06%, 

Mean error ↓12.56%, 

Selection time ↓13.56% 

compared to other 

models 

Apply the method 

across diverse 

medical image 

datasets to validate 

feature selection 

performance 
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Heena et al. (2023) 

[12] 

 

 

 

 

 

 

 

 

K-Nearest Neighbor 

(KNN) for 

segmentation; neural 

networks for 

classification; gray 

level co-occurrence 

matrix (GLCM) 

features for 

extraction. 

Echocardiographic 

image datasets 

(Synthetic and Echo) 

Limited testing on 

other medical imaging 

datasets; needs real-

time validation on 

untrained or diverse 

datasets. 

 

 

 

Accuracy: Synthetic 

89%, Echo 88%; 

Sensitivity: Synthetic 

97%, Echo 63%; 

Specificity: Synthetic 

25%, Echo 81%. 

 

 

 

 

Apply algorithm to 

real-time and other 

untrained databases 

for broader 

applicability; 

enhance neural 

network classifier 

integration.. 

Varoquaux et al., 

(2022) [13] 

 

 

 

 

Systematic review of 

challenges in medical 

image ML; Evaluates 

biases, data 

limitations, and 

research incentives. 

 

Various public and 

research-specific 

medical imaging 

datasets. 

Bias in datasets; real-

world clinical impact 

is minimal; 

performance plateaus 

in real-life cohorts; 

publication-driven 

development trends. 

NA 

 

 

 

 

 

 

Promote 

standardization, 

unbiased dataset 

curation, and 

clinically relevant 

benchmarking. 

 

K. Desai et al. (2024) 

[14] 

 

 

 

Proprietary CNN 

model for lung nodule 

diagnosis from chest 

X-rays. 

 

Interpretability 

challenges, data 

privacy concerns, and 

regulatory hurdles. 

10,000 labeled chest 

X-ray images (lung 

nodules). 

 

 

Accuracy: 94.8%, 

Sensitivity: 92.1%, 

Specificity: 96.5%, 

AUC, Precision, Recall, 

F1-score  

Enhance model 

interpretability, 

address 

privacy/regulatory 

compliance. 

G. J. Trivedi et al. 

(2022) [15] 

 

 

 

 

CNN with automated 

pooling for image 

fusion. 

 

 

 

Existing methods are 

not generalizable 

across datasets; they 

are dependent on 

fixed pooling 

techniques 

Multiple datasets 

(varied) 

 

 

 

 

PSNR: 36.82, MSE: 

0.53, Fusion Factor: 

4.62, VIF: 0.91, Avg. 

Time: 29.66s. 

 

 

Add new optimal 

pooling methods; 

expand to more 

image fusion 

applications. 

 

P. Kalyani et al. 

(2021) [16] 

 

 

 

CNN with 3 fully 

connected layers for 

medical image 

classification & 

retrieval. 

Limited precision in 

retrieval; challenges 

with multimodal data. 

 

Large multimodal 

medical image dataset 

(24 classes). 

 

 

Accuracy: 95.77%, 

Avg. ROC Precision: 

0.69. 

 

 

Improve retrieval 

accuracy; further 

development of 

CADe systems. 

 

S. S. Yadav et al. 

(2019) [17] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transfer learning with 

VGG16, InceptionV3, 

and CapsNet on chest 

X-ray images for 

pneumonia 

classification; 

baseline with SVM + 

ORB features; data 

augmentation applied. 

 

 

 

Medical image 

datasets are small and 

hard to label- Risk of 

overfitting with deep 

networks on small 

datasets- Model 

complexity must be 

balanced: too simple 

→ low accuracy, too 

complex → overfit- 

Limited model types 

tested (e.g., no ResNet 

or ensemble). 

Small chest X-ray 

dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

Normal vs Pneumonia:• 

Best accuracy: 0.938 

(VGG16 v3)• Best 

specificity: 0.944 

(VGG16 v3)• Best 

recall: 0.939 (VGG16 

v3)Bacteria vs Virus:•: • 

Best accuracy: 0.932 

(State-of-art)• Best 

specificity: 0.917 

(VGG16 v3)• Best 

recall: 0.886 (State-of-

art). 

 

Investigate methods 

to stabilize training 

in transfer learning 

(avoid overfitting)- 

Evaluate stronger 

models (e.g., 

ResNetv2, CNN 

ensembles)- Add 

visualization for 

model 

interpretability and 

clinical adoption. 

Khalifa, M. et al. 

(2024) [18] 

 

 

 

AI in diagnostic 

imaging (various AI 

domains) 

 

 

Various medical 

imaging datasets. 

 

 

 

Ethical concerns, data 

privacy, need for 

training & investment. 

 

Accuracy, efficiency, 

cost-effectiveness. 

 

 

 

Ethical guidelines, 

training, patient-

centered AI, and 

collaborative 

integration. 

Pinto-Coelho, L. et al. 

(2023) [19] 

 

 

 

Deep learning, CNN, 

GANs 

 

 

 

Diverse medical 

image datasets. 

 

 

 

Integration 

challenges, rapid 

technology evolution. 

 

Diagnostic accuracy, 

early detection rates. 

 

 

Continued 

innovation and 

broader AI 

applications in 

healthcare. 

Azizi, A. et al. (2023) 

[20] 

 

 

 

Hybrid ML and DL 

approaches 

 

 

 

Disease-specific 

annotated datasets. 

 

 

 

Data availability, 

model generalization, 

and interpretability. 

 

 

Classification & 

segmentation accuracy. 

 

 

Medical image 

synthesis, transfer 

learning, and hybrid 

model optimization. 

 

Yoon, H. et al. (2019) 

[21] 

 

 

 

 

Deep learning (CNN), 

data augmentation 

 

 

 

Labeled medical 

images (various 

organs). 

 

 

 

Overfitting due to 

limited labeled data. 

 

 

 

 

Classification and 

regression accuracy. 

 

 

 

 

Improved data 

augmentation, 

expanded dataset 

labeling, and 

diverse disease 

diagnosis. 
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Nwizua Felix 

Kingsley et al. (2025) 

[22] 

 

 

 

 

Optimized CNN with 

3D/intensity-based 

augmentation, Dice 

loss, dropout, and L2 

regularization. 

 

MRI, CT scans, X-

rays (pneumonia, 

breast cancer, heart 

disease, diabetic 

retinopathy, 

intracranial 

hemorrhage). 

Data scarcity, model 

interpretability, and 

clinical integration. 

 

 

 

 7.3% classification 

accuracy, ↑7.0% Dice 

Score, improved AUC. 

 

 

Explainable AI, 

multi-modal 

integration, clinical 

validation. 

 

 

Wu, Y. et al. (2025) 

[23] 

 

 

 

CLIP variant (4 

CNNs, 8 ViTs), 

federated learning, 

ML integration. 

 

HAM10000, 

ISIC2018 (brain and 

skin cancer 

classification). 

Data privacy, domain 

generalization, and 

large data 

requirements. 

MaxViT: 87.03% AVG; 

ConvNeXt_L: F1 = 

83.98% in FL model. 

 

Enhance with SVM, 

improve 

generalization to 

unseen domains. 

 

Wang et al. (2023) 

[24] 

 

 

 

GANs, self-

supervised learning, 

and DL optimization 

methods. 

 

NA  

 

 

 

 

Real-time application 

needs and 

interpretability 

challenges. 

 

Improved automation, 

accuracy, and 

multimodal integration. 

Advance GANs, 

increase 

explainability, and 

enable real-time 

systems. 

Li, X. et al. (2021) 

[25] 

 

 

Robust nonconvex 

optimization via 

sequential convex 

optimization. 

NA 

 

 

 

Complex nonconvex 

formulations. 

 

 

Global convergence to a 

stationary point, 

numerical efficiency. 

 

Apply to broader 

medical image 

problems. 

 

 

3. Comparative Analysis Based on the Different 

AI, Machine Learning, and Deep Learning 

Models 

 
Nowadays, AI, ML, and DL have become central to 

technological innovation, widely used to mechanize tasks, 

generate insights, and handle large-scale data analysis. While 

they are interrelated—with ML and DL being subsets of AI—

they differ significantly in scope, methodology, and 

complexity. The following subsections explore these 

distinctions in detail. 

 

3.1 Artificial Intelligence (AI)  

It is a self-motivated field in computer science motivated by 

building machines capable of executing tasks that mimic 

human cognitive functions. These comprise learning from 

experience, analyzing environments, making decisions, 

solving problems, and even exhibiting creativity. AI systems 

range from modest task automation to complex decision-

making applications. A historically significant concept in AI 

is the Turing Test, proposed by Alan Turing, which evaluates 

whether a machine can exhibit behavior indistinguishable 

from a human. Contemporary examples, such as Apple’s Siri, 

demonstrate how AI has evolved to support natural human-

computer interaction. AI incorporates various techniques, 

including rule-based systems and data-driven approaches, to 

simulate intelligent behavior across diverse applications. 

 

3.2 Machine Learning (ML) 

It is an essential subset of AI, primarily focused on 

identifying patterns within data to allow systems to make 

forecasts and decisions without being explicitly programmed. 

It improves over time by learning from data and adjusting to 

changing conditions. Although many ML algorithms have 

existed for decades, recent advancements in parallel 

computing have dramatically expanded their capabilities, 

allowing them to analyze vast datasets with high efficiency. 

ML methods are typically classified into: 

• Supervised learning, which uses labeled datasets to train 

models on input-output relationships (e.g., classifying 

images of cats and dogs). 

• Unsupervised learning analyzes unlabeled data to uncover 

hidden structures or patterns. 

 

ML models like Decision Trees (DTs) or Support Vector 

Machines (SVMs) are known for their transparency, offering 

clear, interpretable decision-making paths. These models are 

especially useful in scenarios requiring explainability, such as 

in healthcare or finance. 

 

3.3 Deep Learning (DL) 

It is a particular branch of ML that utilizes DNNs composed 

of multiple layers of interconnected nodes. These layers 

enable DL models to process data hierarchically, learning 

increasingly complex features as information moves through 

each layer. 

 
 Figure 3. View of AI, ML, and DL [27] 

 

DL excels in working with unbalanced data such as images, 

audio, and natural language (NL) and powers uses like image 

and speech recognition, and language translation. While DL 

has demonstrated remarkable accuracy and performance, it 

also presents several challenges: 

Artificial 

Intelligence 

 

 

 

 

 

 

 

 

 

Machine 

Learning 

 

 

 

 

 

Deep  

Learni

ng 

AI involves techniques 
that equip computers to 

emulate human 

behavior, enabling them 
to learn, make decisions, 

recognize patterns, and 

solve complex problems 
in a manner akin to 

human intelligence. 

ML is a subset of AI, 
uses advanced 

algorithms to detect 

patterns in large data 
sets, allowing machines 

to learn and adapt. ML 

algorithms use 
supervised or 

unsupervised learning 

methods. 

DL is a subset of ML 

which uses neural 

networks for in-depth 
data processing and 

analytical tasks. DL 

leverages multiple layers 
of artificial neural 

networks to extract high-

level features from raw 
input data, simulating 

the way human brains 

perceive and understand 
the world. 
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• Lack of interpretability: It is difficult to understand 

how deep models reach decisions due to their 

complex structure. 

• High computational demands: DL models require 

powerful hardware and longer training times 

compared to traditional ML models. 

 

Despite these challenges, DL’s ability to remove deep 

insights from large and composite databases makes it a 

critical tool in modern AI development.  

 

 Table 2 presents a comprehensive comparison of various 

models categorized under AI, ML, and DL. Each model is 

described by its core definition, benefits, drawbacks, and 

evaluated performance metrics (such as accuracy, precision, 

etc. The aim is to provide a complete view of traditional and 

advanced modeling approaches, highlighting their suitability 

for different tasks such as classification, segmentation, and 

prediction. While deep learning models like ResNet and CNN 

offer the highest performance, traditional methods like 

Logistic Regression (LR) and DTs remain valuable for their 

interpretability and efficiency in simpler problems. 
 

Table 2. Comparative Overview of  Artificial Intelligence (AI) Different Methods 

Methods  Definition  Benefits  Drawbacks  

Generalized Linear Model 

[26] 

A regression model that handles various 

types of response distributions beyond 

normal. 

Easy to interpret and fast to train 

for linear relationships. 

Performs poorly on complex, 

non-linear data. 

Gradient Boosted Trees  

[26] 

Builds trees sequentially to correct previous 

errors using gradients. 

Handles non-linear data well and 

improves accuracy. 

It can overfit and requires careful 

tuning. 

KNN [27] Classifies data based on the closest 

neighbors in the training set. 

Simple, no training time, effective 

on small datasets. 

Slow on large data, sensitive to 

irrelevant features. 

XGBoost [28] An optimized gradient boosting with 

regularization and parallel processing. 

High accuracy, handles missing 

data, and reduces overfitting. 

Complex tuning and resource-

intensive. 

Naive Bayes Probabilistic classifier based on Bayes’ 

theorem, assuming feature independence. 

Fast, simple, and it works well 

with small datasets. 

Assumes feature independence 

(rarely true). 

Logistic Regression Statistical model for binary classification 

predicting probabilities using a logistic 

function. 

Easy to implement, interpretable 

coefficients. 

Limited to linear relationships. 

Decision Tree Tree-structured model splitting data based 

on feature thresholds to classify. 

Intuitive, interpretable, handles 

nonlinear data 

Prone to overfitting, sensitive to 

data variations 

Random Forest An ensemble of decision trees built on 

random subsets of data/features, 

aggregating predictions. 

Reduces overfitting and achieves 

high accuracy. 

Less interpretable than single 

trees, computationally intensive. 

Support Vector Machine Finds the optimal hyperplane maximizing 

the margin between classes in the feature 

space. 

Effective in high-dimensional 

spaces, robust to overfitting. 

Can be slow with large datasets, 

sensitive to kernel and parameter 

choice. 

CNN [29] A deep learning model that uses 

convolutional layers to extract spatial 

features from images. 

High accuracy for image 

classification; automatic feature 

learning. 

Requires large datasets; GPU-

intensive. 

 

U-shaped Convolutional 

Network(U-Net) [30] 

Specialized for biomedical image 

segmentation using a symmetric encoder-

decoder architecture. 

Works well with limited data; 

precise segmentation. 

Limited use for classification; 

sensitive to input variability. 

Residual Neural 

Network(ResNet) [31] 

Deep neural network using identity shortcut 

connections to allow very deep 

architectures. 

Very accurate; mitigates the 

vanishing gradient problem. 

More complex architecture; 

training time is longer. 

Densely Connected 

Convolutional 

Network(DenseNet) [32] 

Each layer connects to all previous layers to 

improve information flow. 

Efficient; fewer parameters and 

better feature reuse. 

High memory use; slower during 

inference. 

GAN (Generative 

Adversarial Network) [33] 

Uses two networks (generator + 

discriminator) to generate synthetic but 

realistic data. 

Useful for medical image 

enhancement and augmentation. 

Unstable training; requires tuning. 

 
This section delivers a detailed proportional analysis of 

different AI, ML, and DL models, highlighting their 

definitions, advantages, limitations, and performance metrics 

to guide their appropriate use in tasks like classification, 

prediction, and image segmentation. 

 

4. Existing Result Analysis 
 

This section presents a complete examination of the 

performance of numerous AI, ML, and DL models 

constructed on key classification metrics, such as accuracy, 

precision, etc. The evaluation covers traditional AI 

algorithms, conventional ML methods, and advanced DL 

architectures applied across different data complexities and 

application domains, including image analysis. Through 

comparative tables and corresponding visualizations, the 

effectiveness, assets, and restrictions of each model are 

highlighted, providing visions into their appropriateness for 

diverse tasks.  
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Table 3. Performance Comparison of AI Models 

Method Accuracy Precision Recall 

Generalized 

Linear Model 

[26] 

79.2% 66.5% 61.8% 

Gradient 

Boosted 

Trees[26] 

75.4% 53% 49.1% 

KNN[27] 85% 83.5% 82% 

XGBoost [28] 91.5% 89% 88% 

 

Table 3 presents a comparative analysis of AI algorithms, 

Generalized Linear Model (GLM), Gradient Boosted Trees, 

KNN, and XGBoost based on their classification presentation 

metrics. The models are evaluated using accuracy, precision, 

and recall to assess their efficiency in handling various types 

of data and complexities. XGBoost demonstrates the highest 

performance across all metrics, while Gradient Boosted Trees 

show relatively lower scores. 

 

Figure 4 below shows the performance comparison of AI 

models (Generalized Linear Model, Gradient Boosted Trees, 

KNN, and XGBoost) using Accuracy, Precision, and Recall 

metrics. XGBoost shows the maximum performance through 

all evaluation parameters, while Gradient Boosted Trees 

exhibit lower scores in comparison. 

 

 
Figure 4. Performance Metrics Comparison of Different AI Classification 

Models 

 

Table 4. Performance Metrics of Traditional Machine Learning Algorithms  

Method Accuracy Precision Recall 

Naive Bayes 

[29] 
77.6% 56.5% 55.2% 

Logistic 

Regression [30] 
79.2% 73.1% 52.5% 

Decision Tree 

[31] 
76.5% 66.0% 44.5% 

Random Forest 

[32] 
75.0% 54.9% 49.4% 

Support Vector 

Machine [33] 
76.1% 55.8% 48.8% 

 

Table 4 summarizes the performance of traditional ML 

algorithms, like Naive Bayes (NB), Logistic Regression (LR), 

DT, Random Forest (RF), and SVM, based on key 

classification metrics, such as accuracy, precision, and recall. 

These models are generally faster and easier to interpret 

compared to advanced ensemble methods, though their 

performance varies depending on data characteristics. 

Logistic Regression offers balanced performance with 

interpretability, while Naive Bayes provides simplicity at the 

cost of lower recall and precision. 

 

 
Figure 5. Performance Comparison of Different Machine Learning Models 

 

Figure 5 below compares the different metrics, accuracy, 

precision, and recall, of various ML techniques, including 

NB, LR, DT, RF, and SVM methods. The regression model 

shows the highest precision, while NB and Regression 

models lead in accuracy. Recall values are generally lower 

across all models, highlighting potential areas for 

improvement in sensitivity. 
 

Table 5. Performance Comparison of Deep Learning Models in Image 

Analysis 
Method Accuracy Precision Recall 

Convolutional Neural 

Network (CNN) 
94.0% 91.5% 90.0% 

U-Net 92.0% 90.0% 87.5% 

Residual Neural 

Network (ResNet) 
94.5% 92.5% 91.0% 

DenseNet 93.0% 90.0% 88.5% 

Generative 

Adversarial Network 

(GAN) 

88.5% 86.5% 84.0% 

 

Table 5 offers a comparative indication of DL constructions: 

CNN, U-Net, Residual Neural Network (ResNet), DenseNet, 

and Generative Adversarial Network (GAN). These methods 

are evaluated using accuracy, precision, and recall metrics, 

focusing on tasks such as classification and segmentation, 

particularly in medical imaging. ResNet and CNN exhibit the 

highest performance, while U-Net is effective for 

segmentation even with limited data. GANs offer unique 

capabilities for data generation but require careful tuning and 

are less stable during training. 
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Figure 6. Performance Comparison of Different Deep Learning  Models. 

 

Figure 6 below compares the presentation of various DL 

models, including CNN, U-Net, Residual Neural Networks 

(ResNet), DenseNet, and Generative Adversarial Networks 

(GAN). The comparison is based on three metrics, such as 

accuracy, precision, and recall. ResNet demonstrates the 

highest accuracy and recall, followed closely by CNN and 

DenseNet. U-Net shows strong performance, especially in 

precision, while GAN exhibits slightly lower but still 

competitive results. Overall, this visualization highlights the 

superior predictive capabilities of advanced DL architectures 

in handling composite data tasks. 

 

5. Conclusion 
 

This article concluded that MI is an essential constituent of 

current healthcare, providing critical insights for diagnosis, 

treatment strategy, and disease monitoring. The complexity 

and volume of medical image data pose significant challenges 

for traditional manual analysis, often resulting in time-

consuming processes and potential diagnostic inconsistencies. 

The integration of optimization algorithms has improved 

medical image processing by enhancing image quality, 

automating feature selection, and fine-tuning model 

parameters to boost accuracy and efficiency. AI, particularly 

ML and DL, has revolutionized MI analysis by enabling 

automated, high-precision interpretation of complex images. 

While traditional AI and ML methods offer interpretability 

and efficiency in simpler scenarios, deep learning models 

demonstrate superior performance in handling large, high-

dimensional medical image datasets, particularly in 

classification and segmentation tasks. Though, these 

advanced models require substantial computational resources 

and large annotated datasets, and their interpretability remains 

limited.  Overall, the synergy of AI, optimization techniques, 

and deep learning architectures is driving significant 

advancements in medical imaging. This integration enhances 

diagnostic accuracy, accelerates clinical workflows, and 

supports personalized patient care. As research and 

technology continue to evolve, these tools will become 

increasingly vital in delivering scalable, intelligent healthcare 

solutions. future scope could focus on advance Deep learning 

models such as Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs) for higher efficiency in 

medical fields. 
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