4
AJCSE International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-12, Dec 2019 E-ISSN: 2347-2693

An Efficient Technique to Detect Stegosploit Generated Images on
Windows and Linux Subsystem on Windows

N. Vaidya®", P. Rughani?

L2|nstitute of Forensic Sciences, Guijarat Forensic Sciences University, Gujarat, India

*Corresponding Author: neerad.dfis1732@gfsu.edu.in, Tel: +91 9427418639
DOI: https://doi.org/10.26438/ijcse/v7i12.2126 | Available online at: www.ijcseonline.org

Accepted: 01/Dec/2019, Published: 31/Dec/2019

Abstract - Steganography as being a very useful technique for content hiding is the first choice of criminals, terrorists, and
hackers. The steganalysis itself is very complex, and lots of research work is going on all around the world on steganography
and steganalysis. However, when the steganography hides exploit instead of simple messages, it becomes more severe and
damaging. Stegosploit is a similar toolkit that allows hackers to inject exploits for known vulnerabilities into images. These
images, when accessed or downloaded can infect a machine very effectively compared to other ways of doing it. This paper
emphasis on a technique that detects such stego images having an exploit inside it. We developed a script that detects this type
of image, which is in-general not identified by known anti-viruses including virus total. The study also focuses on the
effectiveness of the script for the Windows operating system and Linux Subsystem on Windows. The script derived from this
research will help end-users, security professionals, forensic investigators, and researchers in detecting and thus preventing
possible cybercrimes.

Keywords - Steganography, Steganalysis, Stegosploit, Exploit Detection, Image Steganography, Image Exploits, Polyglots.

I. INTRODUCTION

Content hiding is one of the significant aspects of security as
it ensures confidentiality in CIA triad. However, the
techniques used for content hiding is equally being used by
hackers, criminals, terrorists, etc. for different purposes. The
objective is the same, and methods or algorithms designed
for covert communication allow us to achieve the same by
both good and evil. A variety of techniques like
cryptography are used in achieving confidentiality, but the
most effective and widely accepted method is
steganography.

Steganography as the name suggests refers to hidden or
covered writing which allows users to hide any sort of
information in cover media. The cover media can be any
multimedia file like image, audio or video[1]. Based on
content and intention user can use any of the possible types
as cover media to hide content. Various free and commercial
tools are available in the market which allows any laymen to
hide content inside cover media without any technical
knowledge. These tools basically follow certain algorithms
for information hiding and retrieval [2][3]. The most
common algorithm/technique used in steganography is LSB,
which is explained briefly in the next paragraph.

The Least Significant Bit (LSB) algorithm works on
substitution of the Least Significant Bit of the image with

© 2019, IJCSE All Rights Reserved

the bit of the message to hide. As an only Least significant
bit of the pixels gets replaced by the bit of the information to
hide, the overall image does not get affected and the change
cannot be noticed with the naked eye. This is highly
effective in color images with high resolution. The same
may not be so effective if the images are black and white or
greyscale with lower resolution [4][5].

The steganography technique is different than digital
watermarking as in the later the watermarks remain visible
and are not used for data hiding [6][7]. Similarly,
steganography does not replace cryptography as
cryptography makes the content non-readable but the content
remains visible. While in steganography the content is
invisible and end-user cannot detect the possibility of having
content inside the cover media. On another hand, if
cryptography is used with steganography then it can make
things more undetectable as the hidden content will be
encrypted and the user will need to crack two algorithms

[8][9][10].

This paper focuses on more difficult to handle
steganography where instead of plain or encrypted text an
exploit is hidden inside the image. The work is based on
stegosploit a toolkit, which is useful for delivering exploit
using Steganography. As mentioned by the author,
Stegosploit is a portmanteau of Steganography and Exploit.
Using Stegosploit, it is possible to transform virtually any

21

International Journal of Computer Sciences and Engineering

JavaScript-based browser exploit into a JPG or PNG image
[11]. The author worked on HTML + Image Polyglots to
embed exploit for a known vulnerability CVE-2014-0282.
The toolkit has been made powerful enough to embed
exploits for browser-based vulnerabilities in any JPG or
PNG files.

While we learned about stegosploit, we found it deadliest in
all the steganographic techniques. The worst thing in this is
to detect the presence of any exploit inside an image
compared to that without hiding it using stegosploit. The
stegosploit generated image can infect any machine when it
is accessed through the vulnerable web browser. Since,
loading images in the browser while surfing is a routine task,
the end-user may not be even able to know that the machine
got infected simply by an image opened in the browser.

The things may not work if the system and the browser are
patched and updated for the latest vulnerabilities. But it is
observed that only a few users update their applications and
operating systems on a regular basis [12]. This led us to
work on this challenge as the detection of stegosploit images
can prevent many unwanted attacks and even losses.

The Stegosploit Toolkit

STEGANOGRAPHY TOOLS

- image_layer_analysis.html
- iterative_encoding.html

- image_decoder.html

- analyse an image's bit layers
- steganographic encoder
- test for any encoding errors

POLYGLOT TOOLS

- imajs_jpg.pl - make a JPG+HTML+JS polyglot
- imajs_png.pl - make a PNG+HTML+S polyglot
EXPLOITS

- exploits.js - collection of browser exploits

- cve_2014_0282.template
- decode_pixels.js

- exploit HTML template
- JS Steganography decoder

Figure 1: Understanding Stegosploit Toolkit

The above figure illustrates the tools of the stegosploit
toolkit. iterative_encoding.html is used for encoding browser
exploit code in image steganographically,
image_decoder.html is used to detect any possible error in
image, imajs_jpg & imajs_png.pl are pearl scripts which
make encoded images into polyglot images using auto
decoder-script for jpg and png files respectively.
decode_pixels.js is a javascript script that automatically
executes upon loading of polyglot image. exploits.js is a
collection of browser exploits and cve_2014_0282.templete
is a sample exploit for CVE-2014-0282. CVE-2014-0282 is
IE Use-After-Free vulnerability in Microsoft’s Internet
Explorer version 6 to 11. CVE-2014-0282 is Internet
Explorer Memory Corruption Vulnerability, which allows
remote attackers to execute arbitrary code via a crafted
website.

© 2019, IJCSE All Rights Reserved

Vol. 7(12), Dec 2019, E-ISSN: 2347-2693

How it works?

PIXEL
ENCODER

IMAGE

ENCODED IMAGE

SE0 N | ;ﬁ
:)

TARGET BROWSER

Figure 2: Process of making of polyglot image

The above figure shows using the stegosploit toolkit, how a
polyglot image can be made. First, a browser exploit code
and an image has been passed to a custom-made image/pixel
encoder which encodes browser exploit code in an image
steganographically and generates a new encoded image. The
new image has been passed to the imajs library with an
autorun stego decoder-script and it will generate the final —
polyglot image, which will be used to attack by attackers and
they will send/spread it using email or public image sharing
websites to attack victim’s browser.

In our work, we used stegosploit with default exploit code
for CVE-2014-0282 to generate multiple images with
exploits. We have not exploited any browser using the
generated polyglots, as our intention is to detect the images.
We then tried to detect them through a custom python script.

Some of the other steganography algorithms apart from
LSB include outguess, LSB2, F5, DCT, and others, but as
this tool supports only the LSB algorithm, the scope of the
paper is limited to it only. This tool allows us to manipulate
any bit layer other than LSB layer, but it is suggested that bit
layers 0, 1 and 2 are most eligible bit layers for
steganography, because of no or negligible visual aberration
in image. Related work, Methodology, Results, and
Conclusion are discussed next.

Il. RELATED WORK

As stegosploit is a new utility, very few researchers worked
on stegosploit. The work of some of the researchers is cited
in this section. Park, B., et. al. published their work on a
possible method to protect the network against hidden
exploits [13]. Jeyasekar, A. et. al. did the analysis of
stegosploit images [14]. On another hand Dudheria, R.
Discussed the use of stegosploit to attack smartphones via
QR codes[15]. Harblson, C. discussed how stegosploit can
be used in hacking with pictures[16].

22

International Journal of Computer Sciences and Engineering

However, the above authors worked on various aspects of
stegosploit but none of them focused on the detection of
stegosploit generated images. Not very closely related to
stegosploit, but Pevny, T., et. al. proposed Malicons to detect
payload in favicons[17]. Apart from stegosploit, many
researchers worked on steganalysis techniques to detect
steganographic content [18][19][20][21][22][23][24].

I1l. METHODOLOGY

While working on stegosploit we tried to see if this type of
images are detected by any anti-virus or not. So, we tested it
in different anti-viruses including virustotal. The results
were very shocking as none of the anti-viruses could detect
it as a malicious file. The results of virustotal are shown in
the following figure.

O

Figure 3: Results from Virustotal

The evasion was technically possible as the anti-viruses
consider it as image and the malicious code is not directly
visible. To overcome the issues, we decided to develop a
python script to detect images having exploits and are
generated by stegosploit. To achieve the results the
environment was set for stegosploit as shown below:

@ | localhost'stg/steg T] Search

=1 Most Visited IllOffensive Security ' Kali Linux " Kali Docs "\ Kali Tools & Exploit-DE WAircrack-ng allKali Forums "\ NetHunter @ Get|

Encode Image Data on JPG/PNG

Input file: 1osd

_

Resolution: Bit Layer (0-7):| 3 | JPG Quality (0-1): 1 Grid: 1 R G B =aAl

Ready to use exploits: | --- choose an exploit ~
Or supply your own code:

MD5:

Figure 4: Stegosploit Setup

For samples, we decided to take JPG and PNG files as they
are widely used and popular. The exploits were injected into
them using stegosploit. As our goal was to detect the
polyglots, we took 6 samples of PNG and 3 of JPG. Both the
types of files were processed through stegosploit toolkit and
resultant files were saved as shown in the following figure.

© 2019, IJCSE All Rights Reserved

Vol. 7(12), Dec 2019, E-ISSN: 2347-2693

Figure 5: Exploits injection using stegosploit

To understand the signatures of detection, we analyzed
benign and malignant samples in the hex editor and we
could see the injected script.

Figure 6: Injeéted sc'ript'in polyglot image

The image on the left-hand side is the original image and the
image on the right-hand side is the polyglot image. As it can
be seen that the injected code is in the same offset range in
both the cases. Further, there is a string in the polyglot
images at a specific byte range. The python script was made
to find the polyglot images from the computer based on the
above observation.

Take a
file as
input

Extract Data

Figure 7: Flowchart of script

23

International Journal of Computer Sciences and Engineering

Work of the script is described below:

1. The script takes one file at a time and extracts a magic
number to determine the file type. If the file is jpg/jpeg
or png, the next step would be taken.

2. If the file is an image, the script will extract out some
string/byte range, specific to file type and will compare
it with signature.

3. If the signature is matched with extracted strings/byte
range, it will be marked for the extraction of exploit
code.

4. Then the script will search for the starting and ending
address of exploit code and extract in the text file in a
folder.

We mixed these files in different folders. For this, we have
created a python script. The script has randomly created
folders and subfolders of different random levels. Then, the
script has moved all files and pasted it in previously created
folders, randomly. Each folder is having a variety of other
files including PDFs, Documents, other types of images, etc.
Different types of files including infected files were kept for
scanning. The following table lists a number of files in each

type.

Table 1: Details of sample files.

Vol. 7(12), Dec 2019, E-ISSN: 2347-2693

folder having these files in subfolders at various levels. The
script is designed to take a single path and check all the
folders and files beneath it in a recursive manner.

The script is made very lightweight for faster detection. In
the experiment, we considered two operating systems to test
the performance of the script. To check the efficiency and
performance of the script it was executed on Windows 10
and Ubuntu Subsystem Environment. The results and
observations are discussed in the next section.

The machine was configured in such a way that only
essential services and processes were allowed to run. The
results may vary on different configurations. The following
table contains system configuration information of the test
machine.

Table 2: Testing system configuration

Processor: | Intel(R) Core(TM) i5-2410M
CPU @ 2.30GHz

RAM: | 12.0 GB DDR3 Dual
Channel SODIMM 1600
MHz

HDD: | Seagate Barracuda 1.0 TB
SATA3 6GBPS HDD

Available memory at the | 9.9 GB

time of testing:

Windows 10 Pro x64 1809
(17763.316)

Windows

File Type | Number of Files | File Type | Number of Files
JPG|16124 GIF|619
PNG | 179465 SQLITE |91
PDF (102 WAV |17

XLSX |8 DB |1
DOCX |19 DAT |1
PPT |14 BMP |7
TXT|61 SX |1
HTM | 7881 PCAP |1
INI|1 EXE |11
XML |1 SH|1
ZIP | 205 WINPE |10
JAR: 3

TOTAL: 204644

It is important to note that these files include 3 JPG and 6
PNG files that contain exploit.

A python script was written to detect the stegosploit

generated images. The script was executed against the parent

© 2019, IJCSE All Rights Reserved

IV. RESULTS

The script works very efficiently and detects all the
stegosploit generated images very quickly. The experiment
was successful on both the operating systems as shown
below:

Flgue 8 & 9: Successful detection on Windows and Linux
Subsystem on Windows

24

International Journal of Computer Sciences and Engineering

To test the effectiveness and speed of python script it was
executed four times on both the operating systems. The
following table shows the time taken by the script to scan
204644 files for consecutive four executions.

Table 3: Time taken by the script

Operati | First | Second | Third | Fourth | Fifth
ng Executi | Executi | Executi | Executi | Executi
System on on on on on
Time (s) | Time (s) | Time (s) | Time (s) | Time (s)
Window | 2460.7 | 339.43 | 407.23 | 338.43 | 316.18
s10
Ubuntu | 2846.71 | 378.24 | 371.24 | 371.21 | 368.59
Subsyste
m

The above figures clearly indicate the speed by which the
utility scans 204644 images for possible threats is highly
impressive.

As the script is written in python it can run on any operating
system. We calculated Karl Pearson’s Coefficient to
calculate the correlation of the speed when the script is
executed on Windows and Ubuntu Subsystem as shown
below:

Table 4: Statistics

Exec |Wind |Ubunt| A= | A? |[B=Y| B? AB
ution | ows u X - -Y
10 |Subsy| X (Y
(X) | stem | (X =868.
) |=772. 198)
288)
1 | 2460 |2846. | 1687.|2848|1979. | 391846 | 3341179
17 | 71 | 88 |946 | 51 0
2 |339.(3782| - |1873| - |239082| 211650
43 4 |432.8| 66 |488.9
6 6
3 | 407.371.2| - |1332| - |245976| 181054
23 4 |365.0| 67 |495.9
6 6
4 |338.]371.2| - |1882| - |246006 | 215189
43 1 |433.8| 33 |495.9
6 9
5 |316.[3685| - |2080| - |248612| 227420
18 9 |456.1| 35 |498.6
1 1
IX=|3ZY=|ZA=|XA?| =B =|3B’=48| TAB=4
3861 |4335.-051| = |-0.01| 98136 | 176439
44 | 99 3565
846

© 2019, IJCSE All Rights Reserved

Vol. 7(12), Dec 2019, E-ISSN: 2347-2693

. Y AB
Karl Pearson’s Coefficient r = =—=——=
VX A2y B?
4176439
4179234.436

r=0.99934

As the value of r tends to +1 it clearly indicates that the
speed by which script detects stegosploit generated images
on both Windows and Ubuntu Subsystem Environment is
very close. This also confirms that the script can effectively
detect stegosploit generated images on any of the machines
having support for python.

V. CONCLUSION

It is very crucial to detect images having exploit for
preventing probable cybercrimes. The work done in this
research will serve as the preventive step for image-based
exploitations. The script generated during this research will
be very helpful in detecting stegosploit generated images, as
it is very fast and accurate. The script further is very useful
as it detects the threat in almost no time on Windows and
Ubuntu Subsystem Environment.

REFERENCES

[1] Cox, L., Miller, M., Bloom, J., Fridrich, J., & Kalker, T. (2007).
Digital watermarking and steganography. Morgan Kaufmann.

[2] Dumitrescu, D., Stan, 1.-M., & Simion, E. (2017).
Steganography Techniques.

[3] Cheddad, A., Condell, J., Curran, K., & Mc Kevitt, P. (2010).
Digital image steganography: Survey and analysis of current
methods. Signal processing, 90(3), 727-752.

[4] Johnson, N. F., & Jajodia, S. (1998). Exploring steganography:
Seeing the unseen. Computer, 31(2).

[5] Wu, H. C, Wu, N. I, Tsai, C. S., & Hwang, M. S. (2005).
Image steganographic scheme based on pixel-value differencing
and LSB replacement methods. IEE Proceedings-Vision, Image
and Signal Processing, 152(5), 611-615.

[6] Ingemar, J. C., Miller, M. L., Jeffrey, A. B., Fridrich, J., &
Kalker, T. (2008). Digital Watermarking and Steganography.
Digital Watermarking and Steganography. Elsevier Inc.

[71 Yang, C.-N,, Lin, C.-C., & Chang, C.-C. (2013). Steganography
and watermarking. Steganography and Watermarking.

[8] Gupta, S., Goyal, A., & Bhushan, B. (2012). Information hiding
using least significant bit steganography and cryptography.
International Journal of Modern Education and Computer
Science, 4(6), 27.

[91 Song, S., Zhang, J., Liao, X., Du, J., & Wen, Q. (2011). A novel
secure communication protocol combining steganography and
cryptography. Procedia Engineering, 15, 2767-2772.

[10] Abikoye, O. C., Adewole, K. S., & Oladipupo, A. J. (2012).
Efficient data hiding system wusing cryptography and
steganography.

[11] Shah S. (2015), Pastor Manul Laphroaig’s, Export—Controlled,
Church Newsletter

[12] Vaniea, K., & Rashidi, Y. (2016, May). Tales of software
updates: The process of updating software. In Proceedings of

25

International Journal of Computer Sciences and Engineering

the 2016 CHI Conference on Human Factors in Computing
Systems (pp. 3215-3226). ACM.

[13] Park, B., Kim, D., & Shin, D. (2015). A Study on a Method
Protecting a Secure Network against a Hidden Malicious Code
in the Image. Indian Journal of Science and Technology, 8(26).

[14] Jeyasekar, A., Bisht, D., & Dua, A. (2016). Analysis of Exploit
Delivery Technique using Steganography. Indian Journal of
Science and Technology, 9(39).

[15] Dudheria, R. Attacking Smartphones by Sharing Innocuous
Images via QR Codes.

[16] Harblson, C. (2015). Hacking with pictures; new stegosploit
tool hides malware inside internet images for instant drive-by
pwning.

[17] Pevny, T., Kopp, M., Kioustek, J., & Ker, A. D. (2016).
Malicons: Detecting Payload in Favicons. Electronic Imaging,
2016(8), 1-9.

[18] Fridrich, J. (2006). Steganalysis. In Multimedia Security
Technologies for Digital Rights Management (pp. 349-381).
Elsevier Inc.

[19] Schaathun, H. G. (2012). Histogram Analysis. In Machine
Learning in Image Steganalysis (p. 82230).

[20] Provos, N. H. G. K. (2003). Statistical Steganalysis. ProQuest
Information and Learning Company, 78-80.

[21] Huang, F, Li, B., Shi, Y. Q., Huang, J., & Xuan, G. (2010).
Image steganalysis. Studies in Computational Intelligence, 282,
275-303.

[22] Al-Jarrah, M. M., Al-Taie, Z. H., & Abuarqoub, A. (2017).
Steganalysis Using LSB-Focused Statistical Features. In
Proceedings of the International Conference on Future
Networks and Distributed Systems - ICFNDS ’17 (pp. 1-5).
New York, New York, USA: ACM Press

[23] Harshal V. Patill, B. H. Barhate2, "A Review Paper on Data
Hiding Techniques: Stegnography"”, International Journal of
Scientific Research in Computer Science and Engineering,
\ol.06, Issue.01, pp.64-67, 2018

© 2019, IJCSE All Rights Reserved

Vol. 7(12), Dec 2019, E-ISSN: 2347-2693

[24] Manisha Verma, Hardeep Singh Saini, "Analysis of Various
Techniques for Audio Steganography in Data Security",
International Journal of Scientific Research in Network Security
and Communication, Vol.7, Issue.2, pp.1-5, 2019

Authors Profile

Neerad Vaidya pursued Bachelor of
Computer Applications from Krantigu
Shyamji Krishna Verma Kachchh
University, Gujarat, India. He is currently
pursuing MSc. Digital Forensics and
Information Security from Gujarat

Forensic Sciences University, Gandhinagar,
research areas of interest are Cyber Security, Digital
Forensics, Secure Source Code Reviewing and Vulnerability
Assessment and Penetration Testing.

India. His

Parag H. Rughani completed his Ph. D. in

computer science from Saurashtra

University. He is currently working as an

associate professor in Digital Forensics and

Information Security at the Institute of

Forensic Science, Gujarat Forensic Sciences

University, Gandhinagar. He has 14 vyears of teaching
experience and has published more than 15 research papers
in reputed international journals. His areas of expertise
include Digital Forensics, Memory Forensics, Malware
Analysis, and 10T Security and Forensics.

26

