
 © 2019, IJCSE All Rights Reserved 21

International Journal of Computer Sciences and Engineering Open Access
Research Paper Vol.-7, Issue-12, Dec 2019 E-ISSN: 2347-2693

An Efficient Technique to Detect Stegosploit Generated Images on

Windows and Linux Subsystem on Windows

N. Vaidya
1*

, P. Rughani
2

1,2

Institute of Forensic Sciences, Gujarat Forensic Sciences University, Gujarat, India

*Corresponding Author: neerad.dfis1732@gfsu.edu.in, Tel: +91 9427418639

DOI: https://doi.org/10.26438/ijcse/v7i12.2126 | Available online at: www.ijcseonline.org

Accepted: 01/Dec/2019, Published: 31/Dec/2019
Abstract - Steganography as being a very useful technique for content hiding is the first choice of criminals, terrorists, and

hackers. The steganalysis itself is very complex, and lots of research work is going on all around the world on steganography

and steganalysis. However, when the steganography hides exploit instead of simple messages, it becomes more severe and

damaging. Stegosploit is a similar toolkit that allows hackers to inject exploits for known vulnerabilities into images. These

images, when accessed or downloaded can infect a machine very effectively compared to other ways of doing it. This paper

emphasis on a technique that detects such stego images having an exploit inside it. We developed a script that detects this type

of image, which is in-general not identified by known anti-viruses including virus total. The study also focuses on the

effectiveness of the script for the Windows operating system and Linux Subsystem on Windows. The script derived from this

research will help end-users, security professionals, forensic investigators, and researchers in detecting and thus preventing

possible cybercrimes.

Keywords - Steganography, Steganalysis, Stegosploit, Exploit Detection, Image Steganography, Image Exploits, Polyglots.

I. INTRODUCTION

Content hiding is one of the significant aspects of security as

it ensures confidentiality in CIA triad. However, the

techniques used for content hiding is equally being used by

hackers, criminals, terrorists, etc. for different purposes. The

objective is the same, and methods or algorithms designed

for covert communication allow us to achieve the same by

both good and evil. A variety of techniques like

cryptography are used in achieving confidentiality, but the

most effective and widely accepted method is

steganography.

Steganography as the name suggests refers to hidden or

covered writing which allows users to hide any sort of

information in cover media. The cover media can be any

multimedia file like image, audio or video[1]. Based on

content and intention user can use any of the possible types

as cover media to hide content. Various free and commercial

tools are available in the market which allows any laymen to

hide content inside cover media without any technical

knowledge. These tools basically follow certain algorithms

for information hiding and retrieval [2][3]. The most

common algorithm/technique used in steganography is LSB,

which is explained briefly in the next paragraph.

The Least Significant Bit (LSB) algorithm works on

substitution of the Least Significant Bit of the image with

the bit of the message to hide. As an only Least significant

bit of the pixels gets replaced by the bit of the information to

hide, the overall image does not get affected and the change

cannot be noticed with the naked eye. This is highly

effective in color images with high resolution. The same

may not be so effective if the images are black and white or

greyscale with lower resolution [4][5].

The steganography technique is different than digital

watermarking as in the later the watermarks remain visible

and are not used for data hiding [6][7]. Similarly,

steganography does not replace cryptography as

cryptography makes the content non-readable but the content

remains visible. While in steganography the content is

invisible and end-user cannot detect the possibility of having

content inside the cover media. On another hand, if

cryptography is used with steganography then it can make

things more undetectable as the hidden content will be

encrypted and the user will need to crack two algorithms

[8][9][10].

This paper focuses on more difficult to handle

steganography where instead of plain or encrypted text an

exploit is hidden inside the image. The work is based on

stegosploit a toolkit, which is useful for delivering exploit

using Steganography. As mentioned by the author,

Stegosploit is a portmanteau of Steganography and Exploit.

Using Stegosploit, it is possible to transform virtually any

 International Journal of Computer Sciences and Engineering Vol. 7(12), Dec 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 22

JavaScript-based browser exploit into a JPG or PNG image

[11]. The author worked on HTML + Image Polyglots to

embed exploit for a known vulnerability CVE-2014-0282.

The toolkit has been made powerful enough to embed

exploits for browser-based vulnerabilities in any JPG or

PNG files.

While we learned about stegosploit, we found it deadliest in

all the steganographic techniques. The worst thing in this is

to detect the presence of any exploit inside an image

compared to that without hiding it using stegosploit. The

stegosploit generated image can infect any machine when it

is accessed through the vulnerable web browser. Since,

loading images in the browser while surfing is a routine task,

the end-user may not be even able to know that the machine

got infected simply by an image opened in the browser.

The things may not work if the system and the browser are

patched and updated for the latest vulnerabilities. But it is

observed that only a few users update their applications and

operating systems on a regular basis [12]. This led us to

work on this challenge as the detection of stegosploit images

can prevent many unwanted attacks and even losses.

Figure 1: Understanding Stegosploit Toolkit

The above figure illustrates the tools of the stegosploit

toolkit. iterative_encoding.html is used for encoding browser

exploit code in image steganographically,

image_decoder.html is used to detect any possible error in

image, imajs_jpg & imajs_png.pl are pearl scripts which

make encoded images into polyglot images using auto

decoder-script for jpg and png files respectively.

decode_pixels.js is a javascript script that automatically

executes upon loading of polyglot image. exploits.js is a

collection of browser exploits and cve_2014_0282.templete

is a sample exploit for CVE-2014-0282. CVE-2014-0282 is

IE Use-After-Free vulnerability in Microsoft’s Internet

Explorer version 6 to 11. CVE-2014-0282 is Internet

Explorer Memory Corruption Vulnerability, which allows

remote attackers to execute arbitrary code via a crafted

website.

Figure 2: Process of making of polyglot image

The above figure shows using the stegosploit toolkit, how a

polyglot image can be made. First, a browser exploit code

and an image has been passed to a custom-made image/pixel

encoder which encodes browser exploit code in an image

steganographically and generates a new encoded image. The

new image has been passed to the imajs library with an

autorun stego decoder-script and it will generate the final –

polyglot image, which will be used to attack by attackers and

they will send/spread it using email or public image sharing

websites to attack victim’s browser.

In our work, we used stegosploit with default exploit code

for CVE-2014-0282 to generate multiple images with

exploits. We have not exploited any browser using the

generated polyglots, as our intention is to detect the images.

We then tried to detect them through a custom python script.

 Some of the other steganography algorithms apart from

LSB include outguess, LSB2, F5, DCT, and others, but as

this tool supports only the LSB algorithm, the scope of the

paper is limited to it only. This tool allows us to manipulate

any bit layer other than LSB layer, but it is suggested that bit

layers 0, 1 and 2 are most eligible bit layers for

steganography, because of no or negligible visual aberration

in image. Related work, Methodology, Results, and

Conclusion are discussed next.

II. RELATED WORK

As stegosploit is a new utility, very few researchers worked

on stegosploit. The work of some of the researchers is cited

in this section. Park, B., et. al. published their work on a

possible method to protect the network against hidden

exploits [13]. Jeyasekar, A. et. al. did the analysis of

stegosploit images [14]. On another hand Dudheria, R.

Discussed the use of stegosploit to attack smartphones via

QR codes[15]. Harblson, C. discussed how stegosploit can

be used in hacking with pictures[16].

 International Journal of Computer Sciences and Engineering Vol. 7(12), Dec 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 23

However, the above authors worked on various aspects of

stegosploit but none of them focused on the detection of

stegosploit generated images. Not very closely related to

stegosploit, but Pevný, T., et. al. proposed Malicons to detect

payload in favicons[17]. Apart from stegosploit, many

researchers worked on steganalysis techniques to detect

steganographic content [18][19][20][21][22][23][24].

III. METHODOLOGY

While working on stegosploit we tried to see if this type of

images are detected by any anti-virus or not. So, we tested it

in different anti-viruses including virustotal. The results

were very shocking as none of the anti-viruses could detect

it as a malicious file. The results of virustotal are shown in

the following figure.

Figure 3: Results from Virustotal

The evasion was technically possible as the anti-viruses

consider it as image and the malicious code is not directly

visible. To overcome the issues, we decided to develop a

python script to detect images having exploits and are

generated by stegosploit. To achieve the results the

environment was set for stegosploit as shown below:

Figure 4: Stegosploit Setup

For samples, we decided to take JPG and PNG files as they

are widely used and popular. The exploits were injected into

them using stegosploit. As our goal was to detect the

polyglots, we took 6 samples of PNG and 3 of JPG. Both the

types of files were processed through stegosploit toolkit and

resultant files were saved as shown in the following figure.

Figure 5: Exploits injection using stegosploit

To understand the signatures of detection, we analyzed

benign and malignant samples in the hex editor and we

could see the injected script.

Figure 6: Injected script in polyglot image

The image on the left-hand side is the original image and the

image on the right-hand side is the polyglot image. As it can

be seen that the injected code is in the same offset range in

both the cases. Further, there is a string in the polyglot

images at a specific byte range. The python script was made

to find the polyglot images from the computer based on the

above observation.

Figure 7: Flowchart of script

 International Journal of Computer Sciences and Engineering Vol. 7(12), Dec 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 24

Work of the script is described below:

1. The script takes one file at a time and extracts a magic

number to determine the file type. If the file is jpg/jpeg

or png, the next step would be taken.

2. If the file is an image, the script will extract out some

string/byte range, specific to file type and will compare

it with signature.

3. If the signature is matched with extracted strings/byte

range, it will be marked for the extraction of exploit

code.

4. Then the script will search for the starting and ending

address of exploit code and extract in the text file in a

folder.

We mixed these files in different folders. For this, we have

created a python script. The script has randomly created

folders and subfolders of different random levels. Then, the

script has moved all files and pasted it in previously created

folders, randomly. Each folder is having a variety of other

files including PDFs, Documents, other types of images, etc.

Different types of files including infected files were kept for

scanning. The following table lists a number of files in each

type.

Table 1: Details of sample files.

File Type Number of Files File Type Number of Files

JPG 16124 GIF 619

PNG 179465 SQLITE 91

PDF 102 WAV 17

XLSX 8 DB 1

DOCX 19 DAT 1

PPT 14 BMP 7

TXT 61 SX 1

HTM 7881 PCAP 1

INI 1 EXE 11

XML 1 SH 1

ZIP 205 WINPE 10

JAR: 3

TOTAL: 204644

It is important to note that these files include 3 JPG and 6

PNG files that contain exploit.

A python script was written to detect the stegosploit

generated images. The script was executed against the parent

folder having these files in subfolders at various levels. The

script is designed to take a single path and check all the

folders and files beneath it in a recursive manner.

The script is made very lightweight for faster detection. In

the experiment, we considered two operating systems to test

the performance of the script. To check the efficiency and

performance of the script it was executed on Windows 10

and Ubuntu Subsystem Environment. The results and

observations are discussed in the next section.

The machine was configured in such a way that only

essential services and processes were allowed to run. The

results may vary on different configurations. The following

table contains system configuration information of the test

machine.

Table 2: Testing system configuration

Processor: Intel(R) Core(TM) i5-2410M

CPU @ 2.30GHz

RAM: 12.0 GB DDR3 Dual

Channel SODIMM 1600

MHz

HDD: Seagate Barracuda 1.0 TB

SATA3 6GBPS HDD

Available memory at the

time of testing:

9.9 GB

Windows Windows 10 Pro x64 1809

(17763.316)

IV. RESULTS

The script works very efficiently and detects all the

stegosploit generated images very quickly. The experiment

was successful on both the operating systems as shown

below:

Figure 8 & 9: Successful detection on Windows and Linux

Subsystem on Windows

 International Journal of Computer Sciences and Engineering Vol. 7(12), Dec 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 25

To test the effectiveness and speed of python script it was

executed four times on both the operating systems. The

following table shows the time taken by the script to scan

204644 files for consecutive four executions.

Table 3: Time taken by the script

Operati

ng

System

First

Executi

on

Time (s)

Second

Executi

on

Time (s)

Third

Executi

on

Time (s)

Fourth

Executi

on

Time (s)

Fifth

Executi

on

Time (s)

Window

s 10

2460.7 339.43 407.23 338.43 316.18

Ubuntu

Subsyste

m

2846.71 378.24 371.24 371.21 368.59

The above figures clearly indicate the speed by which the

utility scans 204644 images for possible threats is highly

impressive.

As the script is written in python it can run on any operating

system. We calculated Karl Pearson’s Coefficient to

calculate the correlation of the speed when the script is

executed on Windows and Ubuntu Subsystem as shown

below:

Table 4: Statistics

Exec

ution

Wind

ows

10

(X)

Ubunt

u

Subsy

stem

(Y)

A =

X –

X̅

(X̅

=772.

288)

A
2
 B = Y

– Y̅

(Y̅

=868.

198)

B
2
 AB

1 2460

.17

2846.

71

1687.

88

2848

946

1979.

51

391846

0

3341179

2 339.

43

378.2

4

-

432.8

6

1873

66

-

488.9

6

239082 211650

3 407.

23

371.2

4

-

365.0

6

1332

67

-

495.9

6

245976 181054

4 338.

43

371.2

1

-

433.8

6

1882

33

-

495.9

9

246006 215189

5 316.

18

368.5

9

-

456.1

1

2080

35

-

498.6

1

248612 227420

 ƩX =

3861

.44

ƩY =

4335.

99

ƩA =

-0.51

ƩA
2

=

3565

846

ƩB =

-0.01

ƩB
2
=48

98136

ƩAB=4

176439

Karl Pearson’s Coefficient r =
∑𝐴𝐵

√∑𝐴2∑𝐵2

 r =
4176439

4179234.436

 r = 0.99934

As the value of r tends to +1 it clearly indicates that the

speed by which script detects stegosploit generated images

on both Windows and Ubuntu Subsystem Environment is

very close. This also confirms that the script can effectively

detect stegosploit generated images on any of the machines

having support for python.

V. CONCLUSION

It is very crucial to detect images having exploit for

preventing probable cybercrimes. The work done in this

research will serve as the preventive step for image-based

exploitations. The script generated during this research will

be very helpful in detecting stegosploit generated images, as

it is very fast and accurate. The script further is very useful

as it detects the threat in almost no time on Windows and

Ubuntu Subsystem Environment.

REFERENCES

[1] Cox, I., Miller, M., Bloom, J., Fridrich, J., & Kalker, T. (2007).

Digital watermarking and steganography. Morgan Kaufmann.

[2] Dumitrescu, D., Stan, I.-M., & Simion, E. (2017).

Steganography Techniques.

[3] Cheddad, A., Condell, J., Curran, K., & Mc Kevitt, P. (2010).

Digital image steganography: Survey and analysis of current

methods. Signal processing, 90(3), 727-752.

[4] Johnson, N. F., & Jajodia, S. (1998). Exploring steganography:

Seeing the unseen. Computer, 31(2).

[5] Wu, H. C., Wu, N. I., Tsai, C. S., & Hwang, M. S. (2005).

Image steganographic scheme based on pixel-value differencing

and LSB replacement methods. IEE Proceedings-Vision, Image

and Signal Processing, 152(5), 611-615.

[6] Ingemar, J. C., Miller, M. L., Jeffrey, A. B., Fridrich, J., &

Kalker, T. (2008). Digital Watermarking and Steganography.

Digital Watermarking and Steganography. Elsevier Inc.

[7] Yang, C.-N., Lin, C.-C., & Chang, C.-C. (2013). Steganography

and watermarking. Steganography and Watermarking.

[8] Gupta, S., Goyal, A., & Bhushan, B. (2012). Information hiding

using least significant bit steganography and cryptography.

International Journal of Modern Education and Computer

Science, 4(6), 27.

[9] Song, S., Zhang, J., Liao, X., Du, J., & Wen, Q. (2011). A novel

secure communication protocol combining steganography and

cryptography. Procedia Engineering, 15, 2767-2772.

[10] Abikoye, O. C., Adewole, K. S., & Oladipupo, A. J. (2012).

Efficient data hiding system using cryptography and

steganography.

[11] Shah S. (2015), Pastor Manul Laphroaig’s, Export–Controlled,

Church Newsletter

[12] Vaniea, K., & Rashidi, Y. (2016, May). Tales of software

updates: The process of updating software. In Proceedings of

 International Journal of Computer Sciences and Engineering Vol. 7(12), Dec 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 26

the 2016 CHI Conference on Human Factors in Computing

Systems (pp. 3215-3226). ACM.

[13] Park, B., Kim, D., & Shin, D. (2015). A Study on a Method

Protecting a Secure Network against a Hidden Malicious Code

in the Image. Indian Journal of Science and Technology, 8(26).

[14] Jeyasekar, A., Bisht, D., & Dua, A. (2016). Analysis of Exploit

Delivery Technique using Steganography. Indian Journal of

Science and Technology, 9(39).

[15] Dudheria, R. Attacking Smartphones by Sharing Innocuous

Images via QR Codes.

[16] Harblson, C. (2015). Hacking with pictures; new stegosploit

tool hides malware inside internet images for instant drive-by

pwning.

[17] Pevný, T., Kopp, M., Křoustek, J., & Ker, A. D. (2016).

Malicons: Detecting Payload in Favicons. Electronic Imaging,

2016(8), 1-9.

[18] Fridrich, J. (2006). Steganalysis. In Multimedia Security

Technologies for Digital Rights Management (pp. 349–381).

Elsevier Inc.

[19] Schaathun, H. G. (2012). Histogram Analysis. In Machine

Learning in Image Steganalysis (p. 82230).

[20] Provos, N. H. G. K. (2003). Statistical Steganalysis. ProQuest

Information and Learning Company, 78–80.

[21] Huang, F., Li, B., Shi, Y. Q., Huang, J., & Xuan, G. (2010).

Image steganalysis. Studies in Computational Intelligence, 282,

275–303.

[22] Al-Jarrah, M. M., Al-Taie, Z. H., & Abuarqoub, A. (2017).

Steganalysis Using LSB-Focused Statistical Features. In

Proceedings of the International Conference on Future

Networks and Distributed Systems - ICFNDS ’17 (pp. 1–5).

New York, New York, USA: ACM Press

[23] Harshal V. Patil1, B. H. Barhate2, "A Review Paper on Data

Hiding Techniques: Stegnography", International Journal of

Scientific Research in Computer Science and Engineering,

Vol.06, Issue.01, pp.64-67, 2018

[24] Manisha Verma, Hardeep Singh Saini, "Analysis of Various

Techniques for Audio Steganography in Data Security",

International Journal of Scientific Research in Network Security

and Communication, Vol.7, Issue.2, pp.1-5, 2019

Authors Profile

Neerad Vaidya pursued Bachelor of

Computer Applications from Krantigu

Shyamji Krishna Verma Kachchh

University, Gujarat, India. He is currently

pursuing MSc. Digital Forensics and

Information Security from Gujarat

Forensic Sciences University, Gandhinagar, India. His

research areas of interest are Cyber Security, Digital

Forensics, Secure Source Code Reviewing and Vulnerability

Assessment and Penetration Testing.

Parag H. Rughani completed his Ph. D. in

computer science from Saurashtra

University. He is currently working as an

associate professor in Digital Forensics and

Information Security at the Institute of

Forensic Science, Gujarat Forensic Sciences
University, Gandhinagar. He has 14 years of teaching

experience and has published more than 15 research papers

in reputed international journals. His areas of expertise

include Digital Forensics, Memory Forensics, Malware

Analysis, and IoT Security and Forensics.

