
 © 2015, IJCSE All Rights Reserved 185

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Research Paper Volume-03, Issue-09 E-ISSN: 2347-2693

To develop an application in android for smart phones tasks

processing to the cloud to detect malware in application and

generate reports

Sangita Mahajan*
1
, Suvarna Sangle

2
 and Gayatri Khairnar

3

1*,2,3
Department, Of Computer Engineering, Savitribai Phule Pune University, Maharashtra, India

www.ijcseonline.org

Received: Aug/12/2015 Revised: Aug/28/2015 Accepted: Sep/20/2015 Published: Sep/30/2015

Abstract— Most of us use android phones these days and also uses the multiple applications and facilities frequently. Play store

provides great number of application but unfortunately few of those applications are fraud. Such applications dose damage to

phone and also possibly data thefts. Hence such applications must be marked, so that they will be recognizable for play store

users. So we are proposing a web application which will process the information, comments and the reviews of the application

on cloud server. As we are handling the big data here so the process is done on cloud server and malware is detected. So it will

be easier to decide which application is fraud or not. Multiple applications can be processed at a time with the web application.

Keywords— Android, Permissions, Security, Instrumentation, Privacy, Risk assessment

I. INTRODUCTION

There has been a steady rise of smart mobile devices for

both personal and business use. These devices run

applications that have unmatched access to private

information, including contacts, emails, geo-localization

data, personal and business files, and much more. There is

also explicit monetary risk integrated with these devices

since phone calls, messages, and data usage can cost money.

More directly, these devices often have access to users’ bank

accounts through an application or as a means to

authenticate to a bank, and in the future it seems likely that

phones may act as a digitize notecase, directly accessing the

bank accounts as part of the range of capabilities. While the

existence of this information and access creates much of the

value found in a android mobile device, it also makes these

devices proposing targets for malicious entities.

The prototype for program distribution on these mobile

devices also differs from that of the traditional PCs. Many

developers are releasing applications to one or a few centric

application markets. While there are third party application

stores, currently all popular mobile device platform have

centric application stores as the primary mechanism of

application distribution. Smart phones has Google Play as

the primary store, Kindle uses the Amazon App store for

Android, iOS has iTunes App Store, Windows RT has a

Windows Store, and BlackBerry has App World. This new

paradigm presents both challenges and chance for malware

defense. Instead of most programs coming from a relatively

small number of reputable vendors, which enables protection

based on white listing and signed software distributions, in

mobile devices there are many more developers, many of

which have insufficient history to establish reputation. On

the other hand, centralized markets provide chance for

techniques to analyze applications by extracting some set of

measurable features, and identifying potentially malicious

applications in the set. In researchers have developed several

approaches that use the permissions requested by an Android

application to identify whether the application is potentially

malicious. In requesting a certain permission or a certain

combination of two or three permissions triggers a warning

that the application is risky. In requesting a critical

permission that is rarely requested is view as a signal that the

application is risky. In four probabilistic generative models

are used to identify potentially malicious applications

include Basic Naive Bayes (BNB), Naive Bayes with

informative Priors (PNB), Mixture of Naive Bayes (MNB),

Hierarchical Mixture of Naïve Bayes (HMNB).

Experimental results show that these models significantly

outperform prior approaches in using the area under curve

(AUC) for the receiver operating characteristic (ROC) curve

as evaluation metric.

Fig.1. To create the classifier's dataset

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(185-188) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 186

The permission declare in the AndroidManifest.xml le of an

application are automatically extracted using the Android

Asset Packaging Tool (adapt). Then, the classier

automatically labels the application behavior, as either

benign or (potentially) malicious, according to the

combination of permissions the application requires.

II. LETURATURE SURVAY

Most of us use android phones these days and also uses
the play store facility frequently. Play store provides great
number of application but unfortunately few of those
applications are fraud. Such applications dose damage to
phone and also possibly data thefts. Hence such applications
must be marked, so that they will be recognizable for play
store users.

Ask for a certain permissions or a certain combination of

two or three permissions triggers a warning that the

applications are risky. The author suggest that researchers

have developed several approaches that use the permissions

requested by an Android application to identify whether the

application is may be malicious[1].

 Ask for a critical permission that is rarely requested

is view as a signal that the application is risky. By using the

area under curve (AUC) for the receiver operating

characteristics (ROC) curve as assessment metric[2].

 Generative probabilistic models in assume that

some parameterized random process generates the

application data (i.e., permissions) and learn model

parameters which optimize the fit of the model to the

applications used in training. Then one can compute the may

be of each application being generated by the models, and

identify those with low probabilities as potentially malicious

applications. The strength of generative models is that they

work with unlabeled data, in other words without

information on malicious applications[3].

In the context of smart phones some work on static

analysis has also been performed, typically focusing on all

functions that are used by an applications. One common

problem in third party application stores is piracy and

malware. It is possible to buy an applications, repackage the

applications unchanged or with malicious code added, and

then submit it to a third party applications store for others to

install. Desno s[5] uses compression and distance on source

code to find applications that have high overlap in order to

detect theft and malware between the official market and

third party markets. Schmidt et al use static function call

analysisto detect mobile malware.

Provides a framework to dynamically analyze

application behavior to detect malware on the Android

platform. They collect the system traces from many real

users and send them to a central server for analysis to detect

behavioral differences between applications that should

generally have the same behavior[6]. Their goal is primarily

to detect malware that has been repackaged and distributed

on third party application stores.

III. PROPOSED SYSTEM

System collects all the information about particular

application such as any comment or reviews about it. We are

sending this information and .apk file of that application to

cloud server i.e. taking it to process it. This will process for

detecting any malwares in application and give report.

Hence we can detect the application if it is fraud or not.

A) Application analysis and repackaging

As author described in the introduction we are interested

in defining a method allowing to effectively profile and

analyzing mobile application in search for over-privileges.

The approach adopted is based on application combination

to verify the real need of requesting and taking access to all

the “sensitive” Android's APIs. This approach requires

neither access to the application original source code nor

modified by the underlying framework [4]. We depend on

static analysis to compute the set of permission that might be

used by the examined application, and on dynamic analysis

to upgrade their use. The outputs of both static and dynamic

analysis are combined and compared with the manifest's

permission set to deduce whether the applications is over-

privileged or not.

B) Theoretical framework

In this section author present the theoretical framework

on which we based our approach. An application is

considered over-privileged if and only if there is a

permission object in the manifest set (Mp) which is not

listed in the static analysis permissions set (Sp) as illustrated

in Equation. The over-privilege set is computed as the

intersection between the Mp and Sp as illustrated in

Equation . Complementary, an application is marked as non

over-privileged if and only if the static, dynamic and

manifest permissions sets match as illustrated in Equation.

These cases are graphically illustrated in as well. In the case

where the manifest (Mp) and the static (Sp) permissions sets

are same, but they are a super set of the dynamic (Dp)

permissions set then a specific set of the examined

application's permissions, according to Equation might be

susceptible to over-privileged flaws with a certain

confidence level.

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(185-188) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 187

Fig. 2 Definition of validated non over-privileged and

over-privileged application

C) Permissions' risk & false identification assessment

To assess possible false identification that our

approach might generate and measure the exposure of the

examined application to over-privileged threats we depends

on the attack surface introduced by the set of privilege not

reached during the dynamic analysis phase, where S

corresponds to the percentage of the permissions triggered

during the execution according to It should be mentioned

also that if the static analysis set is a super set of the

manifest one, we analyze only the manifest set. This is

because Android OS will throw a security exceptions

according to its security design, for any sensitive API having

no declaration of the permissions needed for its execution in

the application manifest. Table 1 summarizes the risk

assessment class provided by the proposed framework.

D) Identify over-privileged applications

The outcomes of the analysis extracts the manifest

permissions set and generate a new Android mobile

applications package, the instrumented one which records all

the possible methods that exist in the reversed engineer

applications and the methods executed at run-time. Note that

the reversed engineer code does not necessarily correspond

to the application original source code however

the API calls will be the same to the original code. The

instrumented applications can be executed either manually

or automatically depending on the Android-monkey test

suite which is able to generate and inject to the examine

application pseudo-random stream of user events in a

random but repeated test cases. The Monkey test suite is an

official Android frameworks that can be used by developers

for checking application's robustness before published it. we

reproduce common real life situation and record the execute

method. In case that additional input are available e.g when

users' exercise the applications they can be inserted through

the virtual device drivers available in Android When the

execution is complete created the method permissions map

for both the static and the dynamic analysis.

Fig.3. Proposed permission verification approach.

The soot framework analyzes the mobile application and

inserts small pieces of code to monitor the executed

methods. Every time the application is executed all the

methods are logged and analyzed in order to determine

whether the application uses all the requested permissions,

according to the proposed theoretical framework.

IV. SYSTEM ARCHITECTURE

Fig. 4 Android software modular architecture

The core of the Android Operating System is built on top of

the Linux kernel. This enables it to provide strong isolation

for protected user data system resources and avoiding

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(185-188) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 188

conflicts, for both Java programming language and native

Android mobile application. Overview the Android OS

architecture. The Android OS system runs each application

under the privileges of different “users” and assigns a unique

user ID to every user. This approach differs from other

Operating system where multiple applications run under the

same user permission. By default application are not allowed

to execute functions that might affect other applications or

users and they have access to a limited set of resource.

Application must mandatory declare in a manifest all the

“sensitive” operations that can take place in the course of

execution the users during the installation process they are

requested to endorse them otherwise the installation fails. In

case an application executes a protected feature that hasn't

been declared in the manifest a security exception will throw

during execution.

V. CONCLUSION

Over-privileged applications introduce new chance

for Manipulating personal information and sensitive

functionalities managed in android phones. Users have to

trust applications requests for accessing sensitive resources,

defined in their manifests, if they would like to install and

also use them. However, even benevolent over-privileged

applications might be utilized by malicious applications to

grant access to otherwise not-accessible data. In this paper,

we present Android mobile application permissions risk

assessment approach that combines static and dynamic

analysis to assess any given application as over-privileged

with definite degree of probability. This approach not only

can accurately identify whether an application is over-

privileged with certain confidence level but also validates

the need of requesting access to the permissions declare in

application's manifest. Our approach is orthogonal to other

solutions, and can be used in order to compute mobile

applications attack surface and the risk presented by over-

privileges.

VI. REFERENCES

[1] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight

mobile phone application certification,” in Proc. 16th

ACM Conf. Comput. Commun. Security, 2009, pp.

235–245.

[2] B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-

Rotaru, and I. Molloy, “Android permissions: A

perspective combining risks and benefits,” in Proc.

17th ACM Symp. Access Control Models Technol.,

2012, pp. 13–22.

[3] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju,

C. Nita- Rotaru, and I. Molloy, “Using probabilistic

generative models for ranking risks of Android apps,”

in Proc. ACM Conf. Comput. Commun. Security,

2012, pp. 241–252.

[4] Ali K, Lhot_ak O. Application-only call graph

construction. In:Proceedings of the 26th European

onference onObject-Oriented Programming. Springer-

Verlag; 2012.p. 688e712. “A tool for reverse

engineering android apk files.”

[5] A.-D. Schmidt, R. Bye, H.-G. Schmidt, J. Clausen, O.

Kiraz, K. A. Yuksel, S. A. Camtepe, and S. Albayrak,

“Static analysis of executables for collaborative

malware detection on Android,” in Proc. IEEE Int.

Conf. Commun., 2009, pp. 1–5.

[6] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani,

“Crowdroid: Behavior-based malware detection

system for Android,” in Proc. 1st ACM Workshop

Security Privacy Smartphones Mobile Devices, 2011,

pp. 15–26.

