@
AXJCSE International Journal of Computer Sciences and Engineering [pen Access

Research Paper

Volume-03, Issue-09

E-ISSN: 2347-2693

To develop an application in android for smart phones tasks
processing to the cloud to detect malware in application and
generate reports

Sangita Mahajan*', Suvarna Sangle” and Gayatri Khairnar®

1%2,3

Department, Of Computer Engineering, Savitribai Phule Pune University, Maharashtra, India

www.ijcseonline.org

Received: Aug/12/2015 Revised: Aug/28/2015

Accepted: Sep/20/2015 Published: Sep/30/2015

Abstract— Most of us use android phones these days and also uses the multiple applications and facilities frequently. Play store
provides great number of application but unfortunately few of those applications are fraud. Such applications dose damage to
phone and also possibly data thefts. Hence such applications must be marked, so that they will be recognizable for play store
users. So we are proposing a web application which will process the information, comments and the reviews of the application
on cloud server. As we are handling the big data here so the process is done on cloud server and malware is detected. So it will
be easier to decide which application is fraud or not. Multiple applications can be processed at a time with the web application.

Keywords— Android, Permissions, Security, Instrumentation, Privacy, Risk assessment

I. INTRODUCTION

There has been a steady rise of smart mobile devices for
both personal and business use. These devices run
applications that have unmatched access to private
information, including contacts, emails, geo-localization
data, personal and business files, and much more. There is
also explicit monetary risk integrated with these devices
since phone calls, messages, and data usage can cost money.
More directly, these devices often have access to users’ bank
accounts through an application or as a means to
authenticate to a bank, and in the future it seems likely that
phones may act as a digitize notecase, directly accessing the
bank accounts as part of the range of capabilities. While the
existence of this information and access creates much of the
value found in a android mobile device, it also makes these
devices proposing targets for malicious entities.

The prototype for program distribution on these mobile
devices also differs from that of the traditional PCs. Many
developers are releasing applications to one or a few centric
application markets. While there are third party application
stores, currently all popular mobile device platform have
centric application stores as the primary mechanism of
application distribution. Smart phones has Google Play as
the primary store, Kindle uses the Amazon App store for
Android, iOS has iTunes App Store, Windows RT has a
Windows Store, and BlackBerry has App World. This new
paradigm presents both challenges and chance for malware
defense. Instead of most programs coming from a relatively
small number of reputable vendors, which enables protection
based on white listing and signed software distributions, in
mobile devices there are many more developers, many of
which have insufficient history to establish reputation. On

© 2015, IJCSE All Rights Reserved

the other hand, centralized markets provide chance for
techniques to analyze applications by extracting some set of
measurable features, and identifying potentially malicious
applications in the set. In researchers have developed several
approaches that use the permissions requested by an Android
application to identify whether the application is potentially
malicious. In requesting a certain permission or a certain
combination of two or three permissions triggers a warning
that the application is risky. In requesting a critical
permission that is rarely requested is view as a signal that the
application is risky. In four probabilistic generative models
are used to identify potentially malicious applications
include Basic Naive Bayes (BNB), Naive Bayes with
informative Priors (PNB), Mixture of Naive Bayes (MNB),
Hierarchical Mixture of Naive Bayes (HMNB).
Experimental results show that these models significantly
outperform prior approaches in using the area under curve
(AUQC) for the receiver operating characteristic (ROC) curve
as evaluation metric.

Apps
Classifer

AndroidManifest.xml
permissions

Malicious

Fig.1. To create the classifier's dataset

185

International Journal of Computer Sciences and Engineering

The permission declare in the AndroidManifest.xml le of an
application are automatically extracted using the Android
Asset Packaging Tool (adapt). Then, the classier
automatically labels the application behavior, as either
benign or (potentially) malicious, according to the
combination of permissions the application requires.

II. LETURATURE SURVAY

Most of us use android phones these days and also uses
the play store facility frequently. Play store provides great
number of application but unfortunately few of those
applications are fraud. Such applications dose damage to
phone and also possibly data thefts. Hence such applications
must be marked, so that they will be recognizable for play
store users.

Ask for a certain permissions or a certain combination of
two or three permissions triggers a warning that the
applications are risky. The author suggest that researchers
have developed several approaches that use the permissions
requested by an Android application to identify whether the
application is may be malicious[1].

Ask for a critical permission that is rarely requested
is view as a signal that the application is risky. By using the
area under curve (AUC) for the receiver operating
characteristics (ROC) curve as assessment metric[2].

Generative probabilistic models in assume that
some parameterized random process generates the
application data (i.e., permissions) and learn model
parameters which optimize the fit of the model to the
applications used in training. Then one can compute the may
be of each application being generated by the models, and
identify those with low probabilities as potentially malicious
applications. The strength of generative models is that they
work with wunlabeled data, in other words without
information on malicious applications[3].

In the context of smart phones some work on static
analysis has also been performed, typically focusing on all
functions that are used by an applications. One common
problem in third party application stores is piracy and
malware. It is possible to buy an applications, repackage the
applications unchanged or with malicious code added, and
then submit it to a third party applications store for others to
install. Desno s[5] uses compression and distance on source
code to find applications that have high overlap in order to
detect theft and malware between the official market and
third party markets. Schmidt et al use static function call
analysisto detect mobile malware.

0
ASJCSE ©2015, 1ICSE Al Rights Reserved

Vol.-3(9), PP(185-188) Sep 2015, E-ISSN: 2347-2693

Provides a framework to dynamically analyze
application behavior to detect malware on the Android
platform. They collect the system traces from many real
users and send them to a central server for analysis to detect
behavioral differences between applications that should
generally have the same behavior[6]. Their goal is primarily
to detect malware that has been repackaged and distributed
on third party application stores.

III. PROPOSED SYSTEM

System collects all the information about particular
application such as any comment or reviews about it. We are
sending this information and .apk file of that application to
cloud server i.e. taking it to process it. This will process for
detecting any malwares in application and give report.
Hence we can detect the application if it is fraud or not.

A) Application analysis and repackaging

As author described in the introduction we are interested
in defining a method allowing to effectively profile and
analyzing mobile application in search for over-privileges.
The approach adopted is based on application combination
to verify the real need of requesting and taking access to all
the “sensitive” Android's APIs. This approach requires
neither access to the application original source code nor
modified by the underlying framework [4]. We depend on
static analysis to compute the set of permission that might be
used by the examined application, and on dynamic analysis
to upgrade their use. The outputs of both static and dynamic
analysis are combined and compared with the manifest's
permission set to deduce whether the applications is over-
privileged or not.

B) Theoretical framework

In this section author present the theoretical framework
on which we based our approach. An application is
considered over-privileged if and only if there is a
permission object in the manifest set (Mp) which is not
listed in the static analysis permissions set (Sp) as illustrated
in Equation. The over-privilege set is computed as the
intersection between the Mp and Sp as illustrated in
Equation . Complementary, an application is marked as non
over-privileged if and only if the static, dynamic and
manifest permissions sets match as illustrated in Equation.
These cases are graphically illustrated in as well. In the case
where the manifest (Mp) and the static (Sp) permissions sets
are same, but they are a super set of the dynamic (Dp)
permissions set then a specific set of the examined
application's permissions, according to Equation might be
susceptible to over-privileged flaws with a certain
confidence level.

186

International Journal of Computer Sciences and Engineering

Set of permissions declared in the manifest

static analysis
Pl b b1 APIML
py 4 ™ b2, APIM2
4 <
P3 P3, API-M3

(a) A validated non over-privileged set.

Set of permissions declared in the manifest Set of permission identified by static for

each method
PL4 b b1, APIML
py4 ® b2, API-M2
P3 A b API-M3

(b) An over-privileged set.
Fig. 2 Definition of validated non over-privileged and
over-privileged application

C) Permissions' risk & false identification assessment

To assess possible false identification that our
approach might generate and measure the exposure of the
examined application to over-privileged threats we depends
on the attack surface introduced by the set of privilege not
reached during the dynamic analysis phase, where S
corresponds to the percentage of the permissions triggered
during the execution according to It should be mentioned
also that if the static analysis set is a super set of the
manifest one, we analyze only the manifest set. This is
because Android OS will throw a security exceptions
according to its security design, for any sensitive API having
no declaration of the permissions needed for its execution in
the application manifest. Table 1 summarizes the risk
assessment class provided by the proposed framework.

D) Identify over-privileged applications

The outcomes of the analysis extracts the manifest
permissions set and generate a new Android mobile
applications package, the instrumented one which records all
the possible methods that exist in the reversed engineer
applications and the methods executed at run-time. Note that
the reversed engineer code does not necessarily correspond
to the application original source code however
the API calls will be the same to the original code. The
instrumented applications can be executed either manually
or automatically depending on the Android-monkey test
suite which is able to generate and inject to the examine
application pseudo-random stream of user events in a
random but repeated test cases. The Monkey test suite is an
official Android frameworks that can be used by developers

o
ASJCSE ©2015, 1ICSE Al Rights Reserved

Set of permissions extracted by dynamic and

Vol.-3(9), PP(185-188) Sep 2015, E-ISSN: 2347-2693

for checking application's robustness before published it. we
reproduce common real life situation and record the execute
method. In case that additional input are available e.g when
users' exercise the applications they can be inserted through
the virtual device drivers available in Android When the
execution is complete created the method permissions map
for both the static and the dynamic analysis.

Instrumented Application

Analysi

.

.
[
2
E
a)
0o
[
>
©
=~
<

Soot/Dexpler

/Application

Methods log

Fig.3. Proposed permission verification approach.

The soot framework analyzes the mobile application and
inserts small pieces of code to monitor the executed
methods. Every time the application is executed all the
methods are logged and analyzed in order to determine
whether the application uses all the requested permissions,
according to the proposed theoretical framework.

IV. SYSTEM ARCHITECTURE

p
Appl] [App2 } { App3]
\
P
Application Framework }
\
a
Core Libraries
Libraries
[Dalvik VM]
\
N
Linux Kernel]
&

Fig. 4 Android software modular architecture
The core of the Android Operating System is built on top of

the Linux kernel. This enables it to provide strong isolation
for protected user data system resources and avoiding

187

Report

International Journal of Computer Sciences and Engineering

conflicts, for both Java programming language and native
Android mobile application. Overview the Android OS
architecture. The Android OS system runs each application
under the privileges of different “users” and assigns a unique
user ID to every user. This approach differs from other
Operating system where multiple applications run under the
same user permission. By default application are not allowed
to execute functions that might affect other applications or
users and they have access to a limited set of resource.
Application must mandatory declare in a manifest all the
“sensitive” operations that can take place in the course of
execution the users during the installation process they are
requested to endorse them otherwise the installation fails. In
case an application executes a protected feature that hasn't
been declared in the manifest a security exception will throw
during execution.

V. CONCLUSION

Over-privileged applications introduce new chance
for Manipulating personal information and sensitive
functionalities managed in android phones. Users have to
trust applications requests for accessing sensitive resources,
defined in their manifests, if they would like to install and
also use them. However, even benevolent over-privileged
applications might be utilized by malicious applications to
grant access to otherwise not-accessible data. In this paper,
we present Android mobile application permissions risk
assessment approach that combines static and dynamic
analysis to assess any given application as over-privileged
with definite degree of probability. This approach not only
can accurately identify whether an application is over-
privileged with certain confidence level but also validates
the need of requesting access to the permissions declare in
application's manifest. Our approach is orthogonal to other
solutions, and can be used in order to compute mobile
applications attack surface and the risk presented by over-
privileges.

VI REFERENCES

[11 W. Enck, M. Ongtang, and P. McDaniel, “On lightweight
mobile phone application certification,” in Proc. 16th
ACM Conf. Comput. Commun. Security, 2009, pp.
235-245.

[2] B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-
Rotaru, and 1. Molloy, “Android permissions: A
perspective combining risks and benefits,” in Proc.
17th ACM Symp. Access Control Models Technol.,
2012, pp. 13-22.

[3] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju,
C. Nita- Rotaru, and 1. Molloy, “Using probabilistic
generative models for ranking risks of Android apps,”

o
ASJCSE ©2015, 1ICSE Al Rights Reserved

Vol.-3(9), PP(185-188) Sep 2015, E-ISSN: 2347-2693

in Proc. ACM Conf. Comput. Commun. Security,
2012, pp. 241-252.

[4] Ali K, Lhot ak O. Application-only call graph
construction. In:Proceedings of the 26th European
onference onObject-Oriented Programming. Springer-
Verlag; 2012.p. 688e712. “A tool for reverse
engineering android apk files.”

[5] A.-D. Schmidt, R. Bye, H.-G. Schmidt, J. Clausen, O.
Kiraz, K. A. Yuksel, S. A. Camtepe, and S. Albayrak,
“Static analysis of executables for collaborative
malware detection on Android,” in Proc. IEEE Int.
Conf. Commun., 2009, pp. 1-5.

[6] 1. Burguera, U. Zurutuza, and S. Nadjm-Tehrani,
“Crowdroid: Behavior-based malware detection
system for Android,” in Proc. 1st ACM Workshop
Security Privacy Smartphones Mobile Devices, 2011,
pp. 15-26.

188

