@
F&ICSE International Journal of Computer Science and Engineering [pen Access

Technical Paper Volume-2, Issue-3 E-ISSN: 2347-2693

Multicore Heterogeneous Computing with OpenACC

Niraj R Chauhan'” and Mayur S. Burange®

! *’ZDept. of Comp. Sc & Engg., P.R.Pote Engg & management College, Amravati - India
nirajchauhan.nri24 @ gmail.com; mayurmsb123 @ gmail.com
www.ijcseonline.org

Received: 05 Mar 2014 Revised: 14 Mar 2014 Accepted: 24 Mar 2014 Published: 31 Mar 2014

Abstract- OpenACC it is a standard programming language for programming heterogeneous computers built from CPUs,
GPUs and DSP. It includes a framework of OpenAcc to define the platform in terms of a host (e.g. a CPU) and one or more
graphical compute devices (e.g. a GPU) plus a C-based programming language for writing programs & for executing
program for the computer devices. Using OpenAcc a programmer can write task-based programming and data-parallel
programming that are use all the resources of the heterogeneous computer system. This will be a “future introduction to
programming language” where we cover the ideas behind OpenAcc & other platforms. Thereby providing a pedagogically
useful example that experienced heterogeneous computing programmers will need to quickly become productive & efficient
OpenAcc programmer’s model. We can also show how these ideas are translated into source code & how they are executed
in the given system. We will do this through a series of progressively more challenging examples for heterogeneous

computing system.

Keywords- OpenAcc, Heterogeneous computing, HAS, OpenCL, CUDA

HETEROGENEOUS COMPUTING WITH
OPENACC

Heterogeneous computing refers to systems of CPU, GPU
& others processor, which are use more than one kind of
processor. These are multi-core heterogeneous computer
systems that gain performance that are not just by adding
cores, but also by including specialized processing &
manipulating capabilities to handle many particular tasks
at random time. This document describes the OpenAcc
compiler directives, library routines and environment
variables that collectively define the OpenAcc Application
Programming Interface (OpenACC API) for off-line
programs written in C, C++ and Fortran programs from a
host computer system CPU to an attached accelerator
device with accelerator processor. This method provides a
model for accelerator programming that is portable &
present across operating systems and various types of host
computer system CPUs and accelerators processor. The
directives extend the ISO/ANSI standard C, C++ and
Fortran base languages & many more, in a way that allows
a programmer to integrate applications incrementally to
accelerator targets & aim of system using standards-based
C, C++ or Fortran. Heterogeneous Computer System
Architecture utilize multiple multicore processor types,
usually on the same silicon die, to give you the best of both
worlds: GPU processing, apart from its well-known 3D
graphics rendering capabilities & execution, can also
perform mathematically intensive computations on very
large data sets, while CPUs can run the operating system
and perform traditional serial tasks.

On the other hand, the multiple multi-core era also
completed some interesting developments in GPUs, which
were growing in sophistication and complexity, spared on
by advances in semiconductor Software technology.
GPUs & DSP have vector processing capabilities which

Corresponding Author: Niraj R Chauhan’

© 2014, IJCSE All Rights Reserved

them enable to perform parallel operations on very large
scale sets of data — and to do it at less power consumption
relative to the serial processing system of similar data sets
on CPUs. By using this,GPUs to drive capabilities such as
incredibly realistic, multiple display stereoscopic gaming
& various forecasting system such as

Weather, nature, aerospace. And while their value was
initially derived from the ability to improve 3D graphics
performance by offloading graphics from the CPU, so that
they became increasingly attractive for more GPUs, such
as locating data parallel programming tasks.

The directives, packages and programming model defined
in framework of openAcc, allow programmers to create
applications which are capable of using accelerators
processor, without the need to explicitly manage data or
program transfers between two host and accelerator
computer system. Rather, these details are implicit in the
programming model of OpenAcc and are managed by the
OpenAcc APl-enabled compilers and runtime
environments System. The programming model of
openAcc allows the programmer to augment information
available to the compilers, including specification of data
local to an accelerator, guidance on mapping of loops onto
an accelerator, loops of various methodical and similar for
performance-related details.

SCOPE OF OPENACC FOR HETEROGENEOUS
COMPUTING

This OpenAcc API document covers only user-directed
accelerator programming, where the user specifies the
regions of a host program to be targeted for offloading to
an accelerator device. The main point of the program will
be executed on the host CPU system. This document does
not describe features or limitations of the host
programming environment as a written by programmer; It

92

International Journal of Computer Sciences and Engineering

is limited to specification of various loops and regions of
code to be offloaded to an accelerator.

Various challenge with heterogeneous computing with
OpenAcc which are discussed below.

e Levels of parallelism:
There are many levels of parallelism for
heterogeneous computing system
v" multiple device are inserted with separate (physical)
address spaces & locations
v" multiple threads are created inside a device
v vector parallelism is done by programming model
inside the thread mechanism
e Types of parallel programming models:
Message Passing interface which is used for
distributed or clustered memory systems
v' Task parallel interface which is used for shared
memory systems, thread based system
v Data parallel interface used for streaming processing
system

e Exploiting heterogeneous environment:
It is studied by GPGPU APIs and various
programming languages like OpenCL, CUDA
v' It included various Libraries such as CUBLAS,
CUSPARSE, MAGMA etc
v' Tt included various Compiler directives (PGI
Accelerator Directives, OpenACC)

This document does not describe automatic detection and
offloading of regions of code to an accelerator by a
compiler or other tool. This document does not describe
splitting loops or code regions to multiple accelerators
attached to a single host. While future compilers may
allow for automatic offloading, or offloading to multiple
accelerators of the same type, or to multiple accelerators of
different types, these possibilities are not addressed in this
document

OPENACC EXECUTION MODEL

We know that OpenAcc programming model targets on a
host-directed programming execution model where the
sequential programming code runs on a conventional
special purpose processor and computationally integrated
data & task parallel pieces of code (kernels) run on an
accelerator processor such as a CPU,GPU & other
processor . This mapping between the host computer
system and data & task parallel devices reflects a hardware
& software expression specification of Amdahl’s Law.

Amdahl’s Law is named after the computer architect
scientist Gene Amdahl. It is an approximation of that
models the ideally speedup sequential processor which are
happen when sequential (single-threaded) programs &
parallel programming model are modified to run on
parallel hardware. In the ideal case, those sections of code
that can be parallelized can have their runtime reduced by
a factor of N, where N is the number of parallel processing
elements. Large application speedups can occur when the
parallel sections of code dominate the runtime of the

4
/&] CSE ©2014, ICSE All Rights Reserved

Vol.-2(3), pp (92-97) March 2014, E-ISSN: 2347-2693

sequential code. Theoretically, the time taken to complete
the serial sections of code (those sections that cannot be
parallelized) will eventually decreases the runtime
scheduling of processor, when the number of task parallel
processing elements are allowed for performing various
task at single time. Where N, is large.

There are various benefit of the OpenAcc host-directed
heterogeneous programming model that it can leverage the
massive parallelism of heterogeneous system of one or
more accelerator devices where the number of processing
elements are large, while preserving these ability of the
latest generation of heterogeneous sequential processors to
accelerate the serial sections of code. In this way, the
performance characteristics of both art processors and
accelerators can be expanded in near future.

OpenAcc programmers must have to pay attention to data
transfers and usage of OpenAcc heterogeneous devices.
High-performance application interface generally conform
to the following three rules of co-processer programming
models:
= Transfer the data across the various PCles bus
onto the heterogeneous device and keep it there
for future purpose use.
= Give the device enough work to do so that
performance of system must be increased.
= Focus on data reuse within the co-processors to
avoid memory bandwidth bottlenecks problems in
heterogeneous.

Kernel regions operating system bundle one or several
nested loops of threads into a kernel memory space. The
OpenAcc compiler system essentially translates the loops
of processing threads into a kernel that can run in parallel
environments on the accelerator processing system.
Today’s present compilers are able to offload loops that
are nested three levels in deep. When the nesting level
exceeds the compiler capability, the outer loop(s) will run
sequentially on the any host it may be heterogeneous
processing, while the inner loops will run on the
accelerator processing unit. When possible, it is most
importantly ensure that the inner loops of processing
perform the largest amounts of work on host devices to
make best use of the accelerator processing unit. Following
is an example of a nested set of matrix multiplication loops
that was allotted as a kernel region for the OpenAcc
compiler:

Compute matrix multiplication.
#pragma acc kernels copyin(a,b) copy(c)
for (i =0; 1< SIZE; ++i) {
for (j = 0; j < SIZE; ++j) {
for (k = 0; k < SIZE; ++k) {
clilljl += alil(k] * bIKI][j];
}
}
}

93

International Journal of Computer Sciences and Engineering

CPU GPU

Program myscience”
.. serial code ..
1$acc kernels

e OpenAcc

dok=1,n1 —
doi=1,n2

~parallel code ... __—
enddo
enddo

ISacc end kernels.....
--..End Program myscience....

Figure 1

OpenAcc programming model targets a general purpose
device architecture that consider that a device will have to
contain multiple processing elements which are run in
parallel programming model system. Each processing
elements mentioned that they has the ability to efficiently
& correctly perform vector-like operations & manipulation
on various operation. For AMD GPUs, it is mandatorily to
think that each processing elements as a streaming
multicore multiprocessor, which are represented by
OpenAcc as thread block, that is aworker which is
effectively a warp, and that an OpenAcc vector is a form
of OpenCl thread & CUDA thread.

MEMORY MODEL OF OPENACC

OpenAcc is mainly used for targeting various
heterogeneous computer systems with a host CPU
computer system and a attached accelerator computer
device so that heterogeneous computer system nature is
maintain between them , such as an GPU,APU, the
memory space of the host computer system and
accelerator computer system is mandatorily completely
separately & individually . All data allocation and data
movement between host memory and accelerator device
memory must be performed by the host through runtime
library calls. Besides the host computer device and
accelerator computer device ,the device memory of
OpenAcc also has the notion of private, protected and
shared memory, where the private memory & protected
memory is generally use for hardware-managed caches
and the shared memory is usually used for software-
managed cache like the shared memory on OpenCl,
CUDA. All of these memory concepts are implicitly and
manageable by the compiler of openAcc, based on
compiler directives declared by the system programmer.

The directives of openAcc can describe the allocation and
data movement by telling the compiler that memory should
be allocated in device memory, data should be copied from
the host CPU computer system to the heterogeneous
computer systems and vice versa. Only copied data from
the host computer systems to the heterogeneous computer
systems device, only copied to the CPU computer systems
host from the heterogeneous computer systems device, or
that the data already exists in the device memory of both
computer system.

In a typical data parallel region, it is copied to the device
from the host CPU computer systems at the start of the
execution, and copied back to the host CPU computer
systems when the execution of program ends. On the other

[4
&] CSE ©2014, ICSE All Rights Reserved

Vol.-2(3), pp (92-97) March 2014, E-ISSN: 2347-2693

hand, when there are multiple parallel regions of data &
task that all work on the same data field which are present
in sequence of the copying of data back and forth between
each region of execution of programming data which is
might be slow down performance of CPU computer
systems. It is therefore possible to use the OpenAcc
runtime API to allocate memory at the start of the program
and pass the device memory pointers to the parallel regions
of CPU computer systems, allowing the data to stay on the
CPU computer systems device through the parallel
programs execution in the heterogeneous computer
architecture system.

In addition the compiler of OpenAcc also creates barrier
constructs to prevent simultaneous access of memory
space to the same memory location that might be result in
memory coherence issues, which is repeatedly represented
by this computer system.

The concept of separate host CPU computer systems
memories and accelerator computer systems memories is
very apparent & general in low-level accelerator
programming languages such as CUDA or OpenCL, in
which data transformation between the memories can be
dominate & reutilizing user programming code . In the
OpenAcc programming model, data movement &
transformation between the memories of host CPU
computer systems memories and accelerator computer
systems memories can be implicitly and managed by the
compiler, based on directives from the programmer.
However, the programmer must be aware of the potentially
separate memories for many reasons, including but not
limited to:

* Memory bandwidth between CPU computer
systems memories and accelerator computer
systems memories determines & logically use the
level of compute intensity required to effectively
integrated & accelerate a given region of
programming code for OpenAcc framework

= The limited device memory size may prohibit
offloading of regions of programming code that
operate on very large scale amounts of data which is
present in between CPU computer systems memory
and accelerator computer systems memory.

= Host CPU computer systems addresses stored to
pointers on the host CPU computer systems& it
may only be valid on the host computer systems.
They may addresses stored to pointers on the device
may only be valid on the device of host.
Dereferencing host pointers on the device or
dereferencing device pointers on the host is likely to
be invalid on such targets memory system.

Device data has an explicit lifetime, from when it is
allocated or created until it is deleted. If the device shares
physical and virtual memory with the local thread, the
device data environment will be shared with the local
thread. In that case, the implementation need not create
new copies of the data for the device and no data
movement need be done. If the device has a physically or

94

International Journal of Computer Sciences and Engineering

virtually separate memory from the local thread, the
implementation will allocate new data in the device
memory and copy data from the local memory to the
device environment.

OpenAcc exposes the separate memories through the use
of a device data environment. Some accelerators (such as
current GPUs) implement a weak memory model. In
particular, they do not support memory coherence between
operations executed by different threads; even on the same
execution unit, memory coherence is only guaranteed
when the memory operations are separated by an explicit
memory fence. Otherwise, if one thread updates a memory
location and another reads the same location, or two
threads store a value to the same location, the hardware
may not guarantee the same result for each execution.
While a compiler can detect some potential errors of this
nature, it is nonetheless possible to write an accelerator
parallel or kernels region that produces inconsistent
numerical results. Some current accelerators processing
units some have hardware managed caches system &
software-managed cache system, and most have hardware
caches that can be used only in certain condition and are
limited to read-only data in CPU computer system. In low-
level programming models such as CUDA or OpenCL
languages, it is up to the programmer to manage these
caches. In the OpenAcc model, these caches are managed
by the compiler with hints from the programmer in the
form of directives.

The possibilities created by heterogeneous computing are
truly fantastic — from flawless HD videoconferencing to
heretofore unimaginable display clarity to real-time
language translation and interpretation — all in lower and
lower power envelopes for smaller and smaller form
factors with longer and longer battery life.

WORKING OF HETEROGENEOUS SYSTEMS

It is currently perform leverage of the power efficiency and
data & task parallelism of today’s heterogeneous to user in
era of innovation in heterogeneous computing. So that they
can take mainstream visual virtual desktop applications
and they extended them to new levels, so that they enable
new pixel intensive experiences and even introduce non
visual & virtual capabilities where they are unimaginable
& unusable — until up to date. So let’s take moments to
look at the many ways of using GPUs continue to propel
advances in mainstream heterogeneous computing.

HSA Accelerated Processing Unit

DDR3 Controller

Data Parallel
Workloads

o
/i

- Serial and Task
& Parallel Workloads

= 1
Display Controller

Figure 2

@
A/ ‘]CSE © 2014, IICSE All Rights Reserved

Vol.-2(3), pp (92-97) March 2014, E-ISSN: 2347-2693

Way to accelerating application of heterogeneous
computing with OpenAcc

Applications

OpenACC
Directives

— Programming
Libraries Languages

Maximum
Flexibility

“Drop-in”
Acceleration

Easily Accelerate
Applications

Figure 3

Today’s GPUs can enable ultra-high frame rates for
realistic, immersive 3D gaming on mainstream (even entry
level) heterogenous computers. They can also make it easy
and cost-effective to add various 3D stereoscopic realism
to 2D content, that is from HI definition Hollywood
movies to home video system. Today’s GPUs can make
both collaborative definition and independent definition of
work for more productive result in productive industries.
With support for flawless HD video conference & video
which are capabilities and new forms of virtual presence
of various architecture of heterogeneous computing system
GPUs make virtual meeting as close to meeting in person
as it gets.so that they enable visual virtual video
communications that were not even remotely possible for
communication before, like bidirectional heterogeneous
HD video chats & communication. They can also send
desktop productivity soaring by making it easier and more
seamless than before to move back to and forth between
applications on multiple monitors of host system &
another system — even when working with graphics
processing computing intensive content like PowerPoint
presentations & product demos or simulations, and various
graphical videos.

The performance of computing using heterogeneous
computing is shown as below

4.6 da 2.7 days 8 hours
4 3 haurs
30 minutes ;

27 minutes : I:-16 Ll

13 minutes i

3D ultrasounds in tomography
Comy chemistry ic modeling Cell phongs simul. in RF.
WcrPuonly MCPU+GPU
Figure 4

95

International Journal of Computer Sciences and Engineering

HAS(HETEROGENEOUS SYSTEM ARCHITECTURE)
ENABLING NEW PIXEL-INTENSIVE EXPERIENCES

Those are just a few of ways that heterogeneous computing
could change the way people interact with computers
forever. The only thing more exciting than doing
something better than you’ve ever done it is doing
something entirely new. For example, what if you could
log in to your computer just by looking at the screen?
What if it could respond to just a gesture, not even need a
touch, to know exactly what you want? And what if your
HD video walkthrough of a new house could generate a
3D model of that space to see if your furniture could make
that house your new home? Those are just a few of ways
that heterogeneous computing could change the way
people interact with computers forever. They’'re also just
three examples of the types of software innovations that
are possible now with GPU application programming
interfaces (APIs).

If you’re like most people, you probably find it hard to
imagine something more mundane and time consuming
than searching and categorizing your photos and videos
based upon who is in them, where you were and what you
were doing. But what if your computer could speed
through by quickly and automatically finding and tagging
photos and videos for you based on the faces, places or
objects that are in the images? Or by helping you sort
through photo libraries to eliminate duplicates saved under
different names? Or by finding the IMDb or Wikipedia
entry you’re looking for based on a “look™ at an actor’s
face? These are also pixel-intensive experiences made
possible by today’s GPUs. And they’re enough to make
current search and index capabilities seem almost
unimaginably tedious and slow.

Today’s GPUs can also add measurably to the enjoyment
of visual content in a number of new ways. Imagine a
computer that enhances your shaky handheld video footage
by automatically stabilizing HD content. Or one that
delivers crystal clear content even on room-sized screens.
Or that supports holographic imagery for unprecedented
realism. We foresee display resolutions so high, they
deliver density and clarity that rivals what the human eye
can even perceive in the analog world. This is how
technology improves our lives by getting out of the way.

HAS CREATING NEW NON VISUAL
EXPERIENCES

Chances are that when you think of new applications for
GPUs, you’re likely to think of visual experiences. Facial
and gesture recognition, photo or video indexing, and
some of the others we’ve just described are good
examples. That stands to reason, given that the “G” in
GPU does stand for “graphics”. But as we have discussed,
GPUs can do more than just push pixels to a display. They
are very capable general purpose computing resources that
can now stand side by side with the CPU and enable a
broad range of compelling new experiences. For example,
today’s GPUs enable a level of contextually aware
computing that takes new experiences far outside the realm
of the visual. We may not be at a point where “Computer:

@
@] CSE ©2014, UCSE All Rights Reserved

Vol.-2(3), pp (92-97) March 2014, E-ISSN: 2347-2693

Earl Grey, hot” is going to be a reality anytime soon. But
some of the very real possibilities are nearly as amazing.

Graphical Processing Unit
Parallel workinz

Central ProcessingUnit
Serial Working

Accelerated Frocessing Unit
(Heterogenzous Computing System]

Figure 5

In ambient computing — one term for contextually aware
computing — massive amounts of data from multiple
sensors enable a computer to adapt to user and situation,
rather than the other way around. In the audio world, for
example, consider the ever present lag in the time it takes
to transcribe or translate live audio from one language to
another during video conferencing, news broadcasting and
similar scenarios. People have accepted this inconvenience
for years, but ambient computing enabled by advanced
data parallel processing capabilities of GPUs creates the
potential for audio interpretation and voice translation to
other languages immediately, in real time.

This more contextually aware computing also opens the
possibility for capabilities like speech recognition in audio
recording application.This more contextually aware
computing also opens the possibility for capabilities like
speech recognition in audio recording applications — so
that, for example, software will automatically determine
who is speaking in a conference room and identify the
different speakers in the auto-generated transcript of the
conference. Another potential application is for software
that will dynamically gauge the acoustics in a room and
tweak output accordingly for whatever mobile device
you’re using.

These kinds of audio applications translate into digital
security as well — in, for example, systems that grant user
access to physical locations and computer systems by
recognizing and authenticating users based on voice. And
while we’re on the subject of security, GPU capabilities
could enable targeted malicious software scans that
eliminate the painfully slow runtimes associated with
today’s anti-virus programs.

These aren’t blue-sky speculations. Many of the
capabilities exist today in labs all over the world. Why
haven’t they found their way to the mainstream yet? The
answer is in the limitations of existing hardware
architecture and software programming models. And this
is why heterogeneous systems architecture is vital to
enabling the next era of computing innovation.

REFERENCE

[1]. www.openacc.org/sites/default/files/OpenACC%202%?2
00.pdf
[2]. en.wikipedia.org/wiki/Heterogeneous_computing

96

International Journal of Computer Sciences and Engineering Vol.-2(3), pp (92-97) March 2014, E-ISSN: 2347-2693

[3]. http://www.drdobbs.com/parallel/the-openacc- [8]. www.nvidia.com/gpudirectives
execution-model/240006334?pgno=1 [9]. ww.linksceem.eu/Is2/images/stories/OpenACC.pdf

[4]. http://www.diva- [10]. www.training.praceri.eu/uploads/tx.../HeterogeneousCo
portal.org/smash/get/diva2:655634/FULLTEXTO1.pdf mputingJU.pdf

[5]. http://developer.amd.com/resources/heterogeneous- [11]. www.pgroup.com/lit/whitepapers/pgi_accel_prog_model
computing/what-is-heterogeneous-system-architecture- _1.2.pdf
hsa/

[6]. www.youtube.com/watch?v=r6r2NJxj3kl

1.
[7]. http://www.ece.cmu.edu/~eced447/s13/lib/exe/fetch.php?
media=onur-447-spring13-lecture33-
heterogeneousmulticore-afterlecture.pdf

@
&] CSE ©2014, TICSE All Rights Reserved 97

