
 © 2014, IJCSE All Rights Reserved 92

 International Journal of Computer Science and EngineeringInternational Journal of Computer Science and EngineeringInternational Journal of Computer Science and EngineeringInternational Journal of Computer Science and Engineering Open Access
Technical Paper Volume-2, Issue-3 E-ISSN: 2347-2693

Multicore Heterogeneous Computing with OpenACC

Niraj R Chauhan
1*

and Mayur S. Burange
2

1*,2
Dept. of Comp. Sc & Engg., P.R.Pote Engg & management College, Amravati - India

nirajchauhan.nri24@gmail.com; mayurmsb123@gmail.com

www.ijcseonline.org

Received: 05 Mar 2014 Revised: 14 Mar 2014 Accepted: 24 Mar 2014 Published: 31 Mar 2014

Abstract- OpenACC it is a standard programming language for programming heterogeneous computers built from CPUs,

GPUs and DSP. It includes a framework of OpenAcc to define the platform in terms of a host (e.g. a CPU) and one or more

graphical compute devices (e.g. a GPU) plus a C-based programming language for writing programs & for executing

program for the computer devices. Using OpenAcc a programmer can write task-based programming and data-parallel

programming that are use all the resources of the heterogeneous computer system. This will be a “future introduction to

programming language” where we cover the ideas behind OpenAcc & other platforms. Thereby providing a pedagogically

useful example that experienced heterogeneous computing programmers will need to quickly become productive & efficient

OpenAcc programmer’s model. We can also show how these ideas are translated into source code & how they are executed

in the given system. We will do this through a series of progressively more challenging examples for heterogeneous

computing system.

 Keywords- OpenAcc, Heterogeneous computing, HAS, OpenCL, CUDA

HETEROGENEOUS COMPUTING WITH

OPENACC

Heterogeneous computing refers to systems of CPU, GPU

& others processor, which are use more than one kind of

processor. These are multi-core heterogeneous computer

systems that gain performance that are not just by adding

cores, but also by including specialized processing &

manipulating capabilities to handle many particular tasks

at random time. This document describes the OpenAcc

compiler directives, library routines and environment

variables that collectively define the OpenAcc Application

Programming Interface (OpenACC API) for off-line

programs written in C, C++ and Fortran programs from a

host computer system CPU to an attached accelerator

device with accelerator processor. This method provides a

model for accelerator programming that is portable &

present across operating systems and various types of host

computer system CPUs and accelerators processor. The

directives extend the ISO/ANSI standard C, C++ and

Fortran base languages & many more, in a way that allows

a programmer to integrate applications incrementally to

accelerator targets & aim of system using standards-based

C, C++ or Fortran. Heterogeneous Computer System

Architecture utilize multiple multicore processor types,

usually on the same silicon die, to give you the best of both

worlds: GPU processing, apart from its well-known 3D

graphics rendering capabilities & execution, can also

perform mathematically intensive computations on very

large data sets, while CPUs can run the operating system

and perform traditional serial tasks.

On the other hand, the multiple multi-core era also

completed some interesting developments in GPUs, which

were growing in sophistication and complexity, spared on

by advances in semiconductor Software technology.

GPUs & DSP have vector processing capabilities which

them enable to perform parallel operations on very large

scale sets of data – and to do it at less power consumption

relative to the serial processing system of similar data sets

on CPUs. By using this,GPUs to drive capabilities such as

incredibly realistic, multiple display stereoscopic gaming

& various forecasting system such as

Weather, nature, aerospace. And while their value was

initially derived from the ability to improve 3D graphics

performance by offloading graphics from the CPU, so that

they became increasingly attractive for more GPUs, such

as locating data parallel programming tasks.

The directives, packages and programming model defined

in framework of openAcc, allow programmers to create

applications which are capable of using accelerators

processor, without the need to explicitly manage data or

program transfers between two host and accelerator

computer system. Rather, these details are implicit in the

programming model of OpenAcc and are managed by the

OpenAcc API-enabled compilers and runtime

environments System. The programming model of

openAcc allows the programmer to augment information

available to the compilers, including specification of data

local to an accelerator, guidance on mapping of loops onto

an accelerator, loops of various methodical and similar for

performance-related details.

SCOPE OF OPENACC FOR HETEROGENEOUS

COMPUTING

This OpenAcc API document covers only user-directed

accelerator programming, where the user specifies the

regions of a host program to be targeted for offloading to

an accelerator device. The main point of the program will

be executed on the host CPU system. This document does

not describe features or limitations of the host

programming environment as a written by programmer; It
Corresponding Author: Niraj R Chauhan1

 International Journal of Computer Sciences and Engineering Vol.-2(3), pp (92-97) March 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 93

is limited to specification of various loops and regions of

code to be offloaded to an accelerator.

Various challenge with heterogeneous computing with

OpenAcc which are discussed below.

• Levels of parallelism:

There are many levels of parallelism for

heterogeneous computing system

� multiple device are inserted with separate (physical)

address spaces & locations

� multiple threads are created inside a device

� vector parallelism is done by programming model

inside the thread mechanism

• Types of parallel programming models:

� Message Passing interface which is used for

distributed or clustered memory systems

� Task parallel interface which is used for shared

memory systems, thread based system

� Data parallel interface used for streaming processing

system

• Exploiting heterogeneous environment:

� It is studied by GPGPU APIs and various

programming languages like OpenCL, CUDA

� It included various Libraries such as CUBLAS,

CUSPARSE, MAGMA etc

� It included various Compiler directives (PGI

Accelerator Directives, OpenACC)

This document does not describe automatic detection and

offloading of regions of code to an accelerator by a

compiler or other tool. This document does not describe

splitting loops or code regions to multiple accelerators

attached to a single host. While future compilers may

allow for automatic offloading, or offloading to multiple

accelerators of the same type, or to multiple accelerators of

different types, these possibilities are not addressed in this

document

OPENACC EXECUTION MODEL

We know that OpenAcc programming model targets on a

host-directed programming execution model where the

sequential programming code runs on a conventional

special purpose processor and computationally integrated

data & task parallel pieces of code (kernels) run on an

accelerator processor such as a CPU,GPU & other

processor . This mapping between the host computer

system and data & task parallel devices reflects a hardware

& software expression specification of Amdahl’s Law.

Amdahl’s Law is named after the computer architect

scientist Gene Amdahl. It is an approximation of that

models the ideally speedup sequential processor which are

happen when sequential (single-threaded) programs &

parallel programming model are modified to run on

parallel hardware. In the ideal case, those sections of code

that can be parallelized can have their runtime reduced by

a factor of N, where N is the number of parallel processing

elements. Large application speedups can occur when the

parallel sections of code dominate the runtime of the

sequential code. Theoretically, the time taken to complete

the serial sections of code (those sections that cannot be

parallelized) will eventually decreases the runtime

scheduling of processor, when the number of task parallel

processing elements are allowed for performing various

task at single time. Where N, is large.

There are various benefit of the OpenAcc host-directed

heterogeneous programming model that it can leverage the

massive parallelism of heterogeneous system of one or

more accelerator devices where the number of processing

elements are large, while preserving these ability of the

latest generation of heterogeneous sequential processors to

accelerate the serial sections of code. In this way, the

performance characteristics of both art processors and

accelerators can be expanded in near future.

OpenAcc programmers must have to pay attention to data

transfers and usage of OpenAcc heterogeneous devices.

High-performance application interface generally conform

to the following three rules of co-processer programming

models:

� Transfer the data across the various PCIes bus

onto the heterogeneous device and keep it there

for future purpose use.

� Give the device enough work to do so that

performance of system must be increased.

� Focus on data reuse within the co-processors to

avoid memory bandwidth bottlenecks problems in

heterogeneous.

Kernel regions operating system bundle one or several

nested loops of threads into a kernel memory space. The

OpenAcc compiler system essentially translates the loops

of processing threads into a kernel that can run in parallel

environments on the accelerator processing system.

Today’s present compilers are able to offload loops that

are nested three levels in deep. When the nesting level

exceeds the compiler capability, the outer loop(s) will run

sequentially on the any host it may be heterogeneous

processing, while the inner loops will run on the

accelerator processing unit. When possible, it is most

importantly ensure that the inner loops of processing

perform the largest amounts of work on host devices to

make best use of the accelerator processing unit. Following

is an example of a nested set of matrix multiplication loops

that was allotted as a kernel region for the OpenAcc

compiler:

Compute matrix multiplication.

#pragma acc kernels copyin(a,b) copy(c)

 for (i = 0; i < SIZE; ++i) {

 for (j = 0; j < SIZE; ++j) {

 for (k = 0; k < SIZE; ++k) {

 c[i][j] += a[i][k] * b[k][j];

 }

 }

 }

 International Journal of Computer Sciences and Engineering Vol.-2(3), pp (92-97) March 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 94

Figure 1

OpenAcc programming model targets a general purpose

device architecture that consider that a device will have to

contain multiple processing elements which are run in

parallel programming model system. Each processing

elements mentioned that they has the ability to efficiently

& correctly perform vector-like operations & manipulation

on various operation. For AMD GPUs, it is mandatorily to

think that each processing elements as a streaming

multicore multiprocessor, which are represented by

OpenAcc as thread block, that is a worker which is

effectively a warp, and that an OpenAcc vector is a form

of OpenCl thread & CUDA thread.

MEMORY MODEL OF OPENACC

OpenAcc is mainly used for targeting various

heterogeneous computer systems with a host CPU

computer system and a attached accelerator computer

device so that heterogeneous computer system nature is

maintain between them , such as an GPU,APU, the

memory space of the host computer system and

accelerator computer system is mandatorily completely

separately & individually . All data allocation and data

movement between host memory and accelerator device

memory must be performed by the host through runtime

library calls. Besides the host computer device and

accelerator computer device ,the device memory of

OpenAcc also has the notion of private, protected and

shared memory, where the private memory & protected

memory is generally use for hardware-managed caches

and the shared memory is usually used for software-

managed cache like the shared memory on OpenCl,

CUDA. All of these memory concepts are implicitly and

manageable by the compiler of openAcc, based on

compiler directives declared by the system programmer.

The directives of openAcc can describe the allocation and

data movement by telling the compiler that memory should

be allocated in device memory, data should be copied from

the host CPU computer system to the heterogeneous

computer systems and vice versa. Only copied data from

the host computer systems to the heterogeneous computer

systems device, only copied to the CPU computer systems

host from the heterogeneous computer systems device, or

that the data already exists in the device memory of both

computer system.

In a typical data parallel region, it is copied to the device

from the host CPU computer systems at the start of the

execution, and copied back to the host CPU computer

systems when the execution of program ends. On the other

hand, when there are multiple parallel regions of data &

task that all work on the same data field which are present

in sequence of the copying of data back and forth between

each region of execution of programming data which is

might be slow down performance of CPU computer

systems. It is therefore possible to use the OpenAcc

runtime API to allocate memory at the start of the program

and pass the device memory pointers to the parallel regions

of CPU computer systems, allowing the data to stay on the

CPU computer systems device through the parallel

programs execution in the heterogeneous computer

architecture system.

In addition the compiler of OpenAcc also creates barrier

constructs to prevent simultaneous access of memory

space to the same memory location that might be result in

memory coherence issues, which is repeatedly represented

by this computer system.

The concept of separate host CPU computer systems

memories and accelerator computer systems memories is

very apparent & general in low-level accelerator

programming languages such as CUDA or OpenCL, in

which data transformation between the memories can be

dominate & reutilizing user programming code . In the

OpenAcc programming model, data movement &

transformation between the memories of host CPU

computer systems memories and accelerator computer

systems memories can be implicitly and managed by the

compiler, based on directives from the programmer.

However, the programmer must be aware of the potentially

separate memories for many reasons, including but not

limited to:

� Memory bandwidth between CPU computer

systems memories and accelerator computer

systems memories determines & logically use the

level of compute intensity required to effectively

integrated & accelerate a given region of

programming code for OpenAcc framework

� The limited device memory size may prohibit

offloading of regions of programming code that

operate on very large scale amounts of data which is

present in between CPU computer systems memory

and accelerator computer systems memory.

� Host CPU computer systems addresses stored to

pointers on the host CPU computer systems& it

may only be valid on the host computer systems.

They may addresses stored to pointers on the device

may only be valid on the device of host.

Dereferencing host pointers on the device or

dereferencing device pointers on the host is likely to

be invalid on such targets memory system.

Device data has an explicit lifetime, from when it is

allocated or created until it is deleted. If the device shares

physical and virtual memory with the local thread, the

device data environment will be shared with the local

thread. In that case, the implementation need not create

new copies of the data for the device and no data

movement need be done. If the device has a physically or

 International Journal of Computer Sciences and Engineering Vol.-2(3), pp (92-97) March 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 95

virtually separate memory from the local thread, the

implementation will allocate new data in the device

memory and copy data from the local memory to the

device environment.

OpenAcc exposes the separate memories through the use

of a device data environment. Some accelerators (such as

current GPUs) implement a weak memory model. In

particular, they do not support memory coherence between

operations executed by different threads; even on the same

execution unit, memory coherence is only guaranteed

when the memory operations are separated by an explicit

memory fence. Otherwise, if one thread updates a memory

location and another reads the same location, or two

threads store a value to the same location, the hardware

may not guarantee the same result for each execution.

While a compiler can detect some potential errors of this

nature, it is nonetheless possible to write an accelerator

parallel or kernels region that produces inconsistent

numerical results. Some current accelerators processing

units some have hardware managed caches system &

software-managed cache system, and most have hardware

caches that can be used only in certain condition and are

limited to read-only data in CPU computer system. In low-

level programming models such as CUDA or OpenCL

languages, it is up to the programmer to manage these

caches. In the OpenAcc model, these caches are managed

by the compiler with hints from the programmer in the

form of directives.

The possibilities created by heterogeneous computing are

truly fantastic – from flawless HD videoconferencing to

heretofore unimaginable display clarity to real-time

language translation and interpretation – all in lower and

lower power envelopes for smaller and smaller form

factors with longer and longer battery life.

WORKING OF HETEROGENEOUS SYSTEMS

It is currently perform leverage of the power efficiency and

data & task parallelism of today’s heterogeneous to user in

era of innovation in heterogeneous computing. So that they

can take mainstream visual virtual desktop applications

and they extended them to new levels, so that they enable

new pixel intensive experiences and even introduce non

visual & virtual capabilities where they are unimaginable

& unusable – until up to date. So let’s take moments to

look at the many ways of using GPUs continue to propel

advances in mainstream heterogeneous computing.

Figure 2

Way to accelerating application of heterogeneous

computing with OpenAcc

Figure 3

Today’s GPUs can enable ultra-high frame rates for

realistic, immersive 3D gaming on mainstream (even entry

level) heterogenous computers. They can also make it easy

and cost-effective to add various 3D stereoscopic realism

to 2D content, that is from HI definition Hollywood

movies to home video system. Today’s GPUs can make

both collaborative definition and independent definition of

work for more productive result in productive industries.

With support for flawless HD video conference & video

which are capabilities and new forms of virtual presence

of various architecture of heterogeneous computing system

GPUs make virtual meeting as close to meeting in person

as it gets.so that they enable visual virtual video

communications that were not even remotely possible for

communication before, like bidirectional heterogeneous

HD video chats & communication. They can also send

desktop productivity soaring by making it easier and more

seamless than before to move back to and forth between

applications on multiple monitors of host system &

another system – even when working with graphics

processing computing intensive content like PowerPoint

presentations & product demos or simulations, and various

graphical videos.

The performance of computing using heterogeneous

computing is shown as below

.

Figure 4

 International Journal of Computer Sciences and Engineering Vol.-2(3), pp (92-97) March 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 96

HAS(HETEROGENEOUS SYSTEM ARCHITECTURE)

ENABLING NEW PIXEL-INTENSIVE EXPERIENCES

Those are just a few of ways that heterogeneous computing

could change the way people interact with computers

forever. The only thing more exciting than doing

something better than you’ve ever done it is doing

something entirely new. For example, what if you could

log in to your computer just by looking at the screen?

What if it could respond to just a gesture, not even need a

touch, to know exactly what you want? And what if your

HD video walkthrough of a new house could generate a

3D model of that space to see if your furniture could make

that house your new home? Those are just a few of ways

that heterogeneous computing could change the way

people interact with computers forever. They’re also just

three examples of the types of software innovations that

are possible now with GPU application programming

interfaces (APIs).

If you’re like most people, you probably find it hard to

imagine something more mundane and time consuming

than searching and categorizing your photos and videos

based upon who is in them, where you were and what you

were doing. But what if your computer could speed

through by quickly and automatically finding and tagging

photos and videos for you based on the faces, places or

objects that are in the images? Or by helping you sort

through photo libraries to eliminate duplicates saved under

different names? Or by finding the IMDb or Wikipedia

entry you’re looking for based on a “look” at an actor’s

face? These are also pixel-intensive experiences made

possible by today’s GPUs. And they’re enough to make

current search and index capabilities seem almost

unimaginably tedious and slow.

Today’s GPUs can also add measurably to the enjoyment

of visual content in a number of new ways. Imagine a

computer that enhances your shaky handheld video footage

by automatically stabilizing HD content. Or one that

delivers crystal clear content even on room-sized screens.

Or that supports holographic imagery for unprecedented

realism. We foresee display resolutions so high, they

deliver density and clarity that rivals what the human eye

can even perceive in the analog world. This is how

technology improves our lives by getting out of the way.

HAS CREATING NEW NON VISUAL

EXPERIENCES

Chances are that when you think of new applications for

GPUs, you’re likely to think of visual experiences. Facial

and gesture recognition, photo or video indexing, and

some of the others we’ve just described are good

examples. That stands to reason, given that the “G” in

GPU does stand for “graphics”. But as we have discussed,

GPUs can do more than just push pixels to a display. They

are very capable general purpose computing resources that

can now stand side by side with the CPU and enable a

broad range of compelling new experiences. For example,

today’s GPUs enable a level of contextually aware

computing that takes new experiences far outside the realm

of the visual. We may not be at a point where “Computer:

Earl Grey, hot” is going to be a reality anytime soon. But

some of the very real possibilities are nearly as amazing.

Figure 5

In ambient computing – one term for contextually aware

computing – massive amounts of data from multiple

sensors enable a computer to adapt to user and situation,

rather than the other way around. In the audio world, for

example, consider the ever present lag in the time it takes

to transcribe or translate live audio from one language to

another during video conferencing, news broadcasting and

similar scenarios. People have accepted this inconvenience

for years, but ambient computing enabled by advanced

data parallel processing capabilities of GPUs creates the

potential for audio interpretation and voice translation to

other languages immediately, in real time.

This more contextually aware computing also opens the

possibility for capabilities like speech recognition in audio

recording application.This more contextually aware

computing also opens the possibility for capabilities like

speech recognition in audio recording applications – so

that, for example, software will automatically determine

who is speaking in a conference room and identify the

different speakers in the auto-generated transcript of the

conference. Another potential application is for software

that will dynamically gauge the acoustics in a room and

tweak output accordingly for whatever mobile device

you’re using.

These kinds of audio applications translate into digital

security as well – in, for example, systems that grant user

access to physical locations and computer systems by

recognizing and authenticating users based on voice. And

while we’re on the subject of security, GPU capabilities

could enable targeted malicious software scans that

eliminate the painfully slow runtimes associated with

today’s anti-virus programs.

These aren’t blue-sky speculations. Many of the

capabilities exist today in labs all over the world. Why

haven’t they found their way to the mainstream yet? The

answer is in the limitations of existing hardware

architecture and software programming models. And this

is why heterogeneous systems architecture is vital to

enabling the next era of computing innovation.

REFERENCE

[1]. www.openacc.org/sites/default/files/OpenACC%202%2

00.pdf

[2]. en.wikipedia.org/wiki/Heterogeneous_computing

 International Journal of Computer Sciences and Engineering Vol.-2(3), pp (92-97) March 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 97

[3]. http://www.drdobbs.com/parallel/the-openacc-

execution-model/240006334?pgno=1

[4]. http://www.diva-

portal.org/smash/get/diva2:655634/FULLTEXT01.pdf

[5]. http://developer.amd.com/resources/heterogeneous-

computing/what-is-heterogeneous-system-architecture-

hsa/

[6]. www.youtube.com/watch?v=r6r2NJxj3kI

[7]. http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?

media=onur-447-spring13-lecture33-

heterogeneousmulticore-afterlecture.pdf

[8]. www.nvidia.com/gpudirectives

[9]. ww.linksceem.eu/ls2/images/stories/OpenACC.pdf

[10]. www.training.praceri.eu/uploads/tx.../HeterogeneousCo

mputingJU.pdf

[11]. www.pgroup.com/lit/whitepapers/pgi_accel_prog_model

_1.2.pdf

