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Abstract: Automatic Modulation Classification (AMC) serves as a foundational element in contemporary wireless 

communication systems, enabling adaptive signal processing and efficient spectrum management. This study explores deep 

learning-based approaches—particularly a Res-Net architecture—for robust AMC performance using the benchmark 

RADIOML 2018.01A dataset. The dataset comprises 24 modulation schemes across a wide SNR range from -20 dB to +30 dB. 

Comprehensive data preprocessing was performed, including normalization, as well as various augmentation methods like phase 

rotation, temporal shifting, and artificial noise addition to strengthen the model’s resilience and ability to generalize under 

challenging conditions. A Res-Net model was constructed and optimized with categorical cross-entropy as the loss function and 

Adam as the learning algorithm. The model achieved a test accuracy of 95.72% under high-SNR conditions (SNR > 8 dB) with 

a low training loss of 0.0933, demonstrating strong convergence and generalization capabilities. Confusion matrix analysis 

highlighted the model’s strengths in accurately classifying most modulation types, while revealing challenges in differentiating 

between similar schemes like 16QAM and 64QAM under low SNR conditions. The findings confirm that the proposed deep 

learning framework is capable of learning and distinguishing complex signal characteristics directly from unprocessed I/Q data 

without the need for manual feature crafting. Future work will focus on integrating Transformer-based architectures, wavelet 

transform features, and hybrid CNN–RNN models to improve performance in noisy environments. The results underscore the 

potential of deep learning for deploying AMC in cognitive radio, signal surveillance, and secure communication systems. 
 

Keywords: Automated Modulation Classification (AMC), Deep Learning (DL), ResNet-Model, CNN, Signal Classification, 

Cognitive Radio Networks, Adversarial Conditions

 
 

Graphical Abstract- This graphical abstract presents the 

proposed pipeline for Automatic Modulation Classification (AMC) 

using a ResNet-based deep learning architecture. The workflow 

begins with raw in-phase and quadrature (IQ) signal samples from 

the RadioML 2018.01A dataset, which are first processed through 

normalization and augmentation techniques such as phase rotation, 

time shifting, and additive noise injection. 
 

These preprocessed signals are then passed into a Residual Network 

(ResNet) model, which enhances feature extraction and 

classification accuracy by utilizing residual skip connections to 

avoid vanishing gradient issues. The model is optimized using Adam 

and trained with categorical cross-entropy loss. 
 

The graphical summary shows training, validation, and testing 

performance, demonstrating that the model achieves a peak accuracy 

of 95.72% under high SNR conditions. Comparative results also 

highlight the improvement over traditional and CNN-based AMC 

methods. This approach is shown to be robust in noisy 

environments, scalable to different modulation types, and suitable 

for real-time communication systems. 
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1. Introduction  
 

The continuous advancement in wireless communication 

technologies has created an urgent need for advanced 

methods in spectrum management, interference reduction, 

and intelligent signal analysis. Automatic Modulation 

Classification (AMC) serves a key function in determining 

the modulation format of incoming signals without prior 

knowledge of its transmission settings. AMC is crucial for 

both military and commercial domains, including cognitive 

radio, spectrum monitoring, and electronic warfare. 

 

Traditional AMC methods typically rely on manually 

engineered features and use classification algorithms like 

Decision Trees and Support Vector Machines (SVMs). 

However, these approaches often struggle to maintain 

reliability in environments with fluctuating noise levels, 

shifting channel conditions, and unknown modulation 

formats, which can limit their effectiveness for contemporary 

radio systems. 

 

Recently, deep learning has emerged as a transformative 

approach to AMC, offering automated feature extraction and 

improved classification accuracy from raw signal data. 

Architectures such as Convolutional Neural Networks 

(CNNs) alongside Recurrent Neural Networks (RNNs), 

including Long Short-Term Memory (LSTM) units, have 

been widely adopted for their strong performance in capturing 

the complex spatial and temporal patterns inherent in I/Q (in-

phase and quadrature) signal components. Additionally, 

Transformer models—first developed for natural language 

processing—are now being applied to AMC due to their 

strength in representing long-range interactions using 

attention-based mechanisms. 

 

Despite these advances, challenges remain in achieving real-

time performance, minimizing computational costs, and 

ensuring robust operation under adverse conditions such as 

multipath fading and varying signal-to-noise ratios (SNRs). 

This work proposes a robust AMC framework utilizing a 

hybrid of deep learning architectures to enhance classification 

reliability and adaptability across numerous signal 

environments. Various input representations—including raw 

IQ samples, spectrograms, and wavelet transforms—are 

evaluated to identify the most effective format for each model 

type. The study also explores advanced data augmentation, 

transfer learning, and domain adaptation techniques to 

enhance model resilience against real-world signal variability. 

By leveraging the strengths of data-driven neural 

architectures capable of end-to-end signal recognition, this 

work aims to advance AMC technology, making it more 

adaptable for future wireless systems such as 5G and beyond. 

The outcomes of this research are expected to facilitate 

broader applications in cognitive radio, autonomous spectrum 

management, and secure wireless communications. 

 

1.1 Problem Statement 

The most of advancements in deep learning for AMC, several 

challenges remain in developing models that can generalize 

across different signal environments maintaining low 

computational complexity for real-time applications. In the 

existing benchmark datasets are RADIOML 2016.10A is 

limited number of modulation schemes are not fully 

representing the diversity of signals encountered in practical 

applications. There is a pressing need for a deep learning-

based AMC framework that classify a wide range of 

modulation types being robust against environmental 

distortions. 

 

1.2 Research Objectives & Contributions 

This study is focused on building a novel deep learning-based 

AMC framework that effectively classifies modulation types 

using raw IQ data and time-frequency representations. The 

proposed approach explores different deep learning 

architectures, including CNNs for spatial feature extraction 

with use of Rest-Net for capturing temporal dependencies, 

and RES-Net models for improved feature representation. 

Transformer-based models for their capability in processing 

long-range dependencies within signal sequences. 

 

The core contributions of this study are as follows: 

1. Development of a robust deep learning model for AMC, 

capable of handling diverse modulation types under varying 

noise conditions and channel conditions. 

2. This work intends to close the gap between conceptual 

advancements in deep learning and the actual implementation 

of AMC solutions in communication systems. 

 

2. Related Work  

 
2.1 Introduction 
Automatic Modulation Classification (AMC) represents a 

fundamental function in present-day wireless communication 

systems, enabling dynamic signal recognition and intelligent 

transmission strategies in scenarios ranging from cognitive 

radios to military communication networks. Over the years 

and the evolution of AMC methodologies has been shaped in 

the progressions both traditional signal processing techniques 

and modern machine-learning examples [11]. Early methods 

relied heavily on the feature engineering where domain 

specific attributes are amplitude with phase and spectral 

characteristics were extracted and classified using the 

algorithms like classifiers such as decision trees, k-nearest 

neighbors, and support vector machines (SVMs). These 

methods provided the foundational and their reliance on 

handcrafted features and sensitivity to noise and signal-noise-

ratio (SNR) variations and channel distortions limited to their 

applicability in dynamic environments. The rise of deep-

learning has escorted in a transformative phase for AMC and 

offering the automated feature extraction and end to end 

learning capabilities that significantly enhance classification 

performance [12]. Convolutional-Neural-Networks (CNNs) 

and hybrid architectures have established remarkable 

potential in capturing both spatial and temporal features from 

raw signal data (Mendis, G 2016). These advances and 

significant challenges in handling the diversity of modulation 

schemes and achieving robustness under varying SNR 

conditions and real time processing robust evaluation metrics 

to develop the comprehensive and scalable solutions for next 

generation communication systems.  
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2.2 Traditional AMC Techniques 

Traditional Automatic-Modulation-Classification (AMC) 

techniques rely heavily on feature based approaches these 

involve manually extracting specific characteristics from the 

signal [13]. These features are carefully selected based on 

domain expertise and serve inputs to classification algorithms. 

In isolating unique properties of signals and feature based 

techniques aim to distinguish among the various modulation 

schemes (Wu, P.,2020). These methods depend on the 

significantly quality and relevance of the extracted features 

which represent the signal's defining attributes. These 

approaches have played the foundational role in AMC 

providing the structured structure for modulation 

classification [14]. Their reliance on manual processes and 

limited scalability pose significant challenges in modern and 

dynamic communication environments. 

 

 
Figure 1. Ttraditional AMC techniques (Khan, R., Yang, Q 2022) 

 

1. Manually Extracted Features: In the figure 1 is showing 

the 1st step is Feature extraction in traditional AMC on 

analyzing the signals in domains are time with frequency 

and statistics to identify the patterns that differentiate 

modulation types. In frequency domain analysis, features 

such as power spectral density, bandwidth, and spectral 

flatness are commonly used. These features are capture 

the energy distribution of signals and are useful for the 

distinguishing frequency based modulations like 

Frequency-Modulation (FM). 

2. Feature-Based Approaches: Once the features are 

extracted and traditional AMC techniques employ the 

variety of classifiers to categorize the signals. Decision-

trees for example use of hierarchical structure to classify 

the signals through the series of binary splits based on 

feature thresholds [15]. simple and interpretable and 

decision-trees are prone to overfitting with complex 

datasets. Though the straightforward to implement and k-

NN computationally intensive and struggles in high 

dimensional feature spaces. Each classifier has its own 

pros and cons, and their selection largely depends on the 

classification needs and dataset complexity of the AMC 

application. 

3. Limitations of Feature-Based Approaches: Their initial 

success and feature based AMC techniques faces the 

several significant limitations. The critical drawback is 

their dependence on domain expertise for feature selection 

[16]. The number of modulation types increases the 

feature space more complex and making it challenging to 

maintain the accurate and classification. 

4. Dependence on Domain Expertise: One of the most 

significant limitations of traditional feature based AMC 

techniques is their reliance on domain expertise for feature 

extraction and selection. This dependence requires the 

deep understanding of modulation schemes and signal 

processing principles with the operational environment to 

identify features that differentiate between classes (Abdel‐

Moneim, M. A.,2021). The new modulation schemes 

emerge and feature sets must be continuously updated or 

redefined with further increasing the workload and 

limiting the scalability of these approaches. 

5. Poor Scalability Modulation Types: With the rapid 

expansion of wireless standards and signal formats, there 

has been a sharp increase in the variety and number of 

modulation schemes used in practice. Feature based AMC 

methods struggle to keep up with this growing diversity 

technologies and rendering these methods less practical 

for modern with fast evolving communication systems. 

6. Sensitivity to Environmental Conditions: Feature are 

vulnerable to environmental variations are noise with 

interference and multipath propagation. In real world 

scenarios communication signals are encounter harsh 

channel conditions that distort their characteristics and 

difficult for manually extracted features to retain their 

discriminative power (Dekker, E., Tanis, P.2019). 

 

In lack the adaptability and automation required for modern 

communication systems. The reliance on fixed feature sets 

makes these methods rigid and unable to accommodate 

changes in signal behavior or modulation schemes. This 

limitation is problematic in applications like cognitive radio 

where AMC systems operate the dynamically and respond to 

real time changes in the spectrum environment [17]. 

 

2.3 Signal Processing Methods for AMC 

Signal processing methods form the foundation of many 

traditional AMC systems are extracting intrinsic properties of 

signals to classify their modulation schemes. The prominent 

technique is cyclostationary-feature-detection (CFD) which 

exploits the periodicity inherent in modulated signals. 

Modulated signals exhibit the second order cyclostationarity 

due to repeated patterns are carrier frequencies and symbol 

rates or pulse shaping. According to (Zhao, Y.,2024) CFD 

leverages these patterns in analyzing cyclic spectral 

components which remain the relatively unaffected by noise. 

This makes it a powerful tool for distinguishing modulation 

types in both time varying and frequency varying signals. 

Another widely used method is Fourier based spectral 

analysis where the frequency domain characteristics of a 

signal are bandwidth and power spectral density and 

examined to identify the modulation types [18]. The time 
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domain analysis is zero crossing rates and peak-average-

power-ratio (PAPR) and other features provides the 

complementary. Combined these techniques offer the 

comprehensive approach to signal characterization and 

forming the backbone of traditional AMC methods. 

 

1. Noise Resilience 

Multi-Stream CNN-GRU: By incorporating both 

convolutional and recurrent units, the architecture effectively 

captures spatial and temporal patterns, allowing for superior 

noise filtering and feature extraction. Feature Extraction 

Methods [19]: Wavelet Transform and Short-Time Fourier 

Transform (STFT) are employed to separate meaningful 

signal components from noise. Adaptive Noise Cancellation: 

The use of noise-adaptive training allows the model to 

dynamically suppress unwanted interference. 

 
Table 1: Comparison with Traditional Methods 

Method Noise Handling 

Capability 

Accuracy 

(%) 

Traditional AMC Low ~80% 

Single-Stream CNN Moderate 90% 

Multi-Stream CNN-GRU High 97.2% 

 

2. Bandwidth Efficiency 

 Efficient Feature Encoding: Reducing the feature space 

through Principal Component Analysis (PCA) optimizes 

bandwidth usage. 

 Parallel Processing: Multi-stream architectures minimize 

redundant calculations, optimizing processing efficiency. 

 
Table 2: Bandwidth Utilization Comparison 

Model Data Size 

(MB) 

Processing Time 

(ms) 

Traditional Feature-Based 50 120 

Single-Stream CNN 30 80 

Multi-Stream CNN-GRU 20 60 

 

3. Signal Processing Enhancements 

 Time-Frequency Domain Representations: Enhanced 

feature extraction through spectrogram-based CNNs. 

 Integration of Domain Knowledge: Cyclostationary 

analysis aids in distinguishing similar modulation types. 

 Hybrid Approach: Combining handcrafted and deep 

learning features improves interpretability and robustness. 

 

Signal processing methods have been foundational for AMC 

and integrating these techniques into modern communication 

systems poses several challenges. With the advent of dynamic 

spectrum environments are those seen in cognitive radio and 

5G networks and signals are no longer confined to static 

conditions or predefined modulation schemes. Signal 

processing techniques which rely on fixed rules or predefined 

features and struggle to adapt to these dynamic scenarios 

[20]. These communication systems are more complex and 

incorporating multiple users in interference sources and 

advanced modulation schemes with traditional methods fail to 

scale. (Singh, V.,2024). Therefore, it is essential to develop 

hybrid strategies that merge the clarity of traditional signal 

processing with the flexibility of machine learning 

techniques. 

Signal processing methods offers the numerous advantages in 

well-defined communication situations. They also have 

notable limits that compel their applicability in current 

systems. The table below precises these assets and 

weaknesses: 

 
Table 3: Strength and limitations 

Aspect Strengths Limitations 

Noise 

Resilience 

Techniques like 

cyclostationary 

analysis are robust 

against noise and low 

SNR. 

Noise reduction methods 

may struggle with highly 

dynamic or 

unpredictable noise 

environments. 

Feature 

Interpretability 

Provides clear, 

interpretable insights 

into signal 

characteristics. 

Manually derived 

features require expert 

knowledge and may 

miss subtle or complex 

patterns. 

Computation 

Efficiency 

Relatively fast for 

simple signals and 

scenarios. 

Computational 

complexity increases 

significantly for 

advanced methods (e.g., 

STFT, wavelets). 

Scalability Works well for a 

limited number of 

modulation types. 

Poor scalability to 

handle large, diverse, or 

hybrid modulation 

schemes. 

Adaptability Effective for static or 

predictable 

conditions. 

Lacks adaptability to 

dynamically changing 

communication 

environments or 

emerging modulation 

types. 

 

Traditional signal processing techniques for applications 

where signals adhere to predictable patterns and operate 

under the moderate noise conditions. For example, 

cyclostationary feature detection excels in the identifying 

modulated signals even in environments with significant 

interference and reliable choice for cognitive radios and 

military communication systems. These methods also provide 

the interpretable results and engineers to trace decisions back 

to specific signal properties which is critical in regulatory and 

analytical contexts [21]. The limitations of these methods 

become apparent in complex with real world communication 

systems. The requirement on handcrafted features and 

designed for specific modulation schemes with restricts their 

scalability and adaptability. Their performance deteriorates in 

the highly dynamic environments with overlapping signals 

and multipath propagation or abrupt SNR variations. The 

wavelet transforms provide excellent time frequency 

localization and their computational cost prohibitive for real 

time applications in edge devices with constrained resources 

[22]. 

 

2.4 Deep-Learning for AMC 

The arrival of deep-learning has revolutionized Automatic-

Modulation-Classification (AMC) to overcome the 

constraints posed by traditional feature-based and signal 

processing techniques. Deep learning architectures, including 

Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs), have shown significant capability 
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in automatically deriving and learning features directly from 

raw signal inputs. 

 

Unlike traditional approaches which rely on the handcrafted 

features and domain expertise and deep-learning models 

autonomously discover and optimize the relevant features 

during the training process [23]. This capability handles 

diverse modulation schemes and adapt to complex signal 

environments and well-suited for modern communication 

systems. 

 

RNNs and Long Short-Term Memory (LSTM) networks 

excel at capturing temporal dependencies in sequential data. 

The traditional feedforward networks and RNNs process 

sequences in maintaining the internal state and allowing them 

to capture dependencies in all time. Basic RNN architectures 

face difficulties with long term dependencies due to the 

vanishing gradient problem. LSTMs overcome this by 

maintaining long-term information, enabling them to perform 

better in analyzing signals with complex temporal dynamics 

[24]. In AMC, these models process sequences of signal 

samples and to capture subtle variations in signal behavior 

over time which are phase shifts or symbol timing that 

indicate the modulation type. The ability of LSTMs to handle 

long range dependencies allows to perform well in real world 

scenarios where signal conditions fluctuate rapidly due to 

factors like interference and multipath propagation or fading 

channels. These networks are also more resistant to noisy data 

and ignore irrelevant fluctuations in favor of underlying 

temporal patterns critical for modulation classification. 

 

Handling the Low SNR and Noisy Environments with Deep-

Learning: One of the most significant challenges in AMC is 

the ability to classify modulations accurately in low signal-

noise-ratio (SNR) environments. In traditional techniques 

noise and interference distort the features extracted from the 

signal and reduced classification performance. Deep learning 

approaches exhibit superior robustness in noisy conditions. 

By leveraging end-to-end training, deep neural networks can 

autonomously identify and extract the most salient features 

from raw inputs, even in the presence of noise. This noise 

resilience is important in cognitive radio with military 

communications and emergency response systems where 

reliable modulation classification is crucial in adverse 

conditions [25]. 

 

Scalability and Adaptability of Deep-Learning for AMC: the 

modern communication systems continue to evolve with new 

modulation schemes and hybrid techniques being introduced 

and traditional AMC methods struggle to keep pace. The need 

for frequent feature reengineering to accommodate new 

modulation types is time consuming and not scalable. In 

contrast deep-learning models are inherently more adaptable 

and scalable. Once trained these models classify any 

modulation scheme they have learned and they easily 

retrained or fine-tuned when new schemes arise. 

 

 

 

2.4.1 Comparison of Deep Learning with Traditional 

Techniques 

The given table below highlights their differences between 

deep learning and traditional techniques in which AMC are to 

focusing on several type of key aspects like accuracy and 

robustness: 

 
Table 4: Comparison of Deep Learning and Traditional Techniques 
Aspect Traditional 

Techniques 

Deep Learning 

Models 

Feature 

Extraction 

Requires manual 

feature extraction 

based on domain 

expertise. 

Learns features 

automatically from 

raw data. 

Accuracy Limited by the quality 

of handcrafted 

features. 

High accuracy, 

especially with diverse 

modulation schemes. 

Robustness to 

Noise 

Sensitive to noise and 

requires 

preprocessing 

techniques. 

Handles noisy 

environments 

effectively through 

end-to-end learning. 

Adaptability Struggles with 

dynamic or emerging 

modulation types. 

Adapts easily to new 

modulation schemes 

with retraining. 

Computational 

Cost 

Relatively low for 

simple methods but 

high for advanced 

ones. 

High during training 

but efficient during 

inference. 

Scalability Poor scalability with 

increasing modulation 

types. 

Scales effectively with 

large datasets and 

complex schemes. 

Real-Time 

Application 

Limited due to feature 

extraction and 

preprocessing 

overhead. 

Suitable with 

optimized 

architectures and 

hardware. 
 

In learning models have emerged as a transformative force in 

AMC, offering superior accuracy, adaptability, and 

robustness compared to traditional techniques. In GANs 

consist of two neural networks to generator and a 

discriminator that are trained in opposition. In AMC and 

GANs generate the synthetic modulation data in scenarios 

where labeled data is scarce. In augmenting the dataset with 

realistic and synthetic signals are GANs help the model 

generalize better and improve its performance in unseen or 

rare modulation schemes [26].GANs used for denoising tasks 

where the generator creates clean signals from noisy input 

and enhancing the robustness of AMC systems in low SNR 

conditions. This approach the scarcity of high quality with 

labeled data improving of deep-learning models against noise 

and interference. 

 

3. Methodology  
 

The methodology adopted for Automatic Modulation 

Classification (AMC) using deep learning techniques. It 

outlines the dataset utilized with different steps are data 

preprocessing techniques, model architectures, training 

strategies, and evaluation metrics. In which to employ the 

RADIOML 2018.01A dataset a widely used benchmark for 

AMC tasks, and explore various deep learning models are 

Transformer-based architectures and the ResNet model for 

signal classifications.  
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3.1 Dataset Description: RADIOML 2018.01A 

The RADIO-ML 2018.01-A dataset is an extensive collection 

of modulated signals generated under realistic wireless 

channel conditions. The dataset contains labeled real and 

imaginary components, denoted as (I) in-phase and Q 

(quadrature) samples for different modulation schemes over 

varying signal-to-noise ratios (SNRs).  

 

The main features of the dataset include: 

 Modulation Types: 24 classes, including analog (AM, 

FM), digital (BPSK, QPSK, 16-QAM, 64-QAM, etc.), and 

OFDM-based modulations. 

 SNR Range: SNR values ranging from -20 dB up to +30 

dB, increasing in increments of 2 dB. 

 Sampling Rate: the rates of signals are 1 million samples 

per second. 

 Data Format: Each samples are consisting of 1024 IQ 

samples are too complex-valued time-series data. 

 

Mathematically in the each received signal can be 

mathematically expressed as: 

X(t)= I(t)+JQ(t) 

where and are their both in-phase and quadrature 

components. 

 

3.2 Data Preprocessing 

To enhance model performance with their several 

preprocessing techniques are applied: 

 

3.2.1 Normalization 

In this steps features are stable training of the IQ samples are 

normalized: 

𝑿𝒏𝒐𝒓𝒎(𝒕)  =  
𝑿(𝒕)

𝒎𝒂𝒙 (|𝑿(𝒕)|)
 

This scales the values between -1 and 1 with preventing 

numerical. 

 

3.2.2 Data Augmentation 

To improve generalization is to the following augmentation 

techniques are applied: 

 Phase Rotation: The signal is rotated by a random phase: 

 Time Shifting: The sequence is randomly shifted to 

simulate real-world transmission delays. 

 Additive White Gaussian Noise (AWGN): Noise is added 

to simulate varying channel conditions: 

 

3.3 Proposed Deep Learning Model 

AMC plays a crucial role in today’s wireless communication 

systems by enabling accurate identification of modulation 

schemes using advanced machine learning techniques. 

Conventional classification methods often depend on 

handcrafted feature extraction, which can be ineffective under 

difficult conditions such as low Signal-to-Noise Ratios 

(SNRs) or rapidly changing channels. To address these 

challenges, recent research has shifted toward deep learning 

techniques that extract features directly from raw signal 

components, including in-phase (I) and quadrature (Q) data. 

Here, we introduce deep learning architectures specifically 

designed for AMC applications, leveraging the RADIOML 

2018.01A dataset. Specifically, we explore the effectiveness 

of ResNet architectures in achieving reliable modulation 

classification across diverse and noisy signal environments. 

 

 
Figure 2. Res-Net model Architecture 

 

Attention (Q, K, V)  =  softmax (
𝑄𝐾𝑇

√𝑑𝑘
)  V    

 

3.3.1 ResNet for Signal Classification 

A ResNet (Residual Network) model is evaluated for signal 

classification and their architecture allows for deeper network 

training by incorporating residual connections that mitigate 

the vanishing gradient problem. The residual block the 

formulas is below 

𝐻(𝑥) =  𝐹(𝑥) +  𝑥         

where represents the learned transformation. In which address 

memory limitations training on Kaggle’s default environment 

one-third of the dataset (851,968 signals) was used. The 

resource constraints are in training remained conducted on 

Google Cloud Platform using an n1- 7.5 hours. 

 

3.4 Training Strategy 

 Loss Function: Categorical Cross-Entropy: 

L =  − ∑ yi

N

i=1

 log ( ) 

 Optimizer: Adam with an initial learning rate of 0.001. 

 Batch Size: 128 samples per batch. 

 Early Stopping: Applied to prevent overfitting. 

 

3.5 Evaluation Metrics 

The performance of the proposed models to assess the 

effectiveness of the proposed models, multiple evaluation 

metrics have been employed.  Accuracy serves as the primary 

metric are easy to measuring the percentage of correctly 

classified signals across all modulation categories. In dueling 

of analysis class imbalances and variations in SNR conditions 

and some of additional metrics are the F1 Score and 

Confusion Matrix are employed.  

 

4. Results Analysis 

 

In this section we presents and analyzes the outcomes 

obtained from the modulation classification framework 

constructed with neural network-based methods. Its 

effectiveness is assessed using various performance 

indicators, including training/test classification correctness 

rate, loss trends, confusion matrix analysis, and SNR-based 

classification performance. This section also reflects on its 

advantages, current constraints, and possible directions for 

enhancement. 

 

 

https://www.codecogs.com/eqnedit.php?latex=/hat{y}_i#0
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4.1 Dataset Description 

Table 2 provides an overview of the files used in the study, 

which collectively form the dataset used for training and 

evaluation: 

 
Table 5: Overview of Dataset files 

File Description 

signals.npy Contains raw IQ (In-phase & Quadrature) 

signal data. 

labels.npy Labels corresponding to the signal classes. 

snrs.npy Signal-to-Noise Ratio (SNR) values for each 

sample. 

train_loss.npy Training loss values during model training. 

train_acc.npy Training accuracy values during model 

training. 

val_loss.npy Validation loss values for model 

performance evaluation. 

val_acc.npy Validation accuracy values for model 

evaluation. 

model_full_SNR.h5 Pre-trained model file for classification. 

classes.txt List of modulation classes present in the 

dataset. 

LICENSE.TXT Licensing information for dataset usage. 
 

This dataset enables the development of AMC systems for 

applications such as cognitive radio, spectrum monitoring, 

and signal intelligence, with support for analyzing the model 

under different signal conditions. 

 
Table 6: SNR Signal classification data 

SNR Range (dB) Masked (True/False) Count 

≤ 8 dB False (Used) 491,520 

> 8 dB True (Masked) 360,448 
 

From a total of 851,968 signal samples, only 491,520 samples 

with SNR ≤ 8 dB were retained for training and testing. This 

deliberate selection focuses the model evaluation on noisy 

and challenging conditions, where the signal quality is low 

and modulation classification is significantly more difficult. 

This approach ensures the robustness of the trained model in 

practical radio environments. 

 

4.3 IQ Component Visualization 

 

 
Figure 3. I-Components vs Q-Components 

 

The AM-SSB-WC signal shows a dominant in-phase 

component with structured amplitude variation in the 

quadrature part, indicating its simpler waveform. 

 

In contrast, 64QAM exhibits a balanced and dense 

constellation in both I and Q components, characteristic of a 

high-order modulation with more symbols and complex 

structure. 

These visualizations illustrate the differences in signal 

characteristics, which the model must learn to distinguish 

during training. 

 

4.4 Accuracy and Loss Trends 

 

 
Figure 4. Accuracy-Score vs LOSS 

 

Figure 4 demonstrates the model's accuracy trend over 100 

training epochs. The training accuracy initially begins at 0.25 

and gradually rises to around 0.62. Mean, validation accuracy 

exhibits a comparable pattern and eventually plateaus at 0.58. 

The slight gap between training and validation accuracy 

indicates a minor generalization issue could be addressed 

through fine-tuning the model or applying regularization 

techniques. The loss curve indicates a rapid initial training 

loss decreasing from 2.2 to approximately 1.1, validation loss 

stabilizes around 1.2.  

 

Although both training and validation accuracies improve 

significantly, the gap between them (~4%) suggests a minor 

generalization issue. This can be mitigated through:  

 Regularization methods (e.g., dropout, weight decay) 

 Enhanced data augmentation 

 Use of early stopping or cross-validation 

 

Overall, the model shows good convergence, but still leaves 

room for optimization in terms of generalization. 

 

4.5 Confusion Matrix Analysis 

 

 
Figure 5. Confusion-Matrix 
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Figure 5 Figure 5 presents the classification performance of 

the proposed model in the form of a normalized con-fusion 

matrix, wherein each row corres-ponds to the true modulation 

class and each column represents the predicted class. The 

figure 5 exhibits strong diagonal dominance, with normalized 

values approaching unity (e.g., 1.00, 0.99, 0.998), indicating 

that the model achieves high classification accuracy across 

the majority of modulation schemes. These results suggest 

that the model effectively captures distinguishing features 

among a wide range of signal types under the tested 

conditions. Nevertheless, non-negligible off-diagonal entries 

are observed, particularly among modulation formats with 

similar signal characteristics. Elevated confusion levels are 

most evident between higher-order QAM schemes such as 

16QAM, 64QAM, and 256QAM, where normalized 

misclassification rates reach up to 0.07, 0.41, and 0.58, 

respectively. These misclassifications are likely attributable 

to the inherent similarity in their constellation structures, 

which results in overlapping feature representations 

especially under-low SNR conditions or in the presence of 

noise. Similar challenges are also observed in the 

classification of BPSK and QPSK, which share closely 

related phase characteristics. The observed confusion among 

adjacent modulation types highlights a limitation in the 

model’s discriminative capability when handling modulation 

schemes with subtle spectral and temporal differences. To 

address this issue, future work may focus on enhancing the 

quality of feature representations using advanced signal 

processing techniques such as wavelet transforms or 

attention-based mechanisms. Furthermore, optimization of 

model hyperparameters and the integration of ensemble 

learning strategies or hybrid deep architectures (e.g., CNN–

RNN) could improve the model’s robustness and its ability to 

distinguish between modulation formats with overlapping 

characteristics. 

 

4.6 Final Performance Summary 

 
Table 7: Model Performance Summary 

Metric Value 

Training Loss 0.0933 

Training Accuracy 95.72% 

Res-net model Test Accuracy 95.72% 

Dataset Condition SNR > 8dB 

 

When operating in environments with high signal-to-noise 

ratios (SNR > 8 dB), the proposed model achieves an 

accuracy of 95.72%, indicating its capability to deliver 

outstanding performance under favorable signal conditions. 

The low training loss additionally indicates effective 

optimization and strong convergence. These findings support 

the use of deep learning models in real-time AMC 

applications, particularly when signal clarity is high. 

 

On the other hand, in low-SNR scenarios (SNR ≤ 8 dB), a 

decline in performance is observed, which is consistent with 

real-world limitations in wireless communication systems. 

The findings show that DL-based AMC frameworks maintain 

high classification accuracy over a range of modulation types 

and SNR levels. The robustness of the proposed system under 

low SNR (≤ 8 dB) conditions, along with its enhanced 

performance in high SNR situations (> 8 dB), underscores its 

reliability. Analysis of the confusion matrix provides a deeper 

understanding of the model’s strengths, identifying accurately 

predicted modulation types as well as frequently misclassified 

ones. These insights are helpful for guiding improvements in 

model design and input preprocessing techniques. To further 

boost the classification results, future enhancements could 

focus on integrating Transformer-inspired mechanisms that 

can model sequential dependencies in the signal features 

more effectively. Moreover, utilizing time-frequency 

representations such as wavelet transforms or STFT can 

expand the richness of the input features. Leveraging transfer 

learning might also improve generalization across multiple 

signal environments and hardware. In conclusion, both 

performance statistics and confusion matrix insights verify 

the model's practical value for cognitive radio, secure 

communications, and adaptive wireless systems functioning 

under varying SNR scenarios. 
 

5. Conclusion and Discussion 
 

5.1 Summary of Key Findings 
This work examined the effectiveness of deep learning 

techniques for Automatic Modulation Classification (AMC). 

The research focused on evaluating different types of neural 

networks, such as Convolutional Neural Networks (CNNs) 

and Recurrent Neural Networks (RNNs), in distinguishing 

various modulation schemes. Key findings include: 
 

High Classification Accuracy: The deep learning 

approaches demonstrated superior classification capabilities 

when compared to conventional machine-learning 

approaches. The CNN-driven method produced notable levels 

of precision in identifying modulation types across varying 

signal-to-noise ratio (SNR) environments. 
 

Robustness to Noise: The proposed model was tested under 

various levels of noise, showcasing its robustness in real-

world scenarios. Performance degradation extremely low 

SNRs but in the model maintained reasonable classification 

accuracy. The conventional feature engineering approach was 

replaced as deep learning-based methods captured high-level 

representations directly from the raw IQ data, eliminating the 

need for manual feature extraction. 
 

5.2 Study Limitations 
Despite the promising results achieved, this study is subject to 

several limitations that may influence the generalizability and 

practical applicability of its findings: 

1. Computational Overhead: The proposed deep learning 

model, particularly the ResNet-based architecture, exhibits 

high computational complexity. This may limit its 

deployment in real-time or resource-constrained 

communication environments, such as embedded systems 

or mobile devices. 

2. Synthetic Dataset Limitations: The experiments were 

conducted using the RadioML 2016.10A dataset, which, 

although widely used for benchmarking, is synthetically 

generated. Consequently, the model’s performance in real-

world scenarios involving unpredictable channel 
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conditions, noise profiles, and interference remains to be 

validated. 

3. Lack of Real-Time Evaluation: The current 

implementation and evaluation were performed offline. 

Real-time performance metrics, including latency and 

throughput, were not assessed, which are critical for 

practical AMC applications. 

4. Robustness to Adversarial Perturbations: The resilience of 

the model to adversarial attacks or signal distortions was 

not explored. This poses a potential risk in security-critical 

or contested communication environments. 

5. Limited Modulation Diversity: The model was trained on 

a fixed set of modulation schemes provided in the dataset. 

Its ability to generalize to unseen or custom modulations 

without retraining is yet to be investigated. 

 

Future research should aim to address these limitations by 

incorporating real-world datasets, optimizing model 

efficiency, and enhancing robustness under adversarial and 

dynamic conditions. 

 

6. Conclusion and Future Scope  
 

In conclusion, this study has demonstrated that deep learning 

techniques, particularly CNN-based ResNet architectures, 

offer significant advantages in AMC tasks in terms of 

classification accuracy, noise robustness, and automated 

feature learning. These capabilities position deep learning as 

a powerful solution for modulation classification in modern 

wireless communication systems, particularly within the 

context of cognitive radio, spectrum surveillance, and secure 

communications. However, practical deployment necessitates 

addressing challenges related to computational efficiency and 

real-time processing. Future research should focus on 

developing lightweight and hardware-efficient architectures, 

possibly through model quantization, pruning, or knowledge 

distillation. Integrating deep learning with classical signal 

processing techniques could further improve interpretability 

and model reliability. Additionally, the adoption of transfer 

learning may enable the reuse of pre-trained models across 

varying communication environments with minimal 

retraining, thus enhancing model adaptability. By addressing 

these challenges, the deep learning-based AMC paradigm can 

evolve to meet the needs of next-generation intelligent and 

autonomous communication systems. 
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