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Abstract: Automatic Modulation Classification (AMC) serves as a foundational element in contemporary wireless
communication systems, enabling adaptive signal processing and efficient spectrum management. This study explores deep
learning-based approaches—particularly a Res-Net architecture—for robust AMC performance using the benchmark
RADIOML 2018.01A dataset. The dataset comprises 24 modulation schemes across a wide SNR range from -20 dB to +30 dB.
Comprehensive data preprocessing was performed, including normalization, as well as various augmentation methods like phase
rotation, temporal shifting, and artificial noise addition to strengthen the model’s resilience and ability to generalize under
challenging conditions. A Res-Net model was constructed and optimized with categorical cross-entropy as the loss function and
Adam as the learning algorithm. The model achieved a test accuracy of 95.72% under high-SNR conditions (SNR > 8 dB) with
a low training loss of 0.0933, demonstrating strong convergence and generalization capabilities. Confusion matrix analysis
highlighted the model’s strengths in accurately classifying most modulation types, while revealing challenges in differentiating
between similar schemes like 16QAM and 64QAM under low SNR conditions. The findings confirm that the proposed deep
learning framework is capable of learning and distinguishing complex signal characteristics directly from unprocessed 1/Q data
without the need for manual feature crafting. Future work will focus on integrating Transformer-based architectures, wavelet
transform features, and hybrid CNN-RNN models to improve performance in noisy environments. The results underscore the
potential of deep learning for deploying AMC in cognitive radio, signal surveillance, and secure communication systems.

Keywords: Automated Modulation Classification (AMC), Deep Learning (DL), ResNet-Model, CNN, Signal Classification,
Cognitive Radio Networks, Adversarial Conditions

Graphical Abstract- This graphical abstract presents the  methods. This approach is shown to be robust in noisy

proposed pipeline for Automatic Modulation Classification (AMC)
using a ResNet-based deep learning architecture. The workflow
begins with raw in-phase and quadrature (1Q) signal samples from
the RadioML 2018.01A dataset, which are first processed through
normalization and augmentation techniques such as phase rotation,
time shifting, and additive noise injection.

These preprocessed signals are then passed into a Residual Network
(ResNet) model, which enhances feature extraction and
classification accuracy by utilizing residual skip connections to
avoid vanishing gradient issues. The model is optimized using Adam
and trained with categorical cross-entropy loss.

The graphical summary shows training, validation, and testing
performance, demonstrating that the model achieves a peak accuracy
of 95.72% under high SNR conditions. Comparative results also
highlight the improvement over traditional and CNN-based AMC
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environments, scalable to different modulation types, and suitable
for real-time communication systems.
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1. Introduction

The continuous advancement in wireless communication
technologies has created an urgent need for advanced
methods in spectrum management, interference reduction,
and intelligent signal analysis. Automatic Modulation
Classification (AMC) serves a key function in determining
the modulation format of incoming signals without prior
knowledge of its transmission settings. AMC is crucial for
both military and commercial domains, including cognitive
radio, spectrum monitoring, and electronic warfare.

Traditional AMC methods typically rely on manually
engineered features and use classification algorithms like
Decision Trees and Support Vector Machines (SVMs).
However, these approaches often struggle to maintain
reliability in environments with fluctuating noise levels,
shifting channel conditions, and unknown modulation
formats, which can limit their effectiveness for contemporary
radio systems.

Recently, deep learning has emerged as a transformative
approach to AMC, offering automated feature extraction and
improved classification accuracy from raw signal data.
Architectures such as Convolutional Neural Networks
(CNNs) alongside Recurrent Neural Networks (RNNS),
including Long Short-Term Memory (LSTM) units, have
been widely adopted for their strong performance in capturing
the complex spatial and temporal patterns inherent in 1/Q (in-
phase and quadrature) signal components. Additionally,
Transformer models—first developed for natural language
processing—are now being applied to AMC due to their
strength in representing long-range interactions using
attention-based mechanisms.

Despite these advances, challenges remain in achieving real-
time performance, minimizing computational costs, and
ensuring robust operation under adverse conditions such as
multipath fading and varying signal-to-noise ratios (SNRs).
This work proposes a robust AMC framework utilizing a
hybrid of deep learning architectures to enhance classification
reliability and adaptability across numerous signal
environments. Various input representations—including raw
IQ samples, spectrograms, and wavelet transforms—are
evaluated to identify the most effective format for each model
type. The study also explores advanced data augmentation,
transfer learning, and domain adaptation techniques to
enhance model resilience against real-world signal variability.
By leveraging the strengths of data-driven neural
architectures capable of end-to-end signal recognition, this
work aims to advance AMC technology, making it more
adaptable for future wireless systems such as 5G and beyond.
The outcomes of this research are expected to facilitate
broader applications in cognitive radio, autonomous spectrum
management, and secure wireless communications.

1.1 Problem Statement

The most of advancements in deep learning for AMC, several
challenges remain in developing models that can generalize
across different signal environments maintaining low
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computational complexity for real-time applications. In the
existing benchmark datasets are RADIOML 2016.10A is
limited number of modulation schemes are not fully
representing the diversity of signals encountered in practical
applications. There is a pressing need for a deep learning-
based AMC framework that classify a wide range of
modulation types being robust against environmental
distortions.

1.2 Research Objectives & Contributions

This study is focused on building a novel deep learning-based
AMC framework that effectively classifies modulation types
using raw 1Q data and time-frequency representations. The
proposed approach explores different deep learning
architectures, including CNNs for spatial feature extraction
with use of Rest-Net for capturing temporal dependencies,
and RES-Net models for improved feature representation.
Transformer-based models for their capability in processing
long-range dependencies within signal sequences.

The core contributions of this study are as follows:

1. Development of a robust deep learning model for AMC,
capable of handling diverse modulation types under varying
noise conditions and channel conditions.

2. This work intends to close the gap between conceptual
advancements in deep learning and the actual implementation
of AMC solutions in communication systems.

2. Related Work

2.1 Introduction

Automatic Modulation Classification (AMC) represents a
fundamental function in present-day wireless communication
systems, enabling dynamic signal recognition and intelligent
transmission strategies in scenarios ranging from cognitive
radios to military communication networks. Over the years
and the evolution of AMC methodologies has been shaped in
the progressions both traditional signal processing techniques
and modern machine-learning examples [11]. Early methods
relied heavily on the feature engineering where domain
specific attributes are amplitude with phase and spectral
characteristics were extracted and classified using the
algorithms like classifiers such as decision trees, k-nearest
neighbors, and support vector machines (SVMs). These
methods provided the foundational and their reliance on
handcrafted features and sensitivity to noise and signal-noise-
ratio (SNR) variations and channel distortions limited to their
applicability in dynamic environments. The rise of deep-
learning has escorted in a transformative phase for AMC and
offering the automated feature extraction and end to end
learning capabilities that significantly enhance classification
performance [12]. Convolutional-Neural-Networks (CNNSs)
and hybrid architectures have established remarkable
potential in capturing both spatial and temporal features from
raw signal data (Mendis, G 2016). These advances and
significant challenges in handling the diversity of modulation
schemes and achieving robustness under varying SNR
conditions and real time processing robust evaluation metrics
to develop the comprehensive and scalable solutions for next
generation communication systems.
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2.2 Traditional AMC Techniques

Traditional ~ Automatic-Modulation-Classification (AMC)
techniques rely heavily on feature based approaches these
involve manually extracting specific characteristics from the
signal [13]. These features are carefully selected based on

domain expertise and serve inputs to classification algorithms.

In isolating unique properties of signals and feature based
techniques aim to distinguish among the various modulation
schemes (Wu, P.,2020). These methods depend on the
significantly quality and relevance of the extracted features
which represent the signal's defining attributes. These
approaches have played the foundational role in AMC
providing the structured structure for modulation
classification [14]. Their reliance on manual processes and
limited scalability pose significant challenges in modern and
dynamic communication environments.

Manually
Extracted
Features

Environmental ST
Conditions

[ | ~

Poor
Scalability
Modulation

Feature-Based
Approaches

Limitations of
Feature-Based

Dependence
on Domain

Figure 1. Ttraditional AMC techniques (Khan, R., Yang, Q 2022)

1. Manually Extracted Features: In the figure 1 is showing
the 1st step is Feature extraction in traditional AMC on
analyzing the signals in domains are time with frequency
and statistics to identify the patterns that differentiate
modulation types. In frequency domain analysis, features
such as power spectral density, bandwidth, and spectral
flatness are commonly used. These features are capture
the energy distribution of signals and are useful for the
distinguishing  frequency based modulations like
Frequency-Modulation (FM).

2. Feature-Based Approaches: Once the features are
extracted and traditional AMC techniques employ the
variety of classifiers to categorize the signals. Decision-
trees for example use of hierarchical structure to classify
the signals through the series of binary splits based on
feature thresholds [15]. simple and interpretable and
decision-trees are prone to overfitting with complex
datasets. Though the straightforward to implement and k-
NN computationally intensive and struggles in high
dimensional feature spaces. Each classifier has its own
pros and cons, and their selection largely depends on the
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classification needs and dataset complexity of the AMC
application.

3. Limitations of Feature-Based Approaches: Their initial
success and feature based AMC techniques faces the
several significant limitations. The critical drawback is
their dependence on domain expertise for feature selection
[16]. The number of modulation types increases the
feature space more complex and making it challenging to
maintain the accurate and classification.

4. Dependence on Domain Expertise: One of the most
significant limitations of traditional feature based AMC
techniques is their reliance on domain expertise for feature
extraction and selection. This dependence requires the
deep understanding of modulation schemes and signal
processing principles with the operational environment to
identify features that differentiate between classes (Abdel-
Moneim, M. A.,2021). The new modulation schemes
emerge and feature sets must be continuously updated or
redefined with further increasing the workload and
limiting the scalability of these approaches.

5. Poor Scalability Modulation Types: With the rapid
expansion of wireless standards and signal formats, there
has been a sharp increase in the variety and number of
modulation schemes used in practice. Feature based AMC
methods struggle to keep up with this growing diversity
technologies and rendering these methods less practical
for modern with fast evolving communication systems.

6. Sensitivity to Environmental Conditions: Feature are
vulnerable to environmental variations are noise with
interference and multipath propagation. In real world
scenarios communication signals are encounter harsh
channel conditions that distort their characteristics and
difficult for manually extracted features to retain their
discriminative power (Dekker, E., Tanis, P.2019).

In lack the adaptability and automation required for modern
communication systems. The reliance on fixed feature sets
makes these methods rigid and unable to accommodate
changes in signal behavior or modulation schemes. This
limitation is problematic in applications like cognitive radio
where AMC systems operate the dynamically and respond to
real time changes in the spectrum environment [17].

2.3 Signal Processing Methods for AMC

Signal processing methods form the foundation of many
traditional AMC systems are extracting intrinsic properties of
signals to classify their modulation schemes. The prominent
technique is cyclostationary-feature-detection (CFD) which
exploits the periodicity inherent in modulated signals.
Modulated signals exhibit the second order cyclostationarity
due to repeated patterns are carrier frequencies and symbol
rates or pulse shaping. According to (Zhao, Y.,2024) CFD
leverages these patterns in analyzing cyclic spectral
components which remain the relatively unaffected by noise.
This makes it a powerful tool for distinguishing modulation
types in both time varying and frequency varying signals.
Another widely used method is Fourier based spectral
analysis where the frequency domain characteristics of a
signal are bandwidth and power spectral density and
examined to identify the modulation types [18]. The time
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domain analysis is zero crossing rates and peak-average-
power-ratio (PAPR) and other features provides the
complementary. Combined these techniques offer the
comprehensive approach to signal characterization and
forming the backbone of traditional AMC methods.

1. Noise Resilience

Multi-Stream  CNN-GRU: By incorporating  both
convolutional and recurrent units, the architecture effectively
captures spatial and temporal patterns, allowing for superior
noise filtering and feature extraction. Feature Extraction
Methods [19]: Wavelet Transform and Short-Time Fourier
Transform (STFT) are employed to separate meaningful
signal components from noise. Adaptive Noise Cancellation:
The use of noise-adaptive training allows the model to
dynamically suppress unwanted interference.

Table 1: Comparison with Traditional Methods

Vol.13(8), Aug. 2025

Signal processing methods offers the numerous advantages in
well-defined communication situations. They also have
notable limits that compel their applicability in current

systems. The table below precises these assets and
weaknesses:
Table 3: Strength and limitations
Aspect Strengths Limitations
Noise Techniques like Noise reduction methods
Resilience cyclostationary may struggle with highly
analysis are robust dynamic or
against noise and low unpredictable noise
SNR. environments.
Feature Provides clear, Manually derived

Interpretability | interpretable insights
into signal

characteristics.

features require expert
knowledge and may
miss subtle or complex
patterns.

Computation Relatively fast for Computational

Method Noise Handling Accuracy
Capability (%)
Traditional AMC Low ~80%
Single-Stream CNN Moderate 90%
Multi-Stream CNN-GRU High 97.2%

2. Bandwidth Efficiency

e Efficient Feature Encoding: Reducing the feature space
through Principal Component Analysis (PCA) optimizes
bandwidth usage.

e Parallel Processing: Multi-stream architectures minimize
redundant calculations, optimizing processing efficiency.

Table 2: Bandwidth Utilization Comparison

Efficiency simple signals and complexity increases
scenarios. significantly for
advanced methods (e.g.,
STFT, wavelets).
Scalability Works well for a Poor scalability to
limited number of handle large, diverse, or
modulation types. hybrid modulation
schemes.
Adaptability Effective for static or Lacks adaptability to

predictable
conditions.

dynamically changing
communication
environments or

emerging modulation

types.

Model Data Size Processing Time
(MB) (ms)
Traditional Feature-Based 50 120
Single-Stream CNN 30 80
Multi-Stream CNN-GRU 20 60

3. Signal Processing Enhancements

e Time-Frequency Domain Representations: Enhanced
feature extraction through spectrogram-based CNNs.

e Integration of Domain Knowledge: Cyclostationary
analysis aids in distinguishing similar modulation types.

e Hybrid Approach: Combining handcrafted and deep
learning features improves interpretability and robustness.

Signal processing methods have been foundational for AMC
and integrating these techniques into modern communication
systems poses several challenges. With the advent of dynamic
spectrum environments are those seen in cognitive radio and
5G networks and signals are no longer confined to static
conditions or predefined modulation schemes. Signal
processing techniques which rely on fixed rules or predefined
features and struggle to adapt to these dynamic scenarios
[20]. These communication systems are more complex and
incorporating multiple users in interference sources and
advanced modulation schemes with traditional methods fail to
scale. (Singh, V.,2024). Therefore, it is essential to develop
hybrid strategies that merge the clarity of traditional signal
processing with the flexibility of machine learning
techniques.

© 2025, 1JCSE All Rights Reserved

Traditional signal processing techniques for applications
where signals adhere to predictable patterns and operate
under the moderate noise conditions. For example,
cyclostationary feature detection excels in the identifying
modulated signals even in environments with significant
interference and reliable choice for cognitive radios and
military communication systems. These methods also provide
the interpretable results and engineers to trace decisions back
to specific signal properties which is critical in regulatory and
analytical contexts [21]. The limitations of these methods
become apparent in complex with real world communication
systems. The requirement on handcrafted features and
designed for specific modulation schemes with restricts their
scalability and adaptability. Their performance deteriorates in
the highly dynamic environments with overlapping signals
and multipath propagation or abrupt SNR variations. The
wavelet transforms provide excellent time frequency
localization and their computational cost prohibitive for real
time applications in edge devices with constrained resources
[22].

2.4 Deep-Learning for AMC

The arrival of deep-learning has revolutionized Automatic-
Modulation-Classification (AMC) to overcome the
constraints posed by traditional feature-based and signal
processing techniques. Deep learning architectures, including
Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs), have shown significant capability
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in automatically deriving and learning features directly from
raw signal inputs.

Unlike traditional approaches which rely on the handcrafted
features and domain expertise and deep-learning models
autonomously discover and optimize the relevant features
during the training process [23]. This capability handles
diverse modulation schemes and adapt to complex signal
environments and well-suited for modern communication
systems.

RNNs and Long Short-Term Memory (LSTM) networks
excel at capturing temporal dependencies in sequential data.
The traditional feedforward networks and RNNs process
sequences in maintaining the internal state and allowing them
to capture dependencies in all time. Basic RNN architectures
face difficulties with long term dependencies due to the
vanishing gradient problem. LSTMs overcome this by
maintaining long-term information, enabling them to perform
better in analyzing signals with complex temporal dynamics
[24]. In AMC, these models process sequences of signal
samples and to capture subtle variations in signal behavior
over time which are phase shifts or symbol timing that
indicate the modulation type. The ability of LSTMs to handle
long range dependencies allows to perform well in real world
scenarios where signal conditions fluctuate rapidly due to
factors like interference and multipath propagation or fading
channels. These networks are also more resistant to noisy data
and ignore irrelevant fluctuations in favor of underlying
temporal patterns critical for modulation classification.

Handling the Low SNR and Noisy Environments with Deep-
Learning: One of the most significant challenges in AMC is
the ability to classify modulations accurately in low signal-
noise-ratio (SNR) environments. In traditional techniques
noise and interference distort the features extracted from the
signal and reduced classification performance. Deep learning
approaches exhibit superior robustness in noisy conditions.
By leveraging end-to-end training, deep neural networks can
autonomously identify and extract the most salient features
from raw inputs, even in the presence of noise. This noise
resilience is important in cognitive radio with military
communications and emergency response systems where
reliable modulation classification is crucial in adverse
conditions [25].

Scalability and Adaptability of Deep-Learning for AMC: the
modern communication systems continue to evolve with new
modulation schemes and hybrid techniques being introduced
and traditional AMC methods struggle to keep pace. The need
for frequent feature reengineering to accommodate new
modulation types is time consuming and not scalable. In
contrast deep-learning models are inherently more adaptable
and scalable. Once trained these models classify any
modulation scheme they have learned and they easily
retrained or fine-tuned when new schemes arise.

© 2025, 1JCSE All Rights Reserved
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2.4.1 Comparison of Deep Learning with Traditional
Techniques

The given table below highlights their differences between
deep learning and traditional techniques in which AMC are to
focusing on several type of key aspects like accuracy and

robustness:

Table 4: Comparison of Deep Learning and Traditional Techniques

Aspect Traditional Deep Learning
Techniques Models
Feature Requires manual Learns features
Extraction feature extraction automatically from
based on domain raw data.
expertise.
Accuracy Limited by the quality High accuracy,
of handcrafted especially with diverse
features. modulation schemes.
Robustness to | Sensitive to noise and Handles noisy
Noise requires environments
preprocessing effectively through
technigues. end-to-end learning.
Adaptability Struggles with Adapts easily to new

dynamic or emerging
modulation types.

modulation schemes
with retraining.

Computational

Relatively low for

High during training

Cost simple methods but but efficient during
high for advanced inference.
ones.
Scalability Poor scalability with | Scales effectively with
increasing modulation large datasets and
types. complex schemes.
Real-Time Limited due to feature Suitable with
Application extraction and optimized
preprocessing architectures and
overhead. hardware.

In learning models have emerged as a transformative force in
AMC, offering superior accuracy, adaptability, and
robustness compared to traditional techniques. In GANSs
consist of two neural networks to generator and a
discriminator that are trained in opposition. In AMC and
GANSs generate the synthetic modulation data in scenarios
where labeled data is scarce. In augmenting the dataset with
realistic and synthetic signals are GANs help the model
generalize better and improve its performance in unseen or
rare modulation schemes [26].GANSs used for denoising tasks
where the generator creates clean signals from noisy input
and enhancing the robustness of AMC systems in low SNR
conditions. This approach the scarcity of high quality with
labeled data improving of deep-learning models against noise
and interference.

3. Methodology

The methodology adopted for Automatic Modulation
Classification (AMC) using deep learning techniques. It
outlines the dataset utilized with different steps are data
preprocessing techniques, model architectures, training
strategies, and evaluation metrics. In which to employ the
RADIOML 2018.01A dataset a widely used benchmark for
AMC tasks, and explore various deep learning models are
Transformer-based architectures and the ResNet model for
signal classifications.
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3.1 Dataset Description: RADIOML 2018.01A

The RADIO-ML 2018.01-A dataset is an extensive collection
of modulated signals generated under realistic wireless
channel conditions. The dataset contains labeled real and
imaginary components, denoted as (I) in-phase and Q
(quadrature) samples for different modulation schemes over
varying signal-to-noise ratios (SNRs).

The main features of the dataset include:

e Modulation Types: 24 classes, including analog (AM,
FM), digital (BPSK, QPSK, 16-QAM, 64-QAM, etc.), and
OFDM-based modulations.

e SNR Range: SNR values ranging from -20 dB up to +30
dB, increasing in increments of 2 dB.

e Sampling Rate: the rates of signals are 1 million samples
per second.

e Data Format: Each samples are consisting of 1024 1Q
samples are too complex-valued time-series data.

Mathematically in the each can be

mathematically expressed as:

X(t)=1(t)+IQ(t)

their both in-phase and quadrature

received signal

where and are
components.

3.2 Data Preprocessing
To enhance model performance with
preprocessing techniques are applied:

their several

3.2.1 Normalization
In this steps features are stable training of the IQ samples are
normalized:

X(®)

X t) = ——
This scales the values between -1 and 1 with preventing
numerical.

3.2.2 Data Augmentation

To improve generalization is to the following augmentation

techniques are applied:

e Phase Rotation: The signal is rotated by a random phase:

e Time Shifting: The sequence is randomly shifted to
simulate real-world transmission delays.

e Additive White Gaussian Noise (AWGN): Noise is added
to simulate varying channel conditions:

3.3 Proposed Deep Learning Model

AMC plays a crucial role in today’s wireless communication
systems by enabling accurate identification of modulation
schemes using advanced machine learning techniques.
Conventional classification methods often depend on
handcrafted feature extraction, which can be ineffective under
difficult conditions such as low Signal-to-Noise Ratios
(SNRs) or rapidly changing channels. To address these
challenges, recent research has shifted toward deep learning
techniques that extract features directly from raw signal
components, including in-phase (I) and quadrature (Q) data.
Here, we introduce deep learning architectures specifically
designed for AMC applications, leveraging the RADIOML
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2018.01A dataset. Specifically, we explore the effectiveness
of ResNet architectures in achieving reliable modulation
classification across diverse and noisy signal environments.

ResNet Classification
ayer
Radio signal Residual Residual Residual Resiual

T
Attention (Q,K,V) = softmax (ﬂ> \%

Figure 2. Res-Net model Architecture
Vi

3.3.1 ResNet for Signal Classification
A ResNet (Residual Network) model is evaluated for signal
classification and their architecture allows for deeper network
training by incorporating residual connections that mitigate
the vanishing gradient problem. The residual block the
formulas is below

Hx)= F(x)+ x
where represents the learned transformation. In which address
memory limitations training on Kaggle’s default environment
one-third of the dataset (851,968 signals) was used. The
resource constraints are in training remained conducted on
Google Cloud Platform using an n1- 7.5 hours.

3.4 Training Strategy
e  Loss Function: Categorical Cross-Entropy:

N
L = —Zyi lOg(gz’)

i=1
e  Optimizer: Adam with an initial learning rate of 0.001.
e  Batch Size: 128 samples per batch.
e  Early Stopping: Applied to prevent overfitting.

3.5 Evaluation Metrics

The performance of the proposed models to assess the
effectiveness of the proposed models, multiple evaluation
metrics have been employed. Accuracy serves as the primary
metric are easy to measuring the percentage of correctly
classified signals across all modulation categories. In dueling
of analysis class imbalances and variations in SNR conditions
and some of additional metrics are the F1 Score and
Confusion Matrix are employed.

4. Results Analysis

In this section we presents and analyzes the outcomes
obtained from the modulation classification framework
constructed with neural network-based methods. Its
effectiveness is assessed wusing various performance
indicators, including training/test classification correctness
rate, loss trends, confusion matrix analysis, and SNR-based
classification performance. This section also reflects on its
advantages, current constraints, and possible directions for
enhancement.
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4.1 Dataset Description

Table 2 provides an overview of the files used in the study,
which collectively form the dataset used for training and
evaluation:

Table 5: Overview of Dataset files

File Description
signals.npy Contains raw 1Q (In-phase & Quadrature)
signal data.
labels.npy Labels corresponding to the signal classes.

snrs.npy Signal-to-Noise Ratio (SNR) values for each

sample.

train_loss.npy Training loss values during model training.

train_acc.npy Training accuracy values during model

training.

val_loss.npy Validation loss values for model
performance evaluation.
val_acc.npy Validation accuracy values for model

evaluation.

model_full SNR.h5 Pre-trained model file for classification.

classes.txt List of modulation classes present in the
dataset.
LICENSE.TXT Licensing information for dataset usage.

This dataset enables the development of AMC systems for
applications such as cognitive radio, spectrum monitoring,
and signal intelligence, with support for analyzing the model
under different signal conditions.

Table 6: SNR Signal classification data

SNR Range (dB) Masked (True/False) Count
<8dB False (Used) 491,520
>8dB True (Masked) 360,448

From a total of 851,968 signal samples, only 491,520 samples
with SNR < 8 dB were retained for training and testing. This
deliberate selection focuses the model evaluation on noisy
and challenging conditions, where the signal quality is low
and modulation classification is significantly more difficult.
This approach ensures the robustness of the trained model in
practical radio environments.

4.3 1Q Component Visualization
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Flgure 3. I-Components vs Q- Components

The AM-SSB-WC signal shows a dominant
component with structured amplitude variation
quadrature part, indicating its simpler waveform.

in-phase
in the

In contrast, 64QAM exhibits a balanced and dense
constellation in both | and Q components, characteristic of a
high-order modulation with more symbols and complex
structure.
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These visualizations illustrate the differences in signal
characteristics, which the model must learn to distinguish
during training.

4.4 Accuracy and Loss Trends

Mo sceursey Mol ez

Figure 4. Accuracy-Score vs LOSS

Figure 4 demonstrates the model's accuracy trend over 100
training epochs. The training accuracy initially begins at 0.25
and gradually rises to around 0.62. Mean, validation accuracy
exhibits a comparable pattern and eventually plateaus at 0.58.
The slight gap between training and validation accuracy
indicates a minor generalization issue could be addressed
through fine-tuning the model or applying regularization
techniques. The loss curve indicates a rapid initial training
loss decreasing from 2.2 to approximately 1.1, validation loss
stabilizes around 1.2.

Although both training and validation accuracies improve
significantly, the gap between them (~4%) suggests a minor
generalization issue. This can be mitigated through:

¢ Regularization methods (e.g., dropout, weight decay)

e Enhanced data augmentation

o Use of early stopping or cross-validation

Overall, the model shows good convergence, but still leaves
room for optimization in terms of generalization.

4.5 Confusion Matrix Analysis

MNormalized Confusion Matrix

True Labels

HE R EE
L I ]

Predicted Labels

Figure 5. Confusion-Matrix
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Figure 5 Figure 5 presents the classification performance of
the proposed model in the form of a normalized con-fusion
matrix, wherein each row corres-ponds to the true modulation
class and each column represents the predicted class. The
figure 5 exhibits strong diagonal dominance, with normalized
values approaching unity (e.g., 1.00, 0.99, 0.998), indicating
that the model achieves high classification accuracy across
the majority of modulation schemes. These results suggest
that the model effectively captures distinguishing features
among a wide range of signal types under the tested
conditions. Nevertheless, non-negligible off-diagonal entries
are observed, particularly among modulation formats with
similar signal characteristics. Elevated confusion levels are
most evident between higher-order QAM schemes such as
16QAM, 64QAM, and 256QAM, where normalized
misclassification rates reach up to 0.07, 0.41, and 0.58,
respectively. These misclassifications are likely attributable
to the inherent similarity in their constellation structures,
which results in overlapping feature representations
especially under-low SNR conditions or in the presence of
noise. Similar challenges are also observed in the
classification of BPSK and QPSK, which share closely
related phase characteristics. The observed confusion among
adjacent modulation types highlights a limitation in the
model’s discriminative capability when handling modulation
schemes with subtle spectral and temporal differences. To
address this issue, future work may focus on enhancing the
quality of feature representations using advanced signal
processing techniques such as wavelet transforms or
attention-based mechanisms. Furthermore, optimization of
model hyperparameters and the integration of ensemble
learning strategies or hybrid deep architectures (e.g., CNN-
RNN) could improve the model’s robustness and its ability to
distinguish between modulation formats with overlapping
characteristics.

4.6 Final Performance Summary

Table 7: Model Performance Summary

Metric Value

Training Loss 0.0933

Training Accuracy 95.72%

Res-net model Test Accuracy 95.72%
Dataset Condition SNR > 8dB

When operating in environments with high signal-to-noise
ratios (SNR > 8 dB), the proposed model achieves an
accuracy of 95.72%, indicating its capability to deliver
outstanding performance under favorable signal conditions.
The low training loss additionally indicates effective
optimization and strong convergence. These findings support
the use of deep learning models in real-time AMC
applications, particularly when signal clarity is high.

On the other hand, in low-SNR scenarios (SNR < 8 dB), a
decline in performance is observed, which is consistent with
real-world limitations in wireless communication systems.

The findings show that DL-based AMC frameworks maintain
high classification accuracy over a range of modulation types
and SNR levels. The robustness of the proposed system under
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low SNR (< 8 dB) conditions, along with its enhanced
performance in high SNR situations (> 8 dB), underscores its
reliability. Analysis of the confusion matrix provides a deeper
understanding of the model’s strengths, identifying accurately
predicted modulation types as well as frequently misclassified
ones. These insights are helpful for guiding improvements in
model design and input preprocessing techniques. To further
boost the classification results, future enhancements could
focus on integrating Transformer-inspired mechanisms that
can model sequential dependencies in the signal features
more effectively. Moreover, utilizing time-frequency
representations such as wavelet transforms or STFT can
expand the richness of the input features. Leveraging transfer
learning might also improve generalization across multiple
signal environments and hardware. In conclusion, both
performance statistics and confusion matrix insights verify
the model's practical value for cognitive radio, secure
communications, and adaptive wireless systems functioning
under varying SNR scenarios.

5. Conclusion and Discussion

5.1 Summary of Key Findings

This work examined the effectiveness of deep learning
techniques for Automatic Modulation Classification (AMC).
The research focused on evaluating different types of neural
networks, such as Convolutional Neural Networks (CNNSs)
and Recurrent Neural Networks (RNNs), in distinguishing
various modulation schemes. Key findings include:

High Classification Accuracy: The deep learning
approaches demonstrated superior classification capabilities
when compared to conventional — machine-learning
approaches. The CNN-driven method produced notable levels
of precision in identifying modulation types across varying
signal-to-noise ratio (SNR) environments.

Robustness to Noise: The proposed model was tested under
various levels of noise, showcasing its robustness in real-
world scenarios. Performance degradation extremely low
SNRs but in the model maintained reasonable classification
accuracy. The conventional feature engineering approach was
replaced as deep learning-based methods captured high-level
representations directly from the raw 1Q data, eliminating the
need for manual feature extraction.

5.2 Study Limitations

Despite the promising results achieved, this study is subject to

several limitations that may influence the generalizability and

practical applicability of its findings:

1. Computational Overhead: The proposed deep learning
model, particularly the ResNet-based architecture, exhibits
high computational complexity. This may limit its
deployment in real-time or resource-constrained
communication environments, such as embedded systems
or mobile devices.

2. Synthetic Dataset Limitations: The experiments were
conducted using the RadioML 2016.10A dataset, which,
although widely used for benchmarking, is synthetically
generated. Consequently, the model’s performance in real-
world  scenarios involving unpredictable channel
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conditions, noise profiles, and interference remains to be
validated.

3. Lack of Real-Time Evaluation: The current
implementation and evaluation were performed offline.
Real-time performance metrics, including latency and
throughput, were not assessed, which are critical for
practical AMC applications.

4. Robustness to Adversarial Perturbations: The resilience of
the model to adversarial attacks or signal distortions was
not explored. This poses a potential risk in security-critical
or contested communication environments.

5. Limited Modulation Diversity: The model was trained on
a fixed set of modulation schemes provided in the dataset.
Its ability to generalize to unseen or custom modulations
without retraining is yet to be investigated.

Future research should aim to address these limitations by
incorporating  real-world  datasets, optimizing model
efficiency, and enhancing robustness under adversarial and
dynamic conditions.

6. Conclusion and Future Scope

In conclusion, this study has demonstrated that deep learning
techniques, particularly CNN-based ResNet architectures,
offer significant advantages in AMC tasks in terms of
classification accuracy, noise robustness, and automated
feature learning. These capabilities position deep learning as
a powerful solution for modulation classification in modern
wireless communication systems, particularly within the
context of cognitive radio, spectrum surveillance, and secure
communications. However, practical deployment necessitates
addressing challenges related to computational efficiency and
real-time processing. Future research should focus on
developing lightweight and hardware-efficient architectures,
possibly through model quantization, pruning, or knowledge
distillation. Integrating deep learning with classical signal
processing techniques could further improve interpretability
and model reliability. Additionally, the adoption of transfer
learning may enable the reuse of pre-trained models across
varying communication environments with  minimal
retraining, thus enhancing model adaptability. By addressing
these challenges, the deep learning-based AMC paradigm can
evolve to meet the needs of next-generation intelligent and
autonomous communication systems.
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