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Abstract: Stuttering is a speech disorder that disrupts the fluency of verbal communication. Traditional assessment methods are
subjective and labor-intensive, prompting the need for scalable, automated solutions. Recent advances in self-supervised
learning and transformer-based models such as Wav2Vec2 offer promising capabilities for automated stuttering detection. This
study investigates the effect of varying audio clip lengths on the classification accuracy of stuttering using Wav2Vec2 models.
Experiments were conducted on three benchmark datasets—SEP-28k, FluencyBank, and KSoF—across clip durations ranging
from 3 to 11 seconds. Results show that shorter audio segments (3-5 seconds) consistently achieve better classification
accuracy, with a peak of 65.13% observed for 3-second segments using SEP-28k. Longer durations introduce performance
variability, especially in cross-dataset evaluations. The findings support the design of efficient, real-time stuttering detection
systems and inform optimal segment length for future speech analysis models.

Keywords: Stuttering detection, Speech processing, Wav2Vec2, Transformer models, Self-supervised learning, Audio
segmentation, Deep learning

architectures, particularly Wav2Vec2[18], have shown

exceptional performance in speech-related tasks due to their

sep28k Model Training: ability to learn rich feature representations using self-
Ksof Wav2ec2 supervised learning. However, the effect of audio segment
length on the performance of such models for stuttering
Aemoning Empty detection remains underexplored. This study evaluates how
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across multiple real-world stuttering datasets. Insights into
optimal configurations for real-time stuttering detection.

1. Introduction 1.1 Objective of the Study
The Objective of this work is to find the impact of duration in
stuttering detection using the transformer-based model

Wav2Vec?2.

Stuttering is a complex speech disorder characterized by
involuntary disruptions such as repetitions, prolongations, and
blocks. It affects approximately 1% of the global population

and often leads to significant psychological and social
burdens. Traditionally, speech-language pathologists (SLPS)
rely on manual annotations and real-time listening to assess
stuttering, which limits scalability and consistency. With the
advancement of artificial intelligence and deep learning,
automated speech recognition (ASR) has made it possible to
detect disfluencies from raw audio. Transformer-based
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1.2 Organization

This article is organized into the following sections which are
as follows; Section 1 contains introduction, Section 2
contains related work in the field of stuttering, Section 3
contains methodology, Section 4 contains results and
discussion and Section 5 concludes research work with future
scope.
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2. Related Work

The landscape of stuttering detection has undergone a
profound transformation with the burgeoning influence of
artificial intelligence, particularly deep learning, moving
significantly beyond the foundational machine learning
approaches that once characterized the field. Historically,
methods for identifying stuttering relied on extensive feature
engineering, employing acoustic characteristics such as Mel-
frequency cepstral coefficients (MFCCs), linear prediction
cepstral coefficients (LPCCs), fundamental pitch, shimmer,
and voice onset time (VOT). These features were then fed
into traditional classifiers like Support Vector Machines
(SVM), k-Nearest Neighbors (k-NN), Hidden Markov
Models (HMMs), and Gaussian Mixture Models (GMMs),
which demonstrated foundational effectiveness in detecting
speech disfluencies but often required considerable manual
effort in feature extraction and selection [1],[14].The
paradigm shifted with the advent of deep learning, offering a
powerful alternative by enabling models to learn intricate,
hierarchical speech representations directly from raw audio
data. Architectures such as Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), and
Bidirectional Long Short-Term Memory (BiLSTM) networks
have emerged as pivotal tools, consistently demonstrating
superior performance in various speech processing tasks,
including stuttering classification [1],[11],[16]. This new
wave of models has led to the development of hybrid
architectures like FluentNet and StutterNet, which have
further refined classification accuracy. FluentNet, for
example, is designed as an end-to-end system, utilizing a
Squeeze-and-Excitation ResNet to extract rich spectral
features and BILSTM layers to capture temporal
relationships, further enhanced by an attention mechanism
that focuses on critical speech features. It achieved state-of-
the-art performance on the UCLASS corpus and introduced
LibriStutter, a synthetic dataset, to combat the scarcity of real
stuttered speech data [1],[13]. Similarly, StutterNet processes
raw acoustic signals using a Time Delay Neural Network
(TDNN) to effectively capture the temporal and contextual
aspects of speech disfluencies, outperforming previous
ResNet+BiLSTM models while significantly reducing
computational costs [15]. Additionally, the application of
BiLSTM, integrating MFCCs and phoneme probabilities, has
shown strong generalization across multiple benchmark
datasets, highlighting its potential for real-time speech
therapy  applications  [16].A  particularly  impactful
development has been the adoption of self-supervised
learning, leveraging massive amounts of unlabeled audio data
to pre-train highly effective models. Wav2Vec2.0
embeddings have proven instrumental, with studies reporting
substantial improvements in stuttering detection (SD)
accuracy. Models incorporating Wav2Vec2.0 embeddings
have consistently outperformed baselines, benefiting from
strategies like summing embeddings from multiple layers and
concatenating them with MFCC features, which further
enhances performance for traditional classifiers like SVMs
[3],[5]. Fine-tuning Wav2Vec2.0 models on large stuttered
speech datasets, such as SEP-28k and FluencyBank, has not
only led to impressive classification improvements but also
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demonstrated  remarkable  cross-lingual  transferability,
showing that models trained on English stuttering data can
perform effectively on German therapy speech [4]. The
“Whister” approach, for instance, innovatively utilizes the
hidden representations from Whisper’s encoder layers for
detecting and classifying stuttering events. This novel
method, which trains classification heads on frozen Whisper
embeddings while also incorporating MFCC features, has
achieved state-of-the-art F1 scores on FluencyBank (0.70)
and KSoF (0.66). A key finding from this research is that
using longer audio segments (e.g., 5 seconds instead of 3) can
notably improve classification accuracy, underscoring the
importance of contextual window size [2]. Other advanced
deep learning models, including transformer-based
architectures like TranStutter, have also shown promising
results by capturing complex temporal dependencies in
speech signals [10].The availability and quality of datasets
are paramount in training and validating these sophisticated
models. Large-scale corpora like SEP-28k, which comprises
over 28,000 speech clips (approximately 23 hours) curated
from podcasts featuring individuals who stutter and annotated
for various stuttering events (blocks, prolongations, sound
repetitions, word/phrase repetitions, interjections), have
become invaluable resources [8],[10],[9].[12],[15]. Other
crucial datasets include FluencyBank, UCLASS, KSoF, and
LibriStutter [2],[9],[12],[15]. Studies have consistently
demonstrated that increasing dataset size directly correlates
with substantial improvements in detection performance, with
one study showing a 28% relative improvement and a 24%
increase in Fl-score by simply expanding the dataset [8].
Beyond data volume, researchers have explored advanced
training strategies like Multi-Task Learning (MTL), where
models jointly learn stuttering classification and auxiliary
tasks such as speaker gender identification or metadata
recognition (e.g., podcast type). MTL frameworks have
shown improvements in classification for specific disfluency
types like repetitions, blocks, and interjections, while also
highlighting the need to address metadata entanglement
[4],[6]. Adversarial Training (ADV) has also been employed
to learn podcast-invariant speech representations, making
models more robust to speaker variations and improving the
detection of fluent speech [6].Despite these remarkable
advancements, automated stuttering detection faces several
persistent and complex challenges. Limitations in dataset size
and quality, particularly concerning representative real-world
speech, remain a significant hurdle. Data imbalance, where
certain disfluency types are underrepresented, often leads to
biased model performance [1],[2].[31.[61.[71.[81.[9].[12].[16].
High computational costs associated with training deep
learning models, especially large transformer-based ones,
pose a practical constraint for real-time deployment and
broader accessibility [1],[11]. Furthermore, challenges in
achieving robust domain generalization, managing real-world
noise variations, and a lack of standardized evaluation
protocols hinder direct comparisons and broader applicability
of research findings [1],[2],[7].[8].[9], [14],[16]. Specific
disfluency types, such as word repetitions and “garbage”
disfluencies, continue to be particularly challenging for
models to accurately detect [3],[9]. The discrepancies in
performance across different stuttering subclasses and the
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impact of dataset partitioning (where overlapping speakers
between training and test sets can lead to over-optimistic
results) also require careful consideration [4],[9].Looking
ahead, future research aims to address these critical issues and
push the boundaries of Al-driven stuttering detection. Key
directions include focusing on multimodal learning, which
integrates information from various modalities beyond just
audio; further optimizing self-supervised transformer-based
models for enhanced accuracy and interpretability;
incorporating  multilingual  support to broaden the
applicability of detection systems; and rigorously developing
larger, publicly available, and more diverse datasets to
improve generalization and real-time deployment capabilities
[1].[2].[71.[9], [10],[12],[13],[15],[16]. Refining multi-class
learning strategies to handle overlapping stuttering patterns,
enhancing model adaptability across multiple datasets, and
fine-tuning models for detecting stuttering locations in speech
frames are also crucial areas of focus [4],[5],[7],[12],[15].
This ongoing research underscores the transformative
potential of Al in providing better speech therapy and
assessment tools, ultimately enhancing the quality of life for
individuals who stutter and improving ASR systems tailored
to their unique speech patterns.

3. Methodology

3.1Datasets

The study utilizes three datasets for stuttering
detection:Sep28k: A large-scale dataset containing stuttered
speech samples from podcasts.

The Sep28k dataset is a large-scale, publicly available corpus
specifically designed for the detection of stuttering events in
spontaneous speech. Developed from English-language
podcasts featuring people who stutter, it contains over 28,000
labeled audio clips annotated across various disfluency types,
including blocks, prolongations, repetitions, and interjections.
Each clip is carefully segmented and labeled by multiple
human annotators to ensure accuracy and reliability. Sep28k,
a critical resource for training and evaluating ML models
aimed at automatic stuttering detection, providing diverse and
naturally occurring speech patterns essential for robust model
development [8].

FluencyBank: A dataset specifically curated for studying
speech fluency, used for testing and validation in some
experimental setups. The FluencyBank dataset is a
comprehensive resource developed as part of the TalkBank
project, aimed at studying fluency and disfluency patterns
across a wide range of speakers. It includes recordings of
both people who stutter and fluent speakers, covering various
ages, backgrounds, and speaking contexts. The dataset
contains detailed transcriptions and annotations for different
types of speech disruption, such as repetitions, prolongations,
interjections and blocks. FluencyBank is valuable not only for
stuttering research but also for broader investigations into
language development, speech disorders, and fluency
assessment. Its rich linguistic and acoustic information makes
it an important tool for training and evaluating speech
recognition and stuttering detection models [8].Ksof: The
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Kassel State of Fluency (KSoF) dataset is a specialized
speech corpus designed for stuttering research, particularly
focused on therapy-related speech patterns. It contains over
5,500 audio clips recorded during different stages of therapy
at the Kasseler Stottertherapie institute. The dataset is labeled
across six key disfluency types—such as blocks, repetitions,
prolongations and modified speech techniques taught during
therapy. KSoF stands out by offering recordings from people
who underwent intensive speech therapy, providing a unique
resource for studying both natural stuttering behaviors and
therapy-induced fluency changes. It supports advancements
in automated stuttering detection and complements broader
datasets like Sep28k by emphasizing therapy-centered speech
dynamics [17].

3.2.1 Data Splitting Strategies

The corpus were split into training, validation, and test sets
using different approaches: Custom Test and Validation Sets:
In some experiments, 3,000 samples were allocated for both
validation and test sets, with the remaining 23,000 samples
used for training.10% Test and 9% Validation Split: A
standard random split ensuring a balanced division of
training, validation, and test data. FluencyBank as Test Set: In
specific configurations, FluencyBank was used exclusively as
the test set, while Sep28k served as the training dataset. The
KSoF dataset is a specialized speech corpus designed for
stuttering research, particularly focused on therapy-related
speech patterns. It contains over 5,500 audio clips recorded
during different stages of therapy at the Kasseler
Stottertherapie institute. The dataset is labeled across six key
disfluency types—such as blocks, repetitions, prolongations
and modified speech techniques taught during therapy. It is
also used as a test set.

3.3 Preprocessing

3.3.1 Audio Processing

Resampling: All audio clips were resampled to 16,000 Hz.
Blanks: Removing audio files which don’t have any data.
Trimming & Silence Removal: Ensured uniform clip lengths
and removed excessive silent regions. Augmentation
Techniques (if applied): Adding background noise, Time-
stretching (speed variations), Pitch shifting.

3.3.2 Label Processing

Encoding categorical labels using LabelEncoder. Ensuring
consistent class distribution across training, validation, and
test splits.

3.4 Model Selection: Wav2Vec?2 for Stuttering Detection
The study utilizes Wav2Vec2, a transformer-based speech
recognition model, for feature extraction and classification.
The model architecture consists of:
Audio Input (16kHz, 3 sec) — Wav2Vec2 Feature Extractor
— Transformer Layers — Fully Connected Layer — Softmax
(Classification)

3.5 Model Training Process

3.5.1 Training Pipeline

Model:  Wav2Vec2ForSequenceClassification from the
Hugging Face Transformers library, Optimizer: AdamW,
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Loss Function: CrossEntropyL.oss.
Training Strategy: Mixed Precision Training using
torch.cuda.amp to reduce memory usage. Gradient

Accumulation for large batch training. Dynamic Learning
Rate Adjustment with “ReduceLROnPlateau”.

3.5.2 Hyperparameter Settings

The model was trained using a batch size of 16 or 32, with a
learning rate of 1e-5. AdamW was chosen as the optimizer,
along with the ReduceLROnPIlateau scheduler that adjusts the
learning rate based on the validation loss. Training was
carried out for 15 to 20 epochs to ensure stable convergence.

3.5.3 Checkpointing and Early Stopping

The best model was saved based on validation accuracy.
Training was stopped early if validation loss did not improve
for a fixed number of iterations. Lowering the learning rate
from 1e-5 did not bring any improvements at all.

3.6 Model Evaluation

To assess model performance, the best-trained model was
assessed on the test set. The following parameters were
computed: Test Loss (CrossEntropyLoss) In order to evaluate
as well as optimize model’s training and testing data loss, CE
loss function was used. CE loss function considers
differences between probabilities of the actual and predicted
data values and if they closely match with each other then the
value of loss function would be less else value would be very
high. Mathematically, CE Loss function could be written as
in equation 3.1
L=~ 25\1:1

Dy 31

Vi,j log (}7i,j
Accuracy is the ratio of sum of all the TP as well as TN
values determined values over sum of all the TP, TN, FN and
FP values. Mathematically, accuracy could be written as in
equation 3.2

Accuracy = (TP + TN)/(TP + TN + FP +FN (3.2)

Precision is the ratio of sum of all the TP over sum of all the
TP and FP values. Mathematically, precision could be written
as in equation 3.3

Precision = TP/(TP + FP) (3.3)
Recall is the ratio of sum of all the TP values over sum of all
the TP and FN values. Mathematically, recall could be
written as in equation 3.4
Recall = TP/(TP + FN) (3.4)
F1-score is the ratio of product of precision and recall over

sum of precision and recall values. Mathematically, recall
could be written as in equation 3.5

F1 =2 x (Precision * Recall)/(Precision + Recall
(3.5
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3.7 Hardware and Computational Resources

3.7.1 Hardware Setup

GPU: NVIDIA Tesla T4 (15 GB RAM) on Kaggle. Training
Time: 5-10 hours per experiment. Libraries Used: PyTorch,
Hugging Face Transformers. Dell Inspiron 15 5518 Intel Core
i5 11320H 16GB 512GB SSD

3.7.2 Handling Memory Constraints

To prevent memory overflow issues:
Mixed Precision Training (torch.cuda.amp) was utilized.
Gradient Accumulation was used to simulate larger batch
sizes. GPU Memory Clearing (torch.cuda.empty cache())
was performed between epochs.

4. Results and Discussion

Here we discuss and analyze the outcomes of stuttering
detection experiments conducted using transformer-based
models on Sep28k, FluencyBank, and KSoF datasets. It
compares performance across different input durations,
dataset combinations, and validation strategies. Key findings
are discussed to highlight trends, strengths, and limitations,
offering insights into model behavior and the impact of data
configurations on classification accuracy.

Table 4.1 Accuracy Obtained for Training set- Sep28k Test set- Sep28k for
different audio duration

Dataset Audio Duration (sec) Accuracy (%)
Sep28k 3 63.91
Sep28k 5 64.26
Sep28k I 64.49
Sep28k 9 62.49
Sep28k 11 62.72
80
60
§
20
0
3 5 7 ] 1

Audio Duratian (sec)

Figure 4.1 Training, Validation- sep28k, Test Set- sep28k

Observation: The table presents a comparative evaluation of
model performance across varying audio durations, using the
Sep28k dataset. The training set remains constant in each
configuration, while 10% of the data is reserved for testing
and 9% for validation. Audio durations were varied from 3
seconds to 11 seconds in steps of 2 seconds to observe the
effect on classification accuracy. The highest accuracy
(64.49%) was achieved when using 7-second audio segments,
suggesting this duration may provide an optimal balance
between contextual richness and noise. A slight performance
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dip was observed for longer segments (9 and 11 seconds),
with accuracies dropping to 62.49% and 62.72%,
respectively. Using only 3-second clips achieved a
competitive accuracy of 63.91%, indicating that even short
segments contain sufficient stuttering cues for reliable
detection. These results highlight that moderate-length audio
segments (5-7 seconds) are most effective for stuttering
classification tasks using the Sep28k dataset (Table
4.1)(Figure 4.1).

Table 4.2 Accuracy Obtained for Training set- Sep28k Test set- Ksof for
different audio duration

Dataset Audio Duration (sec) Accuracy (%)
Sep28k + Ksof 3 45.16
Sep28k + Ksof 5 47.74
Sep28k + Ksof 7 48.07
Sep28k + Ksof 9 47.43
Sep28k + Ksof 11 45.47

50

a0

30

Accuracy

20

3 5 7

9 11

Audio Duration (sec)

Figure 4.2 Training, Validation- sep28k, Test Set- ksof

Observation: The model achieved the highest accuracy of
48.07% with 7-second audio segments.
A steady improvement in accuracy is observed from 3
seconds (45.16%) to 7 seconds. After 7 seconds, accuracy
slightly drops at 9 seconds (47.43%) and 11 seconds
(45.47%). Moderate-length audio (5-7 seconds) provides
better context for the model, enhancing prediction capability.
Longer segments (9-11 seconds) may introduce background
noise or unrelated information, slightly degrading
performance. Incorporating KSoF introduces valuable speech
variability (e.g., modified speech due to therapy). However, it
also brings additional complexity that may require refined
preprocessing or model adaptation to prevent performance
drop (Table 4.2)(Figure 4.2).

Table 4.3 Accuracy Obtained for Training set- Sep28k Test set-
FluencyBank for different audio duration

Dataset Audio Duration (sec) Accuracy (%)
Sep28k + FluencyBank 3 63.61
Sep28k + FluencyBank 5 62.26
Sep28k + FluencyBank 7 62.26
Sep28k + FluencyBank 9 61.54
Sep28k + FluencyBank 11 61.59
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Figure 4.3 Training, Validation- sep28Kk, Test Set- fluencybank

Observation: The highest accuracy of 63.61% was achieved
using 3-second audio segments. A slight decline in
performance was observed with increasing audio durations.
Shorter audio segments (3 seconds) appear optimal for
capturing dysfluency-specific features. Longer segments may
introduce irrelevant or redundant information, which can
dilute the model’s ability to focus on stuttering cues. Segment
duration is a crucial hyperparameter when combining
multiple datasets with varying speech characteristics. The
results suggest that when using Sep28k + FluencyBank,
shorter inputs are more effective for stuttering detection tasks.
Optimal accuracy is achieved with 3-second clips, reinforcing
prior observations that concise segments enhance detection
performance when using diverse, naturalistic datasets(Table
4.3)(Figure 4.3).

Sep28k consistently achieves the highest accuracy across
time durations (peaking at 0.6449 for 7 seconds).Sep28k +
FluencyBank performs slightly lower but remains close to
Sep28k (best at 0.6493 for 3 seconds).Sep28k + Ksof
performs significantly lower than the other two combinations,
with accuracy ranging between 0.45-0.48.3-second clips
provide the highest accuracy, with 7-second clips performing
well in some cases. Using FluencyBank for testing results in
slightly lower accuracy, likely due to dataset variability.
Shorter clips (3s-5s) consistently outperform longer clips (9s-
11s), suggesting clearer speech segmentation. A 10% test and
9% validation split with Sep28k alone yields better
performance compared to setups using FluencyBank for
testing.Sep28k (alone) gives the most consistent and high-
performing results across durations.Sep28k + FluencyBank is
competitive, especially at shorter durations (3s).Sep28k +
Ksof underperforms, likely due to data quality or
compatibility issues. Short to medium clip lengths (3-7s)
appear optimal for accuracy, with longer durations offering
no added benefit and possibly introducing noise. This chapter
presented the results and discussion based on various
experimental setups. The analysis highlights the impact of
dataset variations, clip duration, and batch size on the model's
performance.
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5. Conclusion and Future Work

This study explores the application of ML and DL techniques
for automatic stuttering detection. Various datasets, including
Sep28k and FluencyBank, were utilized to evaluate the
impact of different test-validation splits, clip durations, and
dataset combinations on classification accuracy. The results
indicate several key findings: Shorter clips (3s-55)
consistently outperform longer clips (9s-11s), suggesting that
shorter segments provide clearer speech patterns for
classification. Using FluencyBank for testing resulted in
slightly lower accuracy, likely due to dataset variability and
differences in speech recording environments. A 10% test and
9% validation split with Sep28k alone yielded better
performance compared to setups using FluencyBank for
testing. The highest accuracy (65.13%) was achieved using
Sep28k with 3-second clips, while longer clips tended to
reduce classification accuracy. Hybrid dataset setups (Sep28k
+ FluencyBank) showed competitive results, but their
performance varied based on the test-validation approach.
Overall, the study demonstrates that dataset selection, clip
duration, and test-validation strategies significantly impact
the accuracy of stuttering detection models. These insights
are valuable for optimizing ML models for real-world speech
disorder applications.

Future research should focus on: Developing Bigger and
More Varies Datasets: To enhance generalization across
various speakers and languages. Improving Domain
Adaptation: Utilizing transfer learning and semi-supervised
learning to leverage existing ASR models. Integrating
Multimodal ~ Approaches:  Combining  speech, facial
expressions, and textual cues for enhanced classification.
Optimizing Real-Time Deployment: Developing lightweight
models for mobile applications and speech therapy tools.
While the study achieved promising results, several
challenges remain, paving the way for future research
directions: Data Augmentation: Implementing advanced
augmentation techniques such as time-stretching, pitch
shifting, and noise injection could enhance model robustness
and improve accuracy. Multimodal Approaches: Future work
could integrate audio, video, and text-based features to
develop a more comprehensive stuttering detection system.
Real-Time Deployment: Optimizing models for low-latency
inference could enable real-time applications in speech
therapy and assistive technology. Transfer Learning and
Pretrained Models: Leveraging large-scale self-supervised
speech models such as Whisper and Wav2Vec2 could
improve generalization across diverse datasets. Handling
Dataset Variability: More research is needed to improve
cross-dataset generalization and reduce the performance gap
when testing on datasets like FluencyBank. Ethical
Considerations and Bias Reduction: Ensuring that models are
trained on diverse datasets to minimize bias and improve
inclusivity for different speech patterns and demographics.
By addressing these challenges, future studies can develop
more robust, efficient, and scalable solutions for automatic
stuttering detection, contributing to the advancement of Al-
driven speech disorder research and applications.
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