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Abstract: Stuttering is a speech disorder that disrupts the fluency of verbal communication. Traditional assessment methods are 

subjective and labor-intensive, prompting the need for scalable, automated solutions. Recent advances in self-supervised 

learning and transformer-based models such as Wav2Vec2 offer promising capabilities for automated stuttering detection. This 

study investigates the effect of varying audio clip lengths on the classification accuracy of stuttering using Wav2Vec2 models. 

Experiments were conducted on three benchmark datasets—SEP-28k, FluencyBank, and KSoF—across clip durations ranging 

from 3 to 11 seconds. Results show that shorter audio segments (3–5 seconds) consistently achieve better classification 

accuracy, with a peak of 65.13% observed for 3-second segments using SEP-28k. Longer durations introduce performance 

variability, especially in cross-dataset evaluations. The findings support the design of efficient, real-time stuttering detection 

systems and inform optimal segment length for future speech analysis models. 
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1. Introduction 
 

Stuttering is a complex speech disorder characterized by 

involuntary disruptions such as repetitions, prolongations, and 

blocks. It affects approximately 1% of the global population 

and often leads to significant psychological and social 

burdens. Traditionally, speech-language pathologists (SLPs) 

rely on manual annotations and real-time listening to assess 

stuttering, which limits scalability and consistency. With the 

advancement of artificial intelligence and deep learning, 

automated speech recognition (ASR) has made it possible to 

detect disfluencies from raw audio. Transformer-based 

architectures, particularly Wav2Vec2[18], have shown 

exceptional performance in speech-related tasks due to their 

ability to learn rich feature representations using self-

supervised learning. However, the effect of audio segment 

length on the performance of such models for stuttering 

detection remains underexplored. This study evaluates how 

varying the length of audio clips (3–11 seconds) impacts the 

performance of Wav2Vec2 in detecting stuttering across 

three datasets. Our contributions are: Systematic analysis of 

clip duration effects on model accuracy. Benchmarking 

across multiple real-world stuttering datasets. Insights into 

optimal configurations for real-time stuttering detection. 

 

1.1 Objective of the Study 
The Objective of this work is to find the impact of duration in 

stuttering detection using the transformer-based model 

Wav2Vec2. 

 

1.2 Organization 
This article is organized into the following sections which are 

as follows; Section 1 contains introduction, Section 2 

contains related work in the field of stuttering, Section 3 

contains methodology, Section 4 contains results and 

discussion and Section 5 concludes research work with future 

scope. 
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2. Related Work 
 

The landscape of stuttering detection has undergone a 

profound transformation with the burgeoning influence of 

artificial intelligence, particularly deep learning, moving 

significantly beyond the foundational machine learning 

approaches that once characterized the field. Historically, 

methods for identifying stuttering relied on extensive feature 

engineering, employing acoustic characteristics such as Mel-

frequency cepstral coefficients (MFCCs), linear prediction 

cepstral coefficients (LPCCs), fundamental pitch, shimmer, 

and voice onset time (VOT). These features were then fed 

into traditional classifiers like Support Vector Machines 

(SVM), k-Nearest Neighbors (k-NN), Hidden Markov 

Models (HMMs), and Gaussian Mixture Models (GMMs), 

which demonstrated foundational effectiveness in detecting 

speech disfluencies but often required considerable manual 

effort in feature extraction and selection [1],[14].The 

paradigm shifted with the advent of deep learning, offering a 

powerful alternative by enabling models to learn intricate, 

hierarchical speech representations directly from raw audio 

data. Architectures such as Convolutional Neural Networks 

(CNNs), Recurrent Neural Networks (RNNs), and 

Bidirectional Long Short-Term Memory (BiLSTM) networks 

have emerged as pivotal tools, consistently demonstrating 

superior performance in various speech processing tasks, 

including stuttering classification [1],[11],[16]. This new 

wave of models has led to the development of hybrid 

architectures like FluentNet and StutterNet, which have 

further refined classification accuracy. FluentNet, for 

example, is designed as an end-to-end system, utilizing a 

Squeeze-and-Excitation ResNet to extract rich spectral 

features and BiLSTM layers to capture temporal 

relationships, further enhanced by an attention mechanism 

that focuses on critical speech features. It achieved state-of-

the-art performance on the UCLASS corpus and introduced 

LibriStutter, a synthetic dataset, to combat the scarcity of real 

stuttered speech data [1],[13]. Similarly, StutterNet processes 

raw acoustic signals using a Time Delay Neural Network 

(TDNN) to effectively capture the temporal and contextual 

aspects of speech disfluencies, outperforming previous 

ResNet+BiLSTM models while significantly reducing 

computational costs [15]. Additionally, the application of 

BiLSTM, integrating MFCCs and phoneme probabilities, has 

shown strong generalization across multiple benchmark 

datasets, highlighting its potential for real-time speech 

therapy applications [16].A particularly impactful 

development has been the adoption of self-supervised 

learning, leveraging massive amounts of unlabeled audio data 

to pre-train highly effective models. Wav2Vec2.0 

embeddings have proven instrumental, with studies reporting 

substantial improvements in stuttering detection (SD) 

accuracy. Models incorporating Wav2Vec2.0 embeddings 

have consistently outperformed baselines, benefiting from 

strategies like summing embeddings from multiple layers and 

concatenating them with MFCC features, which further 

enhances performance for traditional classifiers like SVMs 

[3],[5]. Fine-tuning Wav2Vec2.0 models on large stuttered 

speech datasets, such as SEP-28k and FluencyBank, has not 

only led to impressive classification improvements but also 

demonstrated remarkable cross-lingual transferability, 

showing that models trained on English stuttering data can 

perform effectively on German therapy speech [4]. The 

“Whister” approach, for instance, innovatively utilizes the 

hidden representations from Whisper’s encoder layers for 

detecting and classifying stuttering events. This novel 

method, which trains classification heads on frozen Whisper 

embeddings while also incorporating MFCC features, has 

achieved state-of-the-art F1 scores on FluencyBank (0.70) 

and KSoF (0.66). A key finding from this research is that 

using longer audio segments (e.g., 5 seconds instead of 3) can 

notably improve classification accuracy, underscoring the 

importance of contextual window size [2]. Other advanced 

deep learning models, including transformer-based 

architectures like TranStutter, have also shown promising 

results by capturing complex temporal dependencies in 

speech signals [10].The availability and quality of datasets 

are paramount in training and validating these sophisticated 

models. Large-scale corpora like SEP-28k, which comprises 

over 28,000 speech clips (approximately 23 hours) curated 

from podcasts featuring individuals who stutter and annotated 

for various stuttering events (blocks, prolongations, sound 

repetitions, word/phrase repetitions, interjections), have 

become invaluable resources [8],[10],[9],[12],[15]. Other 

crucial datasets include FluencyBank, UCLASS, KSoF, and 

LibriStutter [2],[9],[12],[15]. Studies have consistently 

demonstrated that increasing dataset size directly correlates 

with substantial improvements in detection performance, with 

one study showing a 28% relative improvement and a 24% 

increase in F1-score by simply expanding the dataset [8]. 

Beyond data volume, researchers have explored advanced 

training strategies like Multi-Task Learning (MTL), where 

models jointly learn stuttering classification and auxiliary 

tasks such as speaker gender identification or metadata 

recognition (e.g., podcast type). MTL frameworks have 

shown improvements in classification for specific disfluency 

types like repetitions, blocks, and interjections, while also 

highlighting the need to address metadata entanglement 

[4],[6]. Adversarial Training (ADV) has also been employed 

to learn podcast-invariant speech representations, making 

models more robust to speaker variations and improving the 

detection of fluent speech [6].Despite these remarkable 

advancements, automated stuttering detection faces several 

persistent and complex challenges. Limitations in dataset size 

and quality, particularly concerning representative real-world 

speech, remain a significant hurdle. Data imbalance, where 

certain disfluency types are underrepresented, often leads to 

biased model performance [1],[2],[3],[6],[7],[8],[9],[12],[16]. 

High computational costs associated with training deep 

learning models, especially large transformer-based ones, 

pose a practical constraint for real-time deployment and 

broader accessibility [1],[11]. Furthermore, challenges in 

achieving robust domain generalization, managing real-world 

noise variations, and a lack of standardized evaluation 

protocols hinder direct comparisons and broader applicability 

of research findings [1],[2],[7],[8],[9], [14],[16]. Specific 

disfluency types, such as word repetitions and “garbage” 

disfluencies, continue to be particularly challenging for 

models to accurately detect [3],[9]. The discrepancies in 

performance across different stuttering subclasses and the 
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impact of dataset partitioning (where overlapping speakers 

between training and test sets can lead to over-optimistic 

results) also require careful consideration [4],[9].Looking 

ahead, future research aims to address these critical issues and 

push the boundaries of AI-driven stuttering detection. Key 

directions include focusing on multimodal learning, which 

integrates information from various modalities beyond just 

audio; further optimizing self-supervised transformer-based 

models for enhanced accuracy and interpretability; 

incorporating multilingual support to broaden the 

applicability of detection systems; and rigorously developing 

larger, publicly available, and more diverse datasets to 

improve generalization and real-time deployment capabilities 

[1],[2],[7],[9], [10],[12],[13],[15],[16]. Refining multi-class 

learning strategies to handle overlapping stuttering patterns, 

enhancing model adaptability across multiple datasets, and 

fine-tuning models for detecting stuttering locations in speech 

frames are also crucial areas of focus [4],[5],[7],[12],[15]. 

This ongoing research underscores the transformative 

potential of AI in providing better speech therapy and 

assessment tools, ultimately enhancing the quality of life for 

individuals who stutter and improving ASR systems tailored 

to their unique speech patterns. 
 

3. Methodology 

 

3.1Datasets 

The study utilizes three datasets for stuttering 

detection:Sep28k: A large-scale dataset containing stuttered 

speech samples from podcasts. 

 

The Sep28k dataset is a large-scale, publicly available corpus 

specifically designed for the detection of stuttering events in 

spontaneous speech. Developed from English-language 

podcasts featuring people who stutter, it contains over 28,000 

labeled audio clips annotated across various disfluency types, 

including blocks, prolongations, repetitions, and interjections. 

Each clip is carefully segmented and labeled by multiple 

human annotators to ensure accuracy and reliability. Sep28k, 

a critical resource for training and evaluating ML models 

aimed at automatic stuttering detection, providing diverse and 

naturally occurring speech patterns essential for robust model 

development [8]. 

 

FluencyBank: A dataset specifically curated for studying 

speech fluency, used for testing and validation in some 

experimental setups. The FluencyBank dataset is a 

comprehensive resource developed as part of the TalkBank 

project, aimed at studying fluency and disfluency patterns 

across a wide range of speakers. It includes recordings of 

both people who stutter and fluent speakers, covering various 

ages, backgrounds, and speaking contexts. The dataset 

contains detailed transcriptions and annotations for different 

types of speech disruption, such as repetitions, prolongations, 

interjections and blocks. FluencyBank is valuable not only for 

stuttering research but also for broader investigations into 

language development, speech disorders, and fluency 

assessment. Its rich linguistic and acoustic information makes 

it an important tool for training and evaluating speech 

recognition and stuttering detection models [8].Ksof: The 

Kassel State of Fluency (KSoF) dataset is a specialized 

speech corpus designed for stuttering research, particularly 

focused on therapy-related speech patterns. It contains over 

5,500 audio clips recorded during different stages of therapy 

at the Kasseler Stottertherapie institute. The dataset is labeled 

across six key disfluency types—such as blocks, repetitions, 

prolongations and modified speech techniques taught during 

therapy. KSoF stands out by offering recordings from people 

who underwent intensive speech therapy, providing a unique 

resource for studying both natural stuttering behaviors and 

therapy-induced fluency changes. It supports advancements 

in automated stuttering detection and complements broader 

datasets like Sep28k by emphasizing therapy-centered speech 

dynamics [17]. 

 

3.2.1 Data Splitting Strategies 

The corpus were split into training, validation, and test sets 

using different approaches: Custom Test and Validation Sets: 

In some experiments, 3,000 samples were allocated for both 

validation and test sets, with the remaining 23,000 samples 

used for training.10% Test and 9% Validation Split: A 

standard random split ensuring a balanced division of 

training, validation, and test data. FluencyBank as Test Set: In 

specific configurations, FluencyBank was used exclusively as 

the test set, while Sep28k served as the training dataset. The 

KSoF dataset is a specialized speech corpus designed for 

stuttering research, particularly focused on therapy-related 

speech patterns. It contains over 5,500 audio clips recorded 

during different stages of therapy at the Kasseler 

Stottertherapie institute. The dataset is labeled across six key 

disfluency types—such as blocks, repetitions, prolongations 

and modified speech techniques taught during therapy. It is 

also used as a test set. 

 

3.3 Preprocessing 

3.3.1 Audio Processing 
Resampling: All audio clips were resampled to 16,000 Hz. 

Blanks: Removing audio files which don’t have any data. 

Trimming & Silence Removal: Ensured uniform clip lengths 

and removed excessive silent regions. Augmentation 

Techniques (if applied): Adding background noise, Time-

stretching (speed variations), Pitch shifting. 

 

3.3.2 Label Processing 
Encoding categorical labels using LabelEncoder. Ensuring 

consistent class distribution across training, validation, and 

test splits. 

 

3.4 Model Selection: Wav2Vec2 for Stuttering Detection 

The study utilizes Wav2Vec2, a transformer-based speech 

recognition model, for feature extraction and classification. 

The model architecture consists of: 

Audio Input (16kHz, 3 sec) → Wav2Vec2 Feature Extractor 

→ Transformer Layers → Fully Connected Layer → Softmax 

(Classification) 

 

3.5 Model Training Process 

3.5.1 Training Pipeline 
Model: Wav2Vec2ForSequenceClassification from the 

Hugging Face Transformers library, Optimizer: AdamW, 
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Loss Function: CrossEntropyLoss. 

Training Strategy: Mixed Precision Training using 

torch.cuda.amp to reduce memory usage. Gradient 

Accumulation for large batch training. Dynamic Learning 

Rate Adjustment with “ReduceLROnPlateau”. 

 

3.5.2 Hyperparameter Settings 

The model was trained using a batch size of 16 or 32, with a 

learning rate of 1e-5. AdamW was chosen as the optimizer, 

along with the ReduceLROnPlateau scheduler that adjusts the 

learning rate based on the validation loss. Training was 

carried out for 15 to 20 epochs to ensure stable convergence. 

 

3.5.3 Checkpointing and Early Stopping 
The best model was saved based on validation accuracy. 

Training was stopped early if validation loss did not improve 

for a fixed number of iterations. Lowering the learning rate 

from 1e-5 did not bring any improvements at all. 

 

3.6 Model Evaluation 
To assess model performance, the best-trained model was 

assessed on the test set. The following parameters were 

computed: Test Loss (CrossEntropyLoss) In order to evaluate 

as well as optimize model’s training and testing data loss, CE 

loss function was used. CE loss function considers 

differences between probabilities of the actual and predicted 

data values and if they closely match with each other then the 

value of loss function would be less else value would be very 

high. Mathematically, CE Loss function could be written as 

in equation 3.1 

 

𝐿 =  − ∑𝑁
𝑖=1 ∑𝐶

𝑗=1 𝑦𝑖,𝑗 𝑙𝑜𝑔 (𝑦̂𝑖,𝑗                                (3.1) 

 

Accuracy is the ratio of sum of all the TP as well as TN 

values determined values over sum of all the TP, TN, FN and 

FP values. Mathematically, accuracy could be written as in 

equation 3.2 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑃 +  𝑇𝑁)/(𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 + 𝐹𝑁    (3.2) 

 

Precision is the ratio of sum of all the TP over sum of all the 

TP and FP values. Mathematically, precision could be written 

as in equation 3.3  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃/(𝑇𝑃 +  𝐹𝑃)                          (3.3) 

 

Recall is the ratio of sum of all the TP values over sum of all 

the TP and FN values. Mathematically, recall could be 

written as in equation 3.4 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃/(𝑇𝑃 +  𝐹𝑁)        (3.4) 

 

F1-score is the ratio of product of precision and recall over 

sum of precision and recall values. Mathematically, recall 

could be written as in equation 3.5 

 

𝐹1 = 2 ∗  (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙  
(3.5) 

 

 

3.7 Hardware and Computational Resources 

3.7.1 Hardware Setup 
GPU: NVIDIA Tesla T4 (15 GB RAM) on Kaggle. Training 

Time: 5-10 hours per experiment. Libraries Used: PyTorch, 

Hugging Face Transformers. Dell Inspiron 15 5518 Intel Core 

i5 11320H 16GB 512GB SSD 

 

3.7.2 Handling Memory Constraints 

To prevent memory overflow issues: 

Mixed Precision Training (torch.cuda.amp) was utilized. 

Gradient Accumulation was used to simulate larger batch 

sizes. GPU Memory Clearing (torch.cuda.empty_cache()) 

was performed between epochs. 

 

4. Results and Discussion 
 

Here we discuss and analyze the outcomes of stuttering 

detection experiments conducted using transformer-based 

models on Sep28k, FluencyBank, and KSoF datasets. It 

compares performance across different input durations, 

dataset combinations, and validation strategies. Key findings 

are discussed to highlight trends, strengths, and limitations, 

offering insights into model behavior and the impact of data 

configurations on classification accuracy. 

 
Table 4.1 Accuracy Obtained for Training set- Sep28k Test set- Sep28k for 

different audio duration 

Dataset Audio Duration (sec) Accuracy (%) 

Sep28k 3 63.91 

Sep28k 5 64.26 

Sep28k 7 64.49 

Sep28k 9 62.49 

Sep28k 11 62.72 

 

 
Figure 4.1 Training, Validation- sep28k, Test Set- sep28k 

 

Observation: The table presents a comparative evaluation of 

model performance across varying audio durations, using the 

Sep28k dataset. The training set remains constant in each 

configuration, while 10% of the data is reserved for testing 

and 9% for validation. Audio durations were varied from 3 

seconds to 11 seconds in steps of 2 seconds to observe the 

effect on classification accuracy. The highest accuracy 

(64.49%) was achieved when using 7-second audio segments, 

suggesting this duration may provide an optimal balance 

between contextual richness and noise. A slight performance 



International Journal of Computer Sciences and Engineering                                                                            Vol.13(7), Jul. 2025 

© 2025, IJCSE All Rights Reserved                                                                                                                                             55 

dip was observed for longer segments (9 and 11 seconds), 

with accuracies dropping to 62.49% and 62.72%, 

respectively. Using only 3-second clips achieved a 

competitive accuracy of 63.91%, indicating that even short 

segments contain sufficient stuttering cues for reliable 

detection. These results highlight that moderate-length audio 

segments (5–7 seconds) are most effective for stuttering 

classification tasks using the Sep28k dataset (Table 

4.1)(Figure 4.1). 

 
Table 4.2 Accuracy Obtained for Training set- Sep28k Test set- Ksof for 

different audio duration 

Dataset Audio Duration (sec) Accuracy (%) 

Sep28k + Ksof 3 45.16 

Sep28k + Ksof 5 47.74 

Sep28k + Ksof 7 48.07 

Sep28k + Ksof 9 47.43 

Sep28k + Ksof 11 45.47 

 

 
Figure 4.2 Training, Validation- sep28k, Test Set- ksof 

 

Observation: The model achieved the highest accuracy of 

48.07% with 7-second audio segments. 

A steady improvement in accuracy is observed from 3 

seconds (45.16%) to 7 seconds. After 7 seconds, accuracy 

slightly drops at 9 seconds (47.43%) and 11 seconds 

(45.47%). Moderate-length audio (5–7 seconds) provides 

better context for the model, enhancing prediction capability. 

Longer segments (9–11 seconds) may introduce background 

noise or unrelated information, slightly degrading 

performance. Incorporating KSoF introduces valuable speech 

variability (e.g., modified speech due to therapy). However, it 

also brings additional complexity that may require refined 

preprocessing or model adaptation to prevent performance 

drop (Table 4.2)(Figure 4.2). 

 
Table 4.3 Accuracy Obtained for Training set- Sep28k Test set- 

FluencyBank for different audio duration 

Dataset Audio Duration (sec) Accuracy (%) 

Sep28k + FluencyBank 3 63.61 

Sep28k + FluencyBank 5 62.26 

Sep28k + FluencyBank 7 62.26 

Sep28k + FluencyBank 9 61.54 

Sep28k + FluencyBank 11 61.59 

 
Figure 4.3 Training, Validation- sep28k, Test Set- fluencybank 

 

Observation: The highest accuracy of 63.61% was achieved 

using 3-second audio segments. A slight decline in 

performance was observed with increasing audio durations. 

Shorter audio segments (3 seconds) appear optimal for 

capturing dysfluency-specific features. Longer segments may 

introduce irrelevant or redundant information, which can 

dilute the model’s ability to focus on stuttering cues. Segment 

duration is a crucial hyperparameter when combining 

multiple datasets with varying speech characteristics. The 

results suggest that when using Sep28k + FluencyBank, 

shorter inputs are more effective for stuttering detection tasks. 

Optimal accuracy is achieved with 3-second clips, reinforcing 

prior observations that concise segments enhance detection 

performance when using diverse, naturalistic datasets(Table 

4.3)(Figure 4.3). 

 

Sep28k consistently achieves the highest accuracy across 

time durations (peaking at 0.6449 for 7 seconds).Sep28k + 

FluencyBank performs slightly lower but remains close to 

Sep28k (best at 0.6493 for 3 seconds).Sep28k + Ksof 

performs significantly lower than the other two combinations, 

with accuracy ranging between 0.45–0.48.3-second clips 

provide the highest accuracy, with 7-second clips performing 

well in some cases. Using FluencyBank for testing results in 

slightly lower accuracy, likely due to dataset variability. 

Shorter clips (3s-5s) consistently outperform longer clips (9s-

11s), suggesting clearer speech segmentation. A 10% test and 

9% validation split with Sep28k alone yields better 

performance compared to setups using FluencyBank for 

testing.Sep28k (alone) gives the most consistent and high-

performing results across durations.Sep28k + FluencyBank is 

competitive, especially at shorter durations (3s).Sep28k + 

Ksof underperforms, likely due to data quality or 

compatibility issues. Short to medium clip lengths (3–7s) 

appear optimal for accuracy, with longer durations offering 

no added benefit and possibly introducing noise. This chapter 

presented the results and discussion based on various 

experimental setups. The analysis highlights the impact of 

dataset variations, clip duration, and batch size on the model's 

performance. 
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5. Conclusion and Future Work 
 

This study explores the application of ML and DL techniques 

for automatic stuttering detection. Various datasets, including 

Sep28k and FluencyBank, were utilized to evaluate the 

impact of different test-validation splits, clip durations, and 

dataset combinations on classification accuracy. The results 

indicate several key findings: Shorter clips (3s-5s) 

consistently outperform longer clips (9s-11s), suggesting that 

shorter segments provide clearer speech patterns for 

classification. Using FluencyBank for testing resulted in 

slightly lower accuracy, likely due to dataset variability and 

differences in speech recording environments. A 10% test and 

9% validation split with Sep28k alone yielded better 

performance compared to setups using FluencyBank for 

testing. The highest accuracy (65.13%) was achieved using 

Sep28k with 3-second clips, while longer clips tended to 

reduce classification accuracy. Hybrid dataset setups (Sep28k 

+ FluencyBank) showed competitive results, but their 

performance varied based on the test-validation approach. 

Overall, the study demonstrates that dataset selection, clip 

duration, and test-validation strategies significantly impact 

the accuracy of stuttering detection models. These insights 

are valuable for optimizing ML models for real-world speech 

disorder applications. 

 

Future research should focus on: Developing Bigger and 

More Varies Datasets: To enhance generalization across 

various speakers and languages. Improving Domain 

Adaptation: Utilizing transfer learning and semi-supervised 

learning to leverage existing ASR models. Integrating 

Multimodal Approaches: Combining speech, facial 

expressions, and textual cues for enhanced classification. 

Optimizing Real-Time Deployment: Developing lightweight 

models for mobile applications and speech therapy tools. 

While the study achieved promising results, several 

challenges remain, paving the way for future research 

directions: Data Augmentation: Implementing advanced 

augmentation techniques such as time-stretching, pitch 

shifting, and noise injection could enhance model robustness 

and improve accuracy. Multimodal Approaches: Future work 

could integrate audio, video, and text-based features to 

develop a more comprehensive stuttering detection system. 

Real-Time Deployment: Optimizing models for low-latency 

inference could enable real-time applications in speech 

therapy and assistive technology. Transfer Learning and 

Pretrained Models: Leveraging large-scale self-supervised 

speech models such as Whisper and Wav2Vec2 could 

improve generalization across diverse datasets. Handling 

Dataset Variability: More research is needed to improve 

cross-dataset generalization and reduce the performance gap 

when testing on datasets like FluencyBank. Ethical 

Considerations and Bias Reduction: Ensuring that models are 

trained on diverse datasets to minimize bias and improve 

inclusivity for different speech patterns and demographics. 

By addressing these challenges, future studies can develop 

more robust, efficient, and scalable solutions for automatic 

stuttering detection, contributing to the advancement of AI-

driven speech disorder research and applications. 
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