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Abstract: Coral reefs, home to over 25% of marine biodiversity, have declined by over 50% in the last 30 years due to climate
change and pollution. They provide habitat and shelter for over 4,000 species of fish and protect coastal communities by
reducing wave energy by 97%. Traditional monitoring methods like diver-led surveys, satellite imaging, and pre-programmed
AUVs struggle with efficiency and adaptability in turbulent conditions, often resulting in incomplete data collection. This
project evaluates whether utilizing computational fluid dynamics-guided (CFD) reinforcement learning agents (RL) can enhance
AUV navigation in such environments, focusing on the effectiveness of incorporating flow pressure sensor data for improved
performance. A high-fidelity CFD environment simulated realistic turbulent currents, reef obstacles, and dynamic conditions.
With the Soft Actor Critic (SAC) algorithm, two RL agents were trained: one equipped with standard position-velocity feedback
and another augmented with pressure-based hydrodynamic force feedback. Performance metrics included episode length,
cumulative reward, and final position/heading error, with statistical tests assessing significance. Results indicated that while both
agents successfully navigated turbulence, the pressure-augmented agent demonstrated superior performance, consistently
achieving longer episode durations and higher rewards, indicative of faster convergence and increased stability. In rigorous tests,
this agent significantly outperformed the baseline, maintaining near-zero steady-state position errors (~0.02+0.01 m compared to
0.20+0.05 m for the baseline, p<0.05) and smaller heading deviations. Integrating RL with CFD facilitated effective AUV
navigation in complex flows, with pressure feedback enhancing control, precision, and robustness. This approach could lead to
safer, more efficient AUV operations in challenging marine environments.

Keywords: Autonomous Underwater Vehicle, Computational Fluid Dynamics, Reinforcement Learning, Coral Reef Monitoring,
Soft Actor-Critic, Ocean Robotics, Pressure Sensors, Environmental Monitoring

Graphical Abstract- 1. Introduction
~—  Elow Acti The increasing global reliance on offshore infrastructure,
it particularly for renewable energy sources such as wind
Y/ turbines and wave energy harvesters, necessitates frequent

and precise inspections to ensure operational safety and

S - Reduced longevity [1]. The harsh and unpredictable ocean
Hydrodyna:y Reinforcement Tracking Error environment poses substantial challenges for these
Force Learning inspections, making autonomous robotic systems a critical
solution for cost-effective, safe, and efficient monitoring [1].

, CFD‘ |:| While Remotely Operated Vehicles (ROVs) are commonly
Simulation used for detailed structural inspections, they require
Improved continuous manual control, making them resource-intensive

Reduced Stability and operationally complex. Autonomous Underwater

Tracking ) s Vehicles (AUVs) offer a promising alternative, but their
deployment is currently limited to simple missions such as

(c

pipeline tracking and broad area surveys [1]. Their inability to
autonomously navigate in turbulent, unpredictable flows near
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complex offshore structures limits their application in
detailed inspections and environmental monitoring.

Under Threat: The World’s
Reef-Building Corals

' 3% Critically endangered
S Fe >C
® 21% Near threatened
33% Least concern
@® 16% Data deficient

statista%a
Figure 1. Pie chart of Coral Reef Threats

This challenge is especially critical in the context of coral reef
conservation, as over 50% of coral reefs have been lost in the
past 30 years due to climate change, ocean acidification,
pollution, and destructive human activities. Coral reefs
provide essential ecological services, including coastal
protection, carbon sequestration, and biodiversity support,
making their protection a global priority. Accurate and
continuous reef surveillance is crucial for detecting early
signs of degradation and implementing conservation
interventions. However, traditional monitoring methods—
diver-led surveys, satellite imaging, and pre-programmed
AUVs—are insufficient due to human limitations, low spatial
resolution, and poor adaptability in real-time turbulent
environments. Therefore, an advanced, adaptive AUV control
system capable of precise and stable navigation in dynamic
underwater conditions is essential.

Most conventional AUV control strategies rely on optimal
control methods, such as Proportional-Integral-Derivative
(PID) controllers and Model Predictive Control (MPC) [2].

PID Controller

Proportional

| Output
: Integration | Process —1—>
Differentiation
Feedback

Figure 2. Conceptual Overview of the Proportional-Integral-Derivative
(PID) controllers

While effective in structured environments, these approaches
depend on simplified system dynamics and struggle when
faced with highly nonlinear, unsteady turbulent flows [2].
This limitation is particularly problematic when AUVs must
navigate near coral reefs, where fine-tuned adjustments to
unsteady hydrodynamic forces are crucial to avoid collisions
and ensure accurate data collection. These shortcomings
highlight the need for an intelligent, self-adaptive control
framework capable of adjusting in real-time to complex
environmental forces.
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A promising alternative is Deep Reinforcement Learning
(RL), which has demonstrated success in aerodynamic
control, active drag reduction, shape optimization, and fluid
flow regulation [3].

Reward 4\
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Figure 3. Deep Reinforcement Learning (RL) scheme

While RL has been applied to multi-rotor drones, Mars
landers, and multi-agent robotic coordination [3], its potential
in underwater vehicle navigation within turbulent currents
remains underexplored [3]. Recent advances suggest that RL -
based AUV controllers could outperform traditional control
strategies by learning directly from environmental
interactions without requiring pre-defined mathematical
models of hydrodynamic forces.

Computational Fluid Dynamics (CFD) is a numerical method
used to simulate fluid flow, turbulence, and interactions with
solid structures by solving the Navier-Stokes equations. It
allows for high-fidelity modeling of complex hydrodynamic
environments, such as turbulent ocean currents around coral
reefs. CFD is widely used in aerospace, automotive, and
marine engineering to optimize designs and predict real-
world performance without requiring expensive physical
experiments.

In this study, CFD is employed to simulate realistic oceanic
turbulence and the hydrodynamic forces acting on an
Autonomous Underwater Vehicle (AUV). The generated flow
data is used to train a reinforcement learning (RL) agent,
enabling it to adaptively navigate in dynamic currents. By
leveraging CFD, the RL model can learn from high-fidelity
fluid simulations rather than simplistic mathematical
approximations, improving its ability to handle unsteady
forces and optimize trajectory planning in real-time reef
monitoring missions.

1.1 Objective of the Study

This research proposes an Al-enhanced, Computational Fluid

Dynamics (CFD)-guided Reinforcement Learning approach

to enable adaptive, real-time AUV navigation in turbulent

underwater currents for coral reef surveillance. Specifically,
this study:

1. Develops and trains two RL-based AUV control agents
within a high-fidelity CFD-simulated turbulent marine
environment:

e Baseline RL Agent: Trained using position-velocity
feedback alone.

42



International Journal of Computer Sciences and Engineering

e Enhanced RL Agent: Incorporates hydrodynamic force
estimates from real-time pressure sensor data to
improve stability and maneuverability.

2. Implements and evaluates the Soft Actor-Critic (SAC) RL
algorithm to determine its effectiveness in optimizing
AUV motion control under variable turbulent flow
conditions.

3. Conducts extensive performance comparisons between the
baseline and enhanced RL agents, evaluating key metrics
such as trajectory tracking accuracy, stability,
convergence speed, and robustness to turbulence-induced
perturbations.

4. Validates the hypothesis that pressure-based sensor
feedback enhances AUV control precision, reducing
navigation errors and enabling safer, more effective
autonomous reef surveillance.

By integrating RL-based decision-making with real-time
hydrodynamic force estimation, this research contributes to
the fields of:

e Autonomous Marine Robotics — Advancing the next
generation of self-learning underwater vehicles capable of
adaptive navigation in dynamic oceanic environments.

e Environmental Conservation — Enabling high-accuracy,
automated coral reef surveillance to inform conservation
efforts and detect degradation trends at an unprecedented
scale.

o Fluid Mechanics and Al Integration — Demonstrating how
CFD-enhanced RL models can outperform conventional
AUV controllers, setting the stage for future Al-driven
fluid dynamic optimizations.

This research represents a significant advancement in Al-
powered marine autonomy, with direct applications in deep-
sea exploration, offshore infrastructure inspection, and
ecological monitoring. The ability to deploy robust, self-
adaptive AUVs for long-term, autonomous missions will
transform the way we monitor and protect the world’s oceans.

1.2 Organization

This article is organized into the following sections. Section 1
contains the introduction, background, problem statement,
and objectives of the study. Section 2 presents the related
work on reinforcement learning, autonomous underwater
vehicle (AUV) navigation, and computational fluid dynamics
(CFD) applications. Section 3 details the theoretical
framework and calculations, including the modeling
assumptions, governing equations, and control problem
formulation. Section 4 outlines the architecture of the
proposed system and the essential steps of the Al-enhanced
control framework. Section 5 explains the complete
methodology, including the CFD environment, reinforcement
learning agents, and evaluation metrics, with a flow chart.
Section 6 describes the experimental results and provides an
in-depth discussion of the findings. Section 7 summarizes
recommendations  for  improving AUV  navigation
performance and broader implications for marine robotics.
Finally, Section 8 concludes the research work and highlights
future directions for expanding this approach into real-world
deployments.
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2. Related Work

Reinforcement learning (RL) has gained significant attention
in marine robotics for its ability to handle dynamic and
uncertain environments. Woo et al. [1] developed a DRL-
based controller for unmanned surface vehicles,
demonstrating robust tracking performance under challenging
conditions. Similarly, Zheng et al. [2] applied the soft actor-
critic algorithm for path following in the presence of wave
disturbances, highlighting the potential of RL algorithms in
maritime navigation.

In addition, the integration of artificial intelligence with
physics-based modeling has shown promising results. Sharma
and Gupta [3] and Kumar et al. [4], published in IJCSE,
demonstrated how physics-informed Al approaches could
improve control accuracy in complex engineering systems.
Andersson et al. [5] further illustrated the value of CFD-
guided RL for aerodynamic flow control, indicating similar
opportunities in underwater applications. Recent work by
Mehta et al. [6], Arora et al. [7], and Singh et al. [8] (IJCSE)
has advanced underwater sensing, robotic autonomy, and
hybrid Al-control methods, providing a foundation for further
innovation.

Additional studies by Park et al. [17], Liao et al. [18], and
Thomas et al. [19] have explored the integration of multi-
sensor fusion and CFD modeling with machine learning,
significantly improving prediction accuracy and control
stability in robotic systems. Despite these advances, there
remains a lack of research focused on pressure-feedback-
based RL agents for autonomous underwater vehicles in
highly turbulent currents. This study addresses this gap by
combining CFD-guided RL with real-time hydrodynamic
force estimation to achieve improved navigation precision
and stability in complex ocean environments.

3. Theory

3.1 Modeling Assumptions and State Definition

The vehicle is modeled in planar motion with three degrees of
freedom (3-DOF): surge u, sway v, and yaw rate r. The pose
is (x, ¥, w) in an inertial frame, and the body-fixed velocity
vector is:

s=[xyyuvr]’ €)
Control inputs are the generalized forces:

=T yN_z],

bounded to represent the available thrust and moment.

3.2 3-DOF Rigid-Body and Hydrodynamic Model

Under standard small-angle and low-speed marine robotics
assumptions, the body dynamics are:
Mv+CV)v+DV)v=t+1_env 2)
where M is the rigid-body plus added-mass matrix, C(v) is the
Coriolis/centripetal matrix, D(v) collects linear and quadratic
damping, and t_env are unsteady loads due to turbulence and
waves.

The dominant damping forces/moments are modeled as:
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X D=X uu+ X uuluu

Y D=Y vv+Y_wlv

N D=N_rr+N_rrrr ?3)
The kinematics relate body velocities to earth-fixed rates:

X =1ucosy — V siny

Yy =1usiny + v cosy

y=r 4)

3.3 CFD Governing Equations and Turbulence Closure
The environmental flow and fluid—vehicle interaction are
resolved by incompressible Navier—Stokes:

V.u=0

ou/ot + (u-Vyu=—(1/p)Vp + vV2u + f (5)
with PANS turbulence closure to capture unsteady turbulent
structures at reduced cost relative to LES.

3.4 Pressure-Based Force Reconstruction (Sensor Model)
Local pressure measurements p; on N_s surface patches (area
AS;, outward normal n;, position vector r;) provide online
estimates of hydrodynamic loads:

F_p == E_i (pi n; ASi)

N_p=—Z_i[r* (pini AS)] (6)
These estimates augment the state used by the controller and
are also logged for analysis.

3.5 RL Problem Formulation (MDP)

The station-keeping/navigating task is cast as a Markov
Decision Process with observation o_t, action a_t, and reward
rt

ot=[exeye yuvrF pNp]T @)
Actions are normalized thrust/moment commands:
at=[acayar]Te[-1,1]

T = diag(t"max, T_y"max, N_z"max) a_t (8)
Reward design:
rt=—w_pV(e+e_y?)—w_yle_y|—w_ula_t|P—w_jla_t
—a_ {t-1}|?+r_goal 1 insidee +r_alive €)]

3.6 Soft Actor—Critic (SAC) Obijective

SAC optimizes a maximum-entropy objective:

J@)=E[Z tyM(_t+aHm(lo t))] (10)
with twin Q-critics, a stochastic policy, and target entropy.

3.7 Numerical Integration and Training Protocol
Dynamics (2)—(4) are integrated with a fixed step At = 0.02 s.
Episodes randomize initial (X, y, y) and current
direction/intensity. Termination occurs on goal capture,
boundary breach, or time limit.

3.8 Derived Metrics and Calculations
To quantify performance, we compute:
RMS xy = sqrt( (I/N_w) Z_k (e,k* +e_y,k?)) (11)
Additional metrics include heading error, trajectory deviation,
RMS actuation effort, jerk, and oscillation frequency via FFT.

4. Experimental Method

4.1 Maneuvering task

The primary objective of the study was to enable an
autonomous underwater vehicle (AUV) to maintain station
and navigate effectively in a turbulent oceanic environment.

© 2025, 1JCSE All Rights Reserved
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This required the AUV to compensate for unsteady
hydrodynamic forces while accurately reaching and holding a
designated position and heading.

To simplify computational modeling, only three degrees of
freedom were considered — surge (forward/backward
motion), sway (sideways motion), and yaw (rotation about the
vertical axis). This reduced the complexity of computational
fluid dynamics (CFD) simulations by allowing them to be
conducted in a two-dimensional (2D) flow domain rather than
a full 3D environment.

At the start of each episode, the AUV was initialized with a

random heading and position within a 1x1 m domain. The

vehicle was tasked with reaching the origin while aligning to

a randomly generated heading, contending with turbulent

ocean currents that imposed unsteady forces. An episode

terminated when:

e The AUV reached the goal

o A predefined time step limit was exceeded

o The vehicle drifted beyond a 2x2 m boundary around the
target

The imposed flow conditions included:

o Current speeds ranging between 0.375 m/s and 0.625 m/s

o Free-stream turbulence of 10% intensity

¢ Integral length scale of turbulence set to 0.1 m, resulting in
eddies similar in size to the vehicle. This increased
unsteady loading, making station-keeping highly
challenging

4.2 AUV Model and Hydrodynamic Approximation
The AUV model was based on the BlueROV 2 Heavy, a
commercially available remotely operated vehicle (ROV). To
ensure computational feasibility while retaining accuracy, a
bluff-body representation of the AUV was used, maintaining
the original vehicle’s:

e Mass and inertia properties

e Hydrodynamic response characteristics

e  Overall dimensions

Table 1. AUV Model Parameters and Values Based on BlueROV 2 Heavy

Parameter Value Unit
Length (L) 0.4570 m
Beam (B) 0.3380 m
Mass (m) 11.4000 kg
Yaw moment of inertia (1zz) 0.1600 kg-m2

Quadratic drag coefficient (Xuu) -40.1778 kg/m

Quadratic sideforce coefficient (Yvv) -105.4842 kg/m

Quadratic yaw moment coefficient (Nrr) | -1.5500 kg-m?/rad?
Linear drag coefficient (Xu) -8.9063 kg-s/m2
Linear sideforce coefficient (Yv) -30.2914 kg-s/m2

Linear yaw moment coefficient (Nr) -0.0700 | kg-m?s/rad

To simplify actuation modeling, the thrusters and propellers
were not directly modeled. Instead, the required thrust and
torque for achieving the desired motion were applied as
generalized forces, bypassing thrust allocation computations.
In both the CFD-based and simplified environments:
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o A fixed time step of 0.02 s was maintained for numerical
integration

e Non-dimensional control inputs were constrained between
[-1,1], scaled to a maximum thrust of 150 N and a yaw
moment of 20 Nm

4.3 Reinforcement Learning

The Soft Actor-Critic (SAC) RL algorithm was selected for

training an agent to control the AUV’s movements. The state

vector provided to the RL agent included:

e Position and heading errors relative to the target

¢ Velocity components (surge, sway, and yaw rates)

e Force estimates derived from local pressure measurements
on the AUV’s surface (for pressure-informed agent)

4.4 Reward Function Design
The reward function was structured to:

¢ Minimize position error, penalizing deviations from the
target

e Encourage correct heading alignment, applying additional
penalties for errors exceeding 90°

e Promote smooth control, using a penalty on excessive
actuator effort (computed as the RMS of recent actions)

e Terminate episodes prematurely if the vehicle exited the
defined domain, applying a large negative reward

2 4 2
o Ee
—5y =T
T = £

Encourage position error minimisation
180° |
8(70.1 [ |)
+ o
—Ul(l&ﬂ“— p 180 }]
—e{ |

Encourage heading error minimisation and discourage converging to = away

ley| < 5

otherwise

+e*UﬁARMs

Encourage small RMS of the most recent N actions

—100
+
L

Out-of-bounds penalty

if out of bounds,

otherwise

)
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Figure 6. lllustration of the reward function components

4.5 Computational Fluid Dynamics (CFD) Simulations
High-fidelity CFD simulations were conducted using
ReFRESCO, a specialized CFD solver for marine
hydrodynamics. The CFD environment was designed with:
e Two computational grids:
o An inner moving domain enclosing the AUV
o A fixed outer domain to model background currents
o Sliding mesh interface to accommodate arbitrary current
directions

© 2025, 1JCSE All Rights Reserved
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e Synthetic inflow turbulence generator (ITG) to introduce
realistic turbulent structures

¢ 100,000 computational cells, with y+ < 1 to resolve
boundary layers

Figure 7. Overview of the CFD set up of the AUV simulation. Pink sphere
denotes the origin, which also marks the objective.

The Partially Averaged Navier-Stokes (PANS) model was
implemented for turbulence modeling, allowing accurate
unsteady flow predictions at a reduced computational cost
compared to full Large Eddy Simulations (LES).

To validate the efficacy of the reinforcement learning (RL)-
trained controllers and assess their ability to handle complex
turbulent flows, a comprehensive evaluation phase was
conducted. The evaluation focused on the ability of each
trained agent to maintain stability, navigate to the target, and
compensate for unsteady flow disturbances. The RL
controllers were compared against a baseline classical
proportional-integral-derivative (PID) controller and an RL
agent trained in a simplified, non-CFD environment.

4.6 Evaluation

The test conditions were deliberately designed to be
challenging, ensuring the robustness of the trained
controllers:

e Initial Position and Heading:

o The AUV was placed at (-0.5, -0.5) m, the furthest
extent of the simulation domain.

o The initial heading was set to 45°, creating a non-trivial
correction scenario.

e Environmental Conditions:

o The imposed mean current velocity was 0.5 mis,
generating a strong surge force.

o The AUV was required to realign itself to a final
heading of 90°, introducing significant lateral force
fluctuations due to the broadside exposure to flow.

o The free-stream turbulence intensity was maintained at
10%, introducing randomized external disturbances.

This evaluation design tested each controller’s ability to:
1. Counteract flow-induced perturbations
navigating toward a fixed target.
2. Dampen oscillations caused by vortex shedding and
turbulent wake interactions.
3. Ensure steady-state precision, minimizing long-term
error accumulation.
Four different agents were evaluated:

while
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1. RL agent trained in CFD with pressure feedback (RL-
CFD-P)

2. RL agent trained in CFD without pressure feedback (RL-
CFD)

3. RL agent trained in a simplified non-CFD model (RL-
Simplified)

4. Traditional PID controller tuned for the non-turbulent
environment (PID)

4.7 Performance Metrics
To quantitatively assess controller effectiveness, the
following key performance indicators (KPIs) were used:
4.7.1  Positional Accuracy
The primary objective was for the AUV to maintain minimal
displacement error while reaching the desired final state. The
following metrics were analyzed:
¢ Final steady-state position error (RMS error in x and y
coordinates)
o Computed over the last 500 time steps of each test
episode.
o Lower RMS error
convergence.
o Trajectory Deviation
o Root-mean-square (RMS) deviation of the AUV’s
trajectory compared to the ideal shortest-path trajectory.
o Indicates how efficiently the AUV reached the target
without unnecessary detours.

indicates superior trajectory

4.7.2  Heading Stability and Control Precision
Precise heading control was crucial in maintaining desired
orientation under turbulent conditions. The following stability
indicators were examined:
o Final steady-state heading error
o RMS error of y (yaw angle deviation from 90°) over the
last 500 time steps.
o A lower value suggests improved directional control.
e Peak heading overshoot
o Maximum absolute deviation from the target heading
during the test.
o Lower overshoot
control.
¢ Heading oscillation frequency
o Computed via Fourier spectral analysis to quantify
oscillatory behavior.
o A lower dominant oscillation frequency suggests better
damping of turbulence-induced fluctuations.

indicates smoother, more stable

4.7.3  Control Efficiency
Minimizing control effort was essential to reduce power
consumption and actuator wear. The following efficiency
parameters were evaluated:
o Root-mean-square (RMS) actuator effort
o Measures average thruster force output over the
episode.
o Lower RMS
maneuvering.
e Total actuation time
o Duration in which thruster forces exceeded 10% of the
maximum allowable force.

thrust indicates more efficient

© 2025, 1JCSE All Rights Reserved
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o A shorter actuation duration suggests better energy
efficiency.
e Throttle Smoothness (Jerk Minimization)
o Evaluates rapid fluctuations in thrust commands (first
derivative of control inputs).
o Lower jerk values indicate smoother, less aggressive
control actions.

4.7.4  Robustness to Turbulence and Uncertain Conditions
To assess adaptability, controllers were tested under varying
flow intensities:
o Performance under 25% increased turbulence intensity
o Controllers were re-evaluated with a 12.5% free-stream
turbulence level to analyze resilience to stronger vortex
shedding.
o A well-trained RL agent should maintain similar error
metrics despite increased turbulence.
o Performance under asymmetric current fields
o A non-uniform current profile was introduced (higher
shear at one side of the domain).
o Successful controllers should dynamically adapt to
uneven forces.

5. Results and Discussion

5.1 Training Preformance

To evaluate the effectiveness of reinforcement learning (RL)
in controlling an autonomous underwater vehicle (AUV) in
turbulent flow, multiple RL agents were trained using
computational fluid dynamics (CFD) simulations. The
training process aimed to optimize the agent’s ability to
maintain stability, navigate to a specified position, and correct
for disturbances caused by turbulence.

The training history is depicted in Figure 8, which presents:

e Episode duration: The number of steps an agent survived
before termination.

e Cumulative reward per episode: A metric indicating
learning efficiency and control performance.

o Failure rate over time: A moving average of failed episodes
to assess learning stability.

Initially, the RL agents without pressure feedback struggled
to reach the desired objective, showing inconsistent training
performance and high failure rates. In contrast, RL agents
augmented with hydrodynamic pressure feedback rapidly
learned to stabilize within the flow, achieving higher total
rewards and longer episode durations.

The results indicate that pressure-based feedback significantly
improves RL training convergence. The agents utilizing
pressure sensors learned more quickly, required fewer
episodes to stabilize, and exhibited lower failure rates,
confirming the value of real-time hydrodynamic force
estimation in guiding control decisions.
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Figure 9. Time history of vehicle pose in the three considered degrees of
freedom during the evaluation run.
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Figure 10. RMS errors in the three degrees of freedom attained during the
evaluation run. These were computed during the final 500-time steps once all
the agents have had the time to reach the objective.

5.2 Evaluation and Benchmarking

To validate the effectiveness of the trained RL controllers, a
controlled test scenario was implemented. The agents were
required to navigate from an initial offset position (-0.5, -0.5)

47



International Journal of Computer Sciences and Engineering

m with a heading of 45° to a final heading of 90° in the
presence of a mean current of 0.5 m/s with free-stream
turbulence intensity of 10%.

Four different control strategies were evaluated:
1. RL agent trained in CFD with pressure feedback (RL-

CFD-P)

2. RL agent trained in CFD without pressure feedback (RL-
CFD)

3. RL agent trained in a simplified non-CFD model (RL-
Simplified)

4. Traditional PID controller tuned for the non-turbulent
environment (PID)

The performance of each controller was assessed using key

performance indicators (KPIs), including positional accuracy,

heading stability, control effort, and robustness under

turbulent conditions.

5.3 Key Performance Indicators (KPIs) Analysis

5.3.1  Positional Accuracy

A primary measure of success was the ability of the AUV to
reach and maintain the desired target position with minimal
error. Table 2 summarizes the final root-mean-square (RMS)
position error, trajectory deviation, and steady-state accuracy.

Table 2. Final root-mean-square (RMS) position error, trajectory deviation,
and steady-state accuracy.

Vol.13(7), Jul. 2025

Table 4. Control Efficiency and Actuation Effort table.

Control RMS Actuator Actuation Jerk (N/s)
Strategy Effort (N) Time (%)
RL-CFD-P 125+2.1 18.0+35 0.9+0.2
RL-CFD 242 +5.3 325+4.2 25+£0.6
RL-Simplified 18.8£3.8 27.3+49 18+04
PID 30.1+6.2 40.1+5.3 3.2+0.7

The RL-CFD-P agent had the lowest actuator effort,
indicating energy-efficient and smooth control.
5.3.4  Robustness to Turbulence and Uncertain Conditions
To assess adaptability, agents were tested under:

1. Increased turbulence intensity (12.5%)

2. Asymmetric current profiles
Table 5 compares the performance of each controller under
high turbulence conditions, demonstrating the superior
robustness of the RL-CFD-P agent.

Table 5. Performance of each controller under high turbulence conditions,
demonstrating the superior robustness of the RL-CFD-P agent.

Control Final Heading Peak Oscillation
Strategy Error (°) Overshoot (°) | Frequency (Hz)
RL-CFD-P 0.3+£0.2 1.0+05 0.05+0.01
RL-CFD 25+1.1 58+15 0.15+0.03
RL- 58%15 102+2.1 0.22 £0.05
Simplified
PID 1.8+£0.9 74+18 0.18 £ 0.02

The RL-CFD-P agent consistently achieved the lowest final
RMS error and maintained a stable final position, confirming
that the pressure feedback significantly improved navigation
precision.

5.3.2  Heading Stability and Control Precision

Maintaining heading accuracy under turbulent disturbances is
crucial. Table 3 presents the steady-state heading error, peak
heading overshoot, and oscillation frequency.

Table 3. Steady-state heading error, peak heading overshoot, and oscillation

frequency.
Control Final RMS | Trajectory Deviation Steady-
Strategy Position (m) State
Error (m) Position
Error (m)
RL-CFD-P 0.02 £0.01 0.05 £ 0.02 0.01+£0.01
RL-CFD 0.20 + 0.05 0.18 +0.04 0.15 £ 0.05
RL-Simplified | 0.12 £ 0.06 0.22 +0.07 0.10 £ 0.05
PID 0.15+0.03 0.25+0.08 0.12+0.04

The CFD-trained RL agent with pressure feedback
demonstrated the most stable heading control, reducing peak
overshoot by over 80% compared to PID control.
5.3.3  Control Efficiency and Actuation Effort

© 2025, 1JCSE All Rights Reserved

Control Position Error Heading Actuation
Strategy (m) Error (°) Increase (%)
RL-CFD-P 0.05 +0.02 15+0.6 +5.2%
RL-CFD 0.32 £0.08 6.2+1.8 +20.5%
RL- 0.28 £0.07 10125 +18.3%
Simplified
PID 0.45 +0.09 8.9+23 +22.1%
Even in challenging turbulence, the RL-CFD-P agent

maintained high accuracy and efficiency.

5.4 Interpretation of Results

The results of this study demonstrate that reinforcement
learning (RL), when combined with computational fluid
dynamics (CFD), can significantly enhance the autonomous
navigation of underwater vehicles in highly turbulent
environments. The findings support the hypothesis that
augmenting an RL agent with pressure-based hydrodynamic
force estimation improves its ability to navigate and maintain
stability in complex flow conditions.

The primary insight gained from this research is that pressure

feedback significantly improves the stability and precision of

autonomous underwater vehicle (AUV) navigation in

dynamic currents. Compared to standard RL approaches that

rely solely on position-velocity feedback, the pressure-

augmented RL agent demonstrated superior performance in:

¢ Achieving steady-state stability with significantly reduced
oscillations.

o Faster convergence to optimal control strategies.

o Lower final position and heading errors, as evidenced by
statistical analysis.

The ability of the pressure-augmented agent to maintain
heading and resist drift aligns with previous research in RL-
based control strategies for maritime applications [6].
However, the results in this study go beyond existing work by
demonstrating that localized flow measurements provide
meaningful hydrodynamic insights that directly improve
control response.
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5.5 Unexpected Challenges and Solutions

During training, several unexpected issues arose:

e High variability in learning rates across different agent
instances: Some instances of the RL agent performed
significantly better than others, even when initialized with
the same hyperparameters. This variability is common in
RL due to the stochastic nature of artificial neural network
training. To mitigate this, additional training instances
were evaluated, and hyperparameter tuning was refined.

e Agent instability in extreme turbulence scenarios: Early in
training, agents frequently drifted off course or oscillated
excessively when turbulence levels were high. Introducing
adaptive reward scaling helped stabilize the training
process, allowing the agent to handle more extreme
conditions.

e Computational intensity of CFD simulations: The high
computational cost of running RL training inside a CFD
environment posed a major bottleneck. Although
necessary for high-fidelity learning, training required
significant resources. Future work will explore transfer
learning strategies to reduce the computational burden
while maintaining accuracy.

5.6 Advancement over Existing Solutions

Current AUV navigation methods primarily rely on:

e Pre-programmed trajectories that do not adapt to real-time
flow disturbances.

o Simplified optimal control algorithms that fail under
highly unsteady flow conditions.

e Limited use of onboard sensory feedback for real-time
course correction.

This study presents a significant improvement by enabling
adaptive real-time control that dynamically responds to
turbulent flow conditions using local pressure feedback. The
combination of RL and CFD allows for fine-tuned
maneuvering even in extreme environments, a capability that
has not been fully explored in prior studies.

Furthermore, the ability to navigate in complex flow regimes
has direct implications for real-world AUV applications,
including:

e Coral reef surveillance: an area where autonomous
navigation is critical due to the intricate and unpredictable
nature of reef structures.

o Infrastructure inspections: for offshore energy structures
where AUVSs must navigate in turbulent wake zones of
large platforms.

e Marine ecosystem monitoring: where RL-based AUVs
could autonomously track ocean currents and biological
activity in deep-sea environments.

6. Conclusion and Future Scope

The integration of reinforcement learning (RL) with
computational fluid dynamics (CFD) modeling has been
demonstrated as a highly effective approach for enhancing
autonomous underwater vehicle (AUV) navigation in
complex, turbulent environments. By combining CFD-based

© 2025, 1JCSE All Rights Reserved
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environmental modeling with real-time hydrodynamic force
estimation from pressure sensors, the proposed framework
enables agents to maintain stable trajectories, achieve higher
positional accuracy, and converge to optimal control
strategies more efficiently than conventional navigation
methods.

The study results show that CFD-trained RL agents
outperform traditional proportional-integral—derivative (PID)
controllers and baseline RL models when exposed to highly
unsteady flow conditions. Pressure-augmented RL agents, in
particular, demonstrate markedly improved robustness,
smoother actuation, and reduced oscillatory behavior, making
them well-suited for mission-critical applications such as
coral reef monitoring and offshore infrastructure inspection.
Beyond outperforming baseline models, this research
contributes a flexible methodology that can be extended to
other marine robotic systems. Future work will focus on
deploying the proposed approach in full-scale field trials,
refining sensor placement strategies, and extending the
framework to handle three-dimensional navigation and long-
duration missions. These advancements lay the foundation for
a new generation of AUVs capable of achieving
unprecedented levels of autonomy and environmental
adaptability.

While this study successfully demonstrated Al-driven

underwater navigation, future research will build upon these

findings to further enhance real-world applicability. Key
areas of focus include:

1. Optimizing Data Collection Sensors: Identifying the most
effective sensor configurations for onboard data
acquisition will be critical for real-world deployment.

2. Engineering a Physical Prototype: The next step involves
constructing an AUV equipped with optimized sensory
and control systems for field testing in real-world coral
reef environments.

3. Hybrid RL-Classical Control Strategies: Exploring hybrid
approaches where RL algorithms fine-tune the outputs of
classical control strategies could enhance robustness in
variable conditions.

4. Field Deployment for Coral Reef Monitoring: Ultimately,
this work will transition from simulation to practical
implementation, with AUVs autonomously navigating
coral reef ecosystems to provide continuous
environmental monitoring.

foundation for  Al-driven
environmental monitoring systems, with applications
extending far beyond coral reef surveillance. The
combination of advanced fluid dynamics modeling, machine
learning, and sensor-based feedback systems positions this
project as a pioneering effort in the field of autonomous
underwater robotics.

This research lays the
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