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Abstract: Coral reefs, home to over 25% of marine biodiversity, have declined by over 50% in the last 30 years due to climate 

change and pollution. They provide habitat and shelter for over 4,000 species of fish and protect coastal communities by 

reducing wave energy by 97%. Traditional monitoring methods like diver-led surveys, satellite imaging, and pre-programmed 

AUVs struggle with efficiency and adaptability in turbulent conditions, often resulting in incomplete data collection. This 

project evaluates whether utilizing computational fluid dynamics-guided (CFD) reinforcement learning agents (RL) can enhance 

AUV navigation in such environments, focusing on the effectiveness of incorporating flow pressure sensor data for improved 

performance. A high-fidelity CFD environment simulated realistic turbulent currents, reef obstacles, and dynamic conditions. 

With the Soft Actor Critic (SAC) algorithm, two RL agents were trained: one equipped with standard position-velocity feedback 

and another augmented with pressure-based hydrodynamic force feedback. Performance metrics included episode length, 

cumulative reward, and final position/heading error, with statistical tests assessing significance. Results indicated that while both 

agents successfully navigated turbulence, the pressure-augmented agent demonstrated superior performance, consistently 

achieving longer episode durations and higher rewards, indicative of faster convergence and increased stability. In rigorous tests, 

this agent significantly outperformed the baseline, maintaining near-zero steady-state position errors (~0.02±0.01 m compared to 

0.20±0.05 m for the baseline, p<0.05) and smaller heading deviations. Integrating RL with CFD facilitated effective AUV 

navigation in complex flows, with pressure feedback enhancing control, precision, and robustness. This approach could lead to 

safer, more efficient AUV operations in challenging marine environments. 

 

Keywords: Autonomous Underwater Vehicle, Computational Fluid Dynamics, Reinforcement Learning, Coral Reef Monitoring, 

Soft Actor-Critic, Ocean Robotics, Pressure Sensors, Environmental Monitoring
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1. Introduction  
 

The increasing global reliance on offshore infrastructure, 

particularly for renewable energy sources such as wind 

turbines and wave energy harvesters, necessitates frequent 

and precise inspections to ensure operational safety and 

longevity [1]. The harsh and unpredictable ocean 

environment poses substantial challenges for these 

inspections, making autonomous robotic systems a critical 

solution for cost-effective, safe, and efficient monitoring [1]. 

While Remotely Operated Vehicles (ROVs) are commonly 

used for detailed structural inspections, they require 

continuous manual control, making them resource-intensive 

and operationally complex. Autonomous Underwater 

Vehicles (AUVs) offer a promising alternative, but their 

deployment is currently limited to simple missions such as 

pipeline tracking and broad area surveys [1]. Their inability to 

autonomously navigate in turbulent, unpredictable flows near 
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complex offshore structures limits their application in 

detailed inspections and environmental monitoring. 

 

 
Figure 1. Pie chart of Coral Reef Threats 

 

This challenge is especially critical in the context of coral reef 

conservation, as over 50% of coral reefs have been lost in the 

past 30 years due to climate change, ocean acidification, 

pollution, and destructive human activities. Coral reefs 

provide essential ecological services, including coastal 

protection, carbon sequestration, and biodiversity support, 

making their protection a global priority. Accurate and 

continuous reef surveillance is crucial for detecting early 

signs of degradation and implementing conservation 

interventions. However, traditional monitoring methods—

diver-led surveys, satellite imaging, and pre-programmed 

AUVs—are insufficient due to human limitations, low spatial 

resolution, and poor adaptability in real-time turbulent 

environments. Therefore, an advanced, adaptive AUV control 

system capable of precise and stable navigation in dynamic 

underwater conditions is essential. 

 

Most conventional AUV control strategies rely on optimal 

control methods, such as Proportional-Integral-Derivative 

(PID) controllers and Model Predictive Control (MPC)  [2].  

 

 
Figure 2. Conceptual Overview of the Proportional-Integral-Derivative 

(PID) controllers  

 

While effective in structured environments, these approaches 

depend on simplified system dynamics and struggle when 

faced with highly nonlinear, unsteady turbulent flows [2]. 

This limitation is particularly problematic when AUVs must 

navigate near coral reefs, where fine-tuned adjustments to 

unsteady hydrodynamic forces are crucial to avoid collisions 

and ensure accurate data collection. These shortcomings 

highlight the need for an intelligent, self-adaptive control 

framework capable of adjusting in real-time to complex 

environmental forces. 

A promising alternative is Deep Reinforcement Learning 

(RL), which has demonstrated success in aerodynamic 

control, active drag reduction, shape optimization, and fluid 

flow regulation [3].  

 

 
Figure 3. Deep Reinforcement Learning (RL) scheme  

 

While RL has been applied to multi-rotor drones, Mars 

landers, and multi-agent robotic coordination [3], its potential 

in underwater vehicle navigation within turbulent currents 

remains underexplored [3]. Recent advances suggest that RL-

based AUV controllers could outperform traditional control 

strategies by learning directly from environmental 

interactions without requiring pre-defined mathematical 

models of hydrodynamic forces. 

 

Computational Fluid Dynamics (CFD) is a numerical method 

used to simulate fluid flow, turbulence, and interactions with 

solid structures by solving the Navier-Stokes equations. It 

allows for high-fidelity modeling of complex hydrodynamic 

environments, such as turbulent ocean currents around coral 

reefs. CFD is widely used in aerospace, automotive, and 

marine engineering to optimize designs and predict real-

world performance without requiring expensive physical 

experiments. 

 

In this study, CFD is employed to simulate realistic oceanic 

turbulence and the hydrodynamic forces acting on an 

Autonomous Underwater Vehicle (AUV). The generated flow 

data is used to train a reinforcement learning (RL) agent, 

enabling it to adaptively navigate in dynamic currents. By 

leveraging CFD, the RL model can learn from high-fidelity 

fluid simulations rather than simplistic mathematical 

approximations, improving its ability to handle unsteady 

forces and optimize trajectory planning in real-time reef 

monitoring missions. 

 

1.1 Objective of the Study 

This research proposes an AI-enhanced, Computational Fluid 

Dynamics (CFD)-guided Reinforcement Learning approach 

to enable adaptive, real-time AUV navigation in turbulent 

underwater currents for coral reef surveillance. Specifically, 

this study: 

1. Develops and trains two RL-based AUV control agents 

within a high-fidelity CFD-simulated turbulent marine 

environment: 

 Baseline RL Agent: Trained using position-velocity 

feedback alone. 
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 Enhanced RL Agent: Incorporates hydrodynamic force 

estimates from real-time pressure sensor data to 

improve stability and maneuverability. 

2. Implements and evaluates the Soft Actor-Critic (SAC) RL 

algorithm to determine its effectiveness in optimizing 

AUV motion control under variable turbulent flow 

conditions. 

3. Conducts extensive performance comparisons between the 

baseline and enhanced RL agents, evaluating key metrics 

such as trajectory tracking accuracy, stability, 

convergence speed, and robustness to turbulence-induced 

perturbations. 

4. Validates the hypothesis that pressure-based sensor 

feedback enhances AUV control precision, reducing 

navigation errors and enabling safer, more effective 

autonomous reef surveillance. 

 

By integrating RL-based decision-making with real-time 

hydrodynamic force estimation, this research contributes to 

the fields of: 

 Autonomous Marine Robotics – Advancing the next 

generation of self-learning underwater vehicles capable of 

adaptive navigation in dynamic oceanic environments. 

 Environmental Conservation – Enabling high-accuracy, 

automated coral reef surveillance to inform conservation 

efforts and detect degradation trends at an unprecedented 

scale. 

 Fluid Mechanics and AI Integration – Demonstrating how 

CFD-enhanced RL models can outperform conventional 

AUV controllers, setting the stage for future AI-driven 

fluid dynamic optimizations. 

 

This research represents a significant advancement in AI-

powered marine autonomy, with direct applications in deep-

sea exploration, offshore infrastructure inspection, and 

ecological monitoring. The ability to deploy robust, self-

adaptive AUVs for long-term, autonomous missions will 

transform the way we monitor and protect the world’s oceans. 

 

1.2 Organization 

This article is organized into the following sections. Section 1 

contains the introduction, background, problem statement, 

and objectives of the study. Section 2 presents the related 

work on reinforcement learning, autonomous underwater 

vehicle (AUV) navigation, and computational fluid dynamics 

(CFD) applications. Section 3 details the theoretical 

framework and calculations, including the modeling 

assumptions, governing equations, and control problem 

formulation. Section 4 outlines the architecture of the 

proposed system and the essential steps of the AI-enhanced 

control framework. Section 5 explains the complete 

methodology, including the CFD environment, reinforcement 

learning agents, and evaluation metrics, with a flow chart. 

Section 6 describes the experimental results and provides an 

in-depth discussion of the findings. Section 7 summarizes 

recommendations for improving AUV navigation 

performance and broader implications for marine robotics. 

Finally, Section 8 concludes the research work and highlights 

future directions for expanding this approach into real-world 

deployments. 

2. Related Work  
 

Reinforcement learning (RL) has gained significant attention 

in marine robotics for its ability to handle dynamic and 

uncertain environments. Woo et al. [1] developed a DRL-

based controller for unmanned surface vehicles, 

demonstrating robust tracking performance under challenging 

conditions. Similarly, Zheng et al. [2] applied the soft actor-

critic algorithm for path following in the presence of wave 

disturbances, highlighting the potential of RL algorithms in 

maritime navigation. 

 

In addition, the integration of artificial intelligence with 

physics-based modeling has shown promising results. Sharma 

and Gupta [3] and Kumar et al. [4], published in IJCSE, 

demonstrated how physics-informed AI approaches could 

improve control accuracy in complex engineering systems. 

Andersson et al. [5] further illustrated the value of CFD-

guided RL for aerodynamic flow control, indicating similar 

opportunities in underwater applications. Recent work by 

Mehta et al. [6], Arora et al. [7], and Singh et al. [8] (IJCSE) 

has advanced underwater sensing, robotic autonomy, and 

hybrid AI-control methods, providing a foundation for further 

innovation. 

 

Additional studies by Park et al. [17], Liao et al. [18], and 

Thomas et al. [19] have explored the integration of multi-

sensor fusion and CFD modeling with machine learning, 

significantly improving prediction accuracy and control 

stability in robotic systems. Despite these advances, there 

remains a lack of research focused on pressure-feedback-

based RL agents for autonomous underwater vehicles in 

highly turbulent currents. This study addresses this gap by 

combining CFD-guided RL with real-time hydrodynamic 

force estimation to achieve improved navigation precision 

and stability in complex ocean environments. 

 

3. Theory 

 

3.1 Modeling Assumptions and State Definition 

The vehicle is modeled in planar motion with three degrees of 

freedom (3-DOF): surge u, sway v, and yaw rate r. The pose 

is (x, y, ψ) in an inertial frame, and the body-fixed velocity 

vector is:  

s = [ x y ψ u v r ]ᵀ             (1) 

Control inputs are the generalized forces: 

τ = [ τₓ τ_y N_z ]ᵀ, 

bounded to represent the available thrust and moment. 

 

3.2 3-DOF Rigid-Body and Hydrodynamic Model 

Under standard small-angle and low-speed marine robotics 

assumptions, the body dynamics are: 

M ν̇ + C(ν) ν + D(ν) ν = τ + τ_env           (2) 

where M is the rigid-body plus added-mass matrix, C(ν) is the 

Coriolis/centripetal matrix, D(ν) collects linear and quadratic 

damping, and τ_env are unsteady loads due to turbulence and 

waves. 

 

The dominant damping forces/moments are modeled as: 
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X_D = X_u u + X_uu |u|u 

Y_D = Y_v v + Y_vv |v|v 

N_D = N_r r + N_rr |r|r                         (3) 

The kinematics relate body velocities to earth-fixed rates: 

ẋ = u cosψ − v sinψ 

ẏ = u sinψ + v cosψ 

ψ̇ = r               (4) 

 

3.3 CFD Governing Equations and Turbulence Closure 

The environmental flow and fluid–vehicle interaction are 

resolved by incompressible Navier–Stokes: 

∇·u = 0 

∂u/∂t + (u·∇)u = −(1/ρ)∇p + ν∇²u + f           (5) 

with PANS turbulence closure to capture unsteady turbulent 

structures at reduced cost relative to LES. 

 

3.4 Pressure-Based Force Reconstruction (Sensor Model) 

Local pressure measurements pᵢ on N_s surface patches (area 

ΔSᵢ, outward normal nᵢ, position vector rᵢ) provide online 

estimates of hydrodynamic loads: 

F_p ≈ − Σ_i (pᵢ nᵢ ΔSᵢ) 

N_p ≈ − Σ_i [rᵢ × (pᵢ nᵢ ΔSᵢ)]           (6) 

These estimates augment the state used by the controller and 

are also logged for analysis. 

 

3.5 RL Problem Formulation (MDP) 

The station-keeping/navigating task is cast as a Markov 

Decision Process with observation o_t, action a_t, and reward 

r_t: 

o_t = [ e_x e_y e_ψ u v r F_p N_p ]ᵀ           (7) 

Actions are normalized thrust/moment commands: 

a_t = [ aₓ a_y a_r ]ᵀ ∈ [−1, 1]³ 

τ = diag(τₓ^max, τ_y^max, N_z^max) a_t          (8) 

Reward design: 

r_t = − w_p√(eₓ² + e_y²) − w_ψ |e_ψ| − w_u ||a_t||² − w_j ||a_t 

− a_{t−1}||² + r_goal 1_insideε + r_alive           (9) 

 

3.6 Soft Actor–Critic (SAC) Objective 

SAC optimizes a maximum-entropy objective: 

J(π) = E[ Σ_t γ^t (r_t + α H(π(.|o_t)) ) ]         (10) 

with twin Q-critics, a stochastic policy, and target entropy. 

 

3.7 Numerical Integration and Training Protocol 

Dynamics (2)–(4) are integrated with a fixed step Δt = 0.02 s. 

Episodes randomize initial (x, y, ψ) and current 

direction/intensity. Termination occurs on goal capture, 

boundary breach, or time limit. 

 

3.8 Derived Metrics and Calculations 

To quantify performance, we compute: 

RMS_xy = sqrt( (1/N_w) Σ_k (eₓ,k² + e_y,k²) )         (11) 

Additional metrics include heading error, trajectory deviation, 

RMS actuation effort, jerk, and oscillation frequency via FFT. 

 

4. Experimental Method 

 

4.1 Maneuvering task 

The primary objective of the study was to enable an 

autonomous underwater vehicle (AUV) to maintain station 

and navigate effectively in a turbulent oceanic environment. 

This required the AUV to compensate for unsteady 

hydrodynamic forces while accurately reaching and holding a 

designated position and heading. 

 

To simplify computational modeling, only three degrees of 

freedom were considered — surge (forward/backward 

motion), sway (sideways motion), and yaw (rotation about the 

vertical axis). This reduced the complexity of computational 

fluid dynamics (CFD) simulations by allowing them to be 

conducted in a two-dimensional (2D) flow domain rather than 

a full 3D environment. 

 

At the start of each episode, the AUV was initialized with a 

random heading and position within a 1×1 m domain. The 

vehicle was tasked with reaching the origin while aligning to 

a randomly generated heading, contending with turbulent 

ocean currents that imposed unsteady forces. An episode 

terminated when: 

 The AUV reached the goal 

 A predefined time step limit was exceeded 

 The vehicle drifted beyond a 2×2 m boundary around the 

target 

 

The imposed flow conditions included: 

 Current speeds ranging between 0.375 m/s and 0.625 m/s 

 Free-stream turbulence of 10% intensity 

 Integral length scale of turbulence set to 0.1 m, resulting in 

eddies similar in size to the vehicle. This increased 

unsteady loading, making station-keeping highly 

challenging 

 

4.2 AUV Model and Hydrodynamic Approximation 

The AUV model was based on the BlueROV 2 Heavy, a 

commercially available remotely operated vehicle (ROV). To 

ensure computational feasibility while retaining accuracy, a 

bluff-body representation of the AUV was used, maintaining 

the original vehicle’s: 

 Mass and inertia properties 

 Hydrodynamic response characteristics 

 Overall dimensions  
 

Table 1. AUV Model Parameters and Values Based on BlueROV 2 Heavy 

Parameter Value Unit 

Length (L) 0.4570 m 

Beam (B) 0.3380 m 

Mass (m) 11.4000 kg 

Yaw moment of inertia (Izz) 0.1600 kg·m² 

Quadratic drag coefficient (Xuu) -40.1778 kg/m 

Quadratic sideforce coefficient (Yvv) -105.4842 kg/m 

Quadratic yaw moment coefficient (Nrr) -1.5500 kg·m²/rad² 

Linear drag coefficient (Xu) -8.9063 kg·s/m² 

Linear sideforce coefficient (Yv) -30.2914 kg·s/m² 

Linear yaw moment coefficient (Nr) -0.0700 kg·m²/s/rad 

 

To simplify actuation modeling, the thrusters and propellers 

were not directly modeled. Instead, the required thrust and 

torque for achieving the desired motion were applied as 

generalized forces, bypassing thrust allocation computations. 

In both the CFD-based and simplified environments: 
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 A fixed time step of 0.02 s was maintained for numerical 

integration 

 Non-dimensional control inputs were constrained between 

[-1,1], scaled to a maximum thrust of 150 N and a yaw 

moment of 20 Nm 

 

4.3 Reinforcement Learning 

The Soft Actor-Critic (SAC) RL algorithm was selected for 

training an agent to control the AUV’s movements. The state 

vector provided to the RL agent included: 

 Position and heading errors relative to the target 

 Velocity components (surge, sway, and yaw rates) 

 Force estimates derived from local pressure measurements 

on the AUV’s surface (for pressure-informed agent) 

 

4.4 Reward Function Design 

The reward function was structured to: 

 Minimize position error, penalizing deviations from the 

target 

 Encourage correct heading alignment, applying additional 

penalties for errors exceeding 90° 

 Promote smooth control, using a penalty on excessive 

actuator effort (computed as the RMS of recent actions) 

 Terminate episodes prematurely if the vehicle exited the 

defined domain, applying a large negative reward 

 
Figure 6. Illustration of the reward function components 

 

4.5 Computational Fluid Dynamics (CFD) Simulations 

High-fidelity CFD simulations were conducted using 

ReFRESCO, a specialized CFD solver for marine 

hydrodynamics. The CFD environment was designed with: 

 Two computational grids:  

o An inner moving domain enclosing the AUV 

o A fixed outer domain to model background currents 

 Sliding mesh interface to accommodate arbitrary current 

directions 

 Synthetic inflow turbulence generator (ITG) to introduce 

realistic turbulent structures 

 100,000 computational cells, with y+ < 1 to resolve 

boundary layers 

 

 
Figure 7. Overview of the CFD set up of the AUV simulation. Pink sphere 

denotes the origin, which also marks the objective.  

 

The Partially Averaged Navier-Stokes (PANS) model was 

implemented for turbulence modeling, allowing accurate 

unsteady flow predictions at a reduced computational cost 

compared to full Large Eddy Simulations (LES). 

To validate the efficacy of the reinforcement learning (RL)-

trained controllers and assess their ability to handle complex 

turbulent flows, a comprehensive evaluation phase was 

conducted. The evaluation focused on the ability of each 

trained agent to maintain stability, navigate to the target, and 

compensate for unsteady flow disturbances. The RL 

controllers were compared against a baseline classical 

proportional-integral-derivative (PID) controller and an RL 

agent trained in a simplified, non-CFD environment. 

 

4.6 Evaluation 

The test conditions were deliberately designed to be 

challenging, ensuring the robustness of the trained 

controllers: 

 Initial Position and Heading:  

o The AUV was placed at (-0.5, -0.5) m, the furthest 

extent of the simulation domain. 

o The initial heading was set to 45°, creating a non-trivial 

correction scenario. 

 Environmental Conditions:  

o The imposed mean current velocity was 0.5 m/s, 

generating a strong surge force. 

o The AUV was required to realign itself to a final 

heading of 90°, introducing significant lateral force 

fluctuations due to the broadside exposure to flow. 

o The free-stream turbulence intensity was maintained at 

10%, introducing randomized external disturbances. 

This evaluation design tested each controller’s ability to: 

1. Counteract flow-induced perturbations while 

navigating toward a fixed target. 

2. Dampen oscillations caused by vortex shedding and 

turbulent wake interactions. 

3. Ensure steady-state precision, minimizing long-term 

error accumulation. 

Four different agents were evaluated: 
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1. RL agent trained in CFD with pressure feedback (RL-

CFD-P) 

2. RL agent trained in CFD without pressure feedback (RL-

CFD) 

3. RL agent trained in a simplified non-CFD model (RL-

Simplified) 

4. Traditional PID controller tuned for the non-turbulent 

environment (PID) 

 

4.7 Performance Metrics 

To quantitatively assess controller effectiveness, the 

following key performance indicators (KPIs) were used: 

4.7.1 Positional Accuracy 

The primary objective was for the AUV to maintain minimal 

displacement error while reaching the desired final state. The 

following metrics were analyzed: 

 Final steady-state position error (RMS error in x and y 

coordinates)  

o Computed over the last 500 time steps of each test 

episode. 

o Lower RMS error indicates superior trajectory 

convergence. 

 Trajectory Deviation  

o Root-mean-square (RMS) deviation of the AUV’s 

trajectory compared to the ideal shortest-path trajectory. 

o Indicates how efficiently the AUV reached the target 

without unnecessary detours. 

 

4.7.2 Heading Stability and Control Precision 

Precise heading control was crucial in maintaining desired 

orientation under turbulent conditions. The following stability 

indicators were examined: 

 Final steady-state heading error  

o RMS error of ψ (yaw angle deviation from 90°) over the 

last 500 time steps. 

o A lower value suggests improved directional control. 

 Peak heading overshoot  

o Maximum absolute deviation from the target heading 

during the test. 

o Lower overshoot indicates smoother, more stable 

control. 

 Heading oscillation frequency  

o Computed via Fourier spectral analysis to quantify 

oscillatory behavior. 

o A lower dominant oscillation frequency suggests better 

damping of turbulence-induced fluctuations. 

 

4.7.3 Control Efficiency 

Minimizing control effort was essential to reduce power 

consumption and actuator wear. The following efficiency 

parameters were evaluated: 

 Root-mean-square (RMS) actuator effort  

o Measures average thruster force output over the 

episode. 

o Lower RMS thrust indicates more efficient 

maneuvering. 

 Total actuation time  

o Duration in which thruster forces exceeded 10% of the 

maximum allowable force. 

o A shorter actuation duration suggests better energy 

efficiency. 

 Throttle Smoothness (Jerk Minimization)  

o Evaluates rapid fluctuations in thrust commands (first 

derivative of control inputs). 

o Lower jerk values indicate smoother, less aggressive 

control actions. 

 

4.7.4 Robustness to Turbulence and Uncertain Conditions 

To assess adaptability, controllers were tested under varying 

flow intensities: 

 Performance under 25% increased turbulence intensity  

o Controllers were re-evaluated with a 12.5% free-stream 

turbulence level to analyze resilience to stronger vortex 

shedding. 

o A well-trained RL agent should maintain similar error 

metrics despite increased turbulence. 

 Performance under asymmetric current fields  

o A non-uniform current profile was introduced (higher 

shear at one side of the domain). 

o Successful controllers should dynamically adapt to 

uneven forces. 

 

5. Results and Discussion 

 
5.1 Training Preformance 

To evaluate the effectiveness of reinforcement learning (RL) 

in controlling an autonomous underwater vehicle (AUV) in 

turbulent flow, multiple RL agents were trained using 

computational fluid dynamics (CFD) simulations. The 

training process aimed to optimize the agent’s ability to 

maintain stability, navigate to a specified position, and correct 

for disturbances caused by turbulence. 

 

The training history is depicted in Figure 8, which presents: 

 Episode duration: The number of steps an agent survived 

before termination. 

 Cumulative reward per episode: A metric indicating 

learning efficiency and control performance. 

 Failure rate over time: A moving average of failed episodes 

to assess learning stability. 

 

Initially, the RL agents without pressure feedback struggled 

to reach the desired objective, showing inconsistent training 

performance and high failure rates. In contrast, RL agents 

augmented with hydrodynamic pressure feedback rapidly 

learned to stabilize within the flow, achieving higher total 

rewards and longer episode durations. 

 

The results indicate that pressure-based feedback significantly 

improves RL training convergence. The agents utilizing 

pressure sensors learned more quickly, required fewer 

episodes to stabilize, and exhibited lower failure rates, 

confirming the value of real-time hydrodynamic force 

estimation in guiding control decisions. 
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Figure 8. The training history. (a) Episode duration in time steps; (b) Total 

reward per episode; (c) Failure rate (moving average over 50 episodes).  

 

 

 

 
Figure 9. Time history of vehicle pose in the three considered degrees of 

freedom during the evaluation run.  

 

 
Figure 10. RMS errors in the three degrees of freedom attained during the 

evaluation run. These were computed during the final 500-time steps once all 
the agents have had the time to reach the objective.   

 

5.2 Evaluation and Benchmarking 

To validate the effectiveness of the trained RL controllers, a 

controlled test scenario was implemented. The agents were 

required to navigate from an initial offset position (-0.5, -0.5) 
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m with a heading of 45° to a final heading of 90° in the 

presence of a mean current of 0.5 m/s with free-stream 

turbulence intensity of 10%. 

 

Four different control strategies were evaluated: 

1. RL agent trained in CFD with pressure feedback (RL-

CFD-P) 

2. RL agent trained in CFD without pressure feedback (RL-

CFD) 

3. RL agent trained in a simplified non-CFD model (RL-

Simplified) 

4. Traditional PID controller tuned for the non-turbulent 

environment (PID) 

The performance of each controller was assessed using key 

performance indicators (KPIs), including positional accuracy, 

heading stability, control effort, and robustness under 

turbulent conditions. 

 

5.3 Key Performance Indicators (KPIs) Analysis 

5.3.1 Positional Accuracy 

A primary measure of success was the ability of the AUV to 

reach and maintain the desired target position with minimal 

error. Table 2 summarizes the final root-mean-square (RMS) 

position error, trajectory deviation, and steady-state accuracy. 
 

Table 2. Final root-mean-square (RMS) position error, trajectory deviation, 
and steady-state accuracy.  

 

The RL-CFD-P agent consistently achieved the lowest final 

RMS error and maintained a stable final position, confirming 

that the pressure feedback significantly improved navigation 

precision. 

 

5.3.2 Heading Stability and Control Precision 

Maintaining heading accuracy under turbulent disturbances is 

crucial. Table 3 presents the steady-state heading error, peak 

heading overshoot, and oscillation frequency. 

 
Table 3. Steady-state heading error, peak heading overshoot, and oscillation 

frequency.  

Control 

Strategy 

Final RMS 

Position 

Error (m) 

Trajectory Deviation 

(m) 

Steady-

State 

Position 

Error (m) 

RL-CFD-P 0.02 ± 0.01 0.05 ± 0.02 0.01 ± 0.01 

RL-CFD 0.20 ± 0.05 0.18 ± 0.04 0.15 ± 0.05 

RL-Simplified 0.12 ± 0.06 0.22 ± 0.07 0.10 ± 0.05 

PID 0.15 ± 0.03 0.25 ± 0.08 0.12 ± 0.04 

 

The CFD-trained RL agent with pressure feedback 

demonstrated the most stable heading control, reducing peak 

overshoot by over 80% compared to PID control. 

5.3.3 Control Efficiency and Actuation Effort 

 

Table 4. Control Efficiency and Actuation Effort table.  

Control 

Strategy 

RMS Actuator 

Effort (N) 

Actuation 

Time (%) 

Jerk (N/s) 

RL-CFD-P 12.5 ± 2.1 18.0 ± 3.5 0.9 ± 0.2 

RL-CFD 24.2 ± 5.3 32.5 ± 4.2 2.5 ± 0.6 

RL-Simplified 18.8 ± 3.8 27.3 ± 4.9 1.8 ± 0.4 

PID 30.1 ± 6.2 40.1 ± 5.3 3.2 ± 0.7 

 

The RL-CFD-P agent had the lowest actuator effort, 

indicating energy-efficient and smooth control. 

5.3.4 Robustness to Turbulence and Uncertain Conditions 

To assess adaptability, agents were tested under: 

1. Increased turbulence intensity (12.5%) 

2. Asymmetric current profiles 

Table 5 compares the performance of each controller under 

high turbulence conditions, demonstrating the superior 

robustness of the RL-CFD-P agent. 

 
Table 5. Performance of each controller under high turbulence conditions, 

demonstrating the superior robustness of the RL-CFD-P agent. 

Control 

Strategy 

Position Error 

(m) 

Heading 

Error (°) 

Actuation 

Increase (%) 

RL-CFD-P 0.05 ± 0.02 1.5 ± 0.6 +5.2% 

RL-CFD 0.32 ± 0.08 6.2 ± 1.8 +20.5% 

RL-

Simplified 

0.28 ± 0.07 10.1 ± 2.5 +18.3% 

PID 0.45 ± 0.09 8.9 ± 2.3 +22.1% 

 

Even in challenging turbulence, the RL-CFD-P agent 

maintained high accuracy and efficiency. 

 

5.4 Interpretation of Results  

The results of this study demonstrate that reinforcement 

learning (RL), when combined with computational fluid 

dynamics (CFD), can significantly enhance the autonomous 

navigation of underwater vehicles in highly turbulent 

environments. The findings support the hypothesis that 

augmenting an RL agent with pressure-based hydrodynamic 

force estimation improves its ability to navigate and maintain 

stability in complex flow conditions.  

 

The primary insight gained from this research is that pressure 

feedback significantly improves the stability and precision of 

autonomous underwater vehicle (AUV) navigation in 

dynamic currents. Compared to standard RL approaches that 

rely solely on position-velocity feedback, the pressure-

augmented RL agent demonstrated superior performance in: 

 Achieving steady-state stability with significantly reduced 

oscillations. 

 Faster convergence to optimal control strategies. 

 Lower final position and heading errors, as evidenced by 

statistical analysis. 

 

The ability of the pressure-augmented agent to maintain 

heading and resist drift aligns with previous research in RL-

based control strategies for maritime applications [6]. 

However, the results in this study go beyond existing work by 

demonstrating that localized flow measurements provide 

meaningful hydrodynamic insights that directly improve 

control response. 

Control 

Strategy 

Final Heading 

Error (°) 

Peak 

Overshoot (°) 

Oscillation 

Frequency (Hz) 

RL-CFD-P 0.3 ± 0.2 1.0 ± 0.5 0.05 ± 0.01 

RL-CFD 2.5 ± 1.1 5.8 ± 1.5 0.15 ± 0.03 

RL-

Simplified 

5.8 ± 1.5 10.2 ± 2.1 0.22 ± 0.05 

PID 1.8 ± 0.9 7.4 ± 1.8 0.18 ± 0.02 
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5.5 Unexpected Challenges and Solutions 

During training, several unexpected issues arose: 

 High variability in learning rates across different agent 

instances: Some instances of the RL agent performed 

significantly better than others, even when initialized with 

the same hyperparameters. This variability is common in 

RL due to the stochastic nature of artificial neural network 

training. To mitigate this, additional training instances 

were evaluated, and hyperparameter tuning was refined. 

 Agent instability in extreme turbulence scenarios: Early in 

training, agents frequently drifted off course or oscillated 

excessively when turbulence levels were high. Introducing 

adaptive reward scaling helped stabilize the training 

process, allowing the agent to handle more extreme 

conditions. 

 Computational intensity of CFD simulations: The high 

computational cost of running RL training inside a CFD 

environment posed a major bottleneck. Although 

necessary for high-fidelity learning, training required 

significant resources. Future work will explore transfer 

learning strategies to reduce the computational burden 

while maintaining accuracy. 

 

5.6 Advancement over Existing Solutions 

Current AUV navigation methods primarily rely on: 

 Pre-programmed trajectories that do not adapt to real-time 

flow disturbances. 

 Simplified optimal control algorithms that fail under 

highly unsteady flow conditions. 

 Limited use of onboard sensory feedback for real-time 

course correction. 

 

This study presents a significant improvement by enabling 

adaptive real-time control that dynamically responds to 

turbulent flow conditions using local pressure feedback. The 

combination of RL and CFD allows for fine-tuned 

maneuvering even in extreme environments, a capability that 

has not been fully explored in prior studies. 

 

Furthermore, the ability to navigate in complex flow regimes 

has direct implications for real-world AUV applications, 

including: 

 Coral reef surveillance: an area where autonomous 

navigation is critical due to the intricate and unpredictable 

nature of reef structures. 

 Infrastructure inspections: for offshore energy structures 

where AUVs must navigate in turbulent wake zones of 

large platforms. 

 Marine ecosystem monitoring: where RL-based AUVs 

could autonomously track ocean currents and biological 

activity in deep-sea environments. 

 

6. Conclusion and Future Scope  
 

The integration of reinforcement learning (RL) with 

computational fluid dynamics (CFD) modeling has been 

demonstrated as a highly effective approach for enhancing 

autonomous underwater vehicle (AUV) navigation in 

complex, turbulent environments. By combining CFD-based 

environmental modeling with real-time hydrodynamic force 

estimation from pressure sensors, the proposed framework 

enables agents to maintain stable trajectories, achieve higher 

positional accuracy, and converge to optimal control 

strategies more efficiently than conventional navigation 

methods. 

 

The study results show that CFD-trained RL agents 

outperform traditional proportional–integral–derivative (PID) 

controllers and baseline RL models when exposed to highly 

unsteady flow conditions. Pressure-augmented RL agents, in 

particular, demonstrate markedly improved robustness, 

smoother actuation, and reduced oscillatory behavior, making 

them well-suited for mission-critical applications such as 

coral reef monitoring and offshore infrastructure inspection. 

Beyond outperforming baseline models, this research 

contributes a flexible methodology that can be extended to 

other marine robotic systems. Future work will focus on 

deploying the proposed approach in full-scale field trials, 

refining sensor placement strategies, and extending the 

framework to handle three-dimensional navigation and long-

duration missions. These advancements lay the foundation for 

a new generation of AUVs capable of achieving 

unprecedented levels of autonomy and environmental 

adaptability. 

 

While this study successfully demonstrated AI-driven 

underwater navigation, future research will build upon these 

findings to further enhance real-world applicability. Key 

areas of focus include: 

1. Optimizing Data Collection Sensors: Identifying the most 

effective sensor configurations for onboard data 

acquisition will be critical for real-world deployment. 

2. Engineering a Physical Prototype: The next step involves 

constructing an AUV equipped with optimized sensory 

and control systems for field testing in real-world coral 

reef environments. 

3. Hybrid RL-Classical Control Strategies: Exploring hybrid 

approaches where RL algorithms fine-tune the outputs of 

classical control strategies could enhance robustness in 

variable conditions. 

4. Field Deployment for Coral Reef Monitoring: Ultimately, 

this work will transition from simulation to practical 

implementation, with AUVs autonomously navigating 

coral reef ecosystems to provide continuous 

environmental monitoring. 

 

This research lays the foundation for AI-driven 

environmental monitoring systems, with applications 

extending far beyond coral reef surveillance. The 

combination of advanced fluid dynamics modeling, machine 

learning, and sensor-based feedback systems positions this 

project as a pioneering effort in the field of autonomous 

underwater robotics. 
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