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Abstract: Accurately identifying brain tumors plays a vital role in early diagnosis and the development of appropriate treatment
strategies. Traditional interpretation of MRI scans by radiologists can be time-consuming and subject to variability. This study
proposes an automated classification framework based on Convolutional Neural Networks (CNNs) to improve diagnostic
consistency and speed. Utilizing a dataset comprising 3,060 MRI images, the model leverages the Grad-CAM technique to
visualize key regions influencing its decisions. Rigorous testing was carried out, measuring performance through metrics
including accuracy, precision, recall, and specificity. Results demonstrate that the CNN-driven model offers superior
classification performance and enhanced transparency when compared to conventional methods. This work contributes to
advancing intelligent diagnostic systems and serves as a valuable tool for medical professionals seeking more dependable and
rapid evaluations.
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Graphical Abstract
The graphical abstract visually summarizes the entire Preprocessing
research pipeline for automated brain tumor
classification using deep learning. Starting from MRI
image input, the images undergo preprocessing and are Input MRI
passed through a custom-designed Convolutional
Neural Network (CNN). The network classifies the
images into tumor types while the Grad-CAM technique
provides interpretability by highlighting the regions of

Classification Gnel-Divdion

interest on the MRI scans. The model's output consists Parformance Eviluation
of predicted tumor categories along with visual e Accuracy
heatmaps, and its effectiveness is measured using e Sensitivity
metrics such as accuracy, precision, recall, and * Specificity

e Precision

specificity. The graphical summary highlights the main
achievement of this work: a reliable and interpretable
deep learning approach for brain tumor identification. 1. Introduction

Brain tumors refer to the abnormal and uncontrolled
multiplication of cells inside the brain. As the brain is one of
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the most intricate and functionally diverse organs, it regulates
emotions, cognition, and voluntary actions. Common
symptoms of brain tumors include persistent headaches and
migraines [1]. They continue to be one of the main
contributors to cancer-related deaths in children and still pose
significant difficulties in treatment despite progress in
surgical methods and post-operative care [2].

Diagnosing brain tumors typically depends on analyzing MRI
scans to differentiate between normal and affected brain
regions. Traditionally, this classification is performed
manually by radiologists. However, manual analysis is time-
consuming, prone to inconsistency, and demands significant
expertise. In this context, computer-aided diagnostic systems
offer promising support by enhancing accuracy, reducing
workload, and ensuring consistency [3].

Among various computational techniques, Convolutional
Neural Networks (CNNs) have gained widespread use in
medical imaging. For example, a dataset consisting of 3,064
contrast-enhanced T1-weighted brain MRIs was applied to
divide the images into three classes: Glioma, Meningioma,
and Pituitary Tumor [4]. Several CNN-based models have
been developed for medical image classification [5],
including approaches that utilize deep feature fusion and data
augmentation to address dataset limitations [6]. Other
methods have incorporated hybrid models with optimized
multi-feature analysis on MRI data for improved
classification [7].

A 2019 study employed a transfer learning method that used a
pre-trained GooglLeNet model for feature extraction from
MRI scans. While it achieved 98% accuracy, certain
limitations such as overfitting and class confusion were
reported [8]. In 2020, another method based on convolutional
dictionary learning with local constraints was introduced to
enhance feature extraction. Although effective, this technique
became increasingly complex with deeper architectures and
required careful parameter tuning [9].

This study proposes a CNN-based deep learning approach for
classifying brain tumors. Preprocessing steps such as image
resizing and dataset augmentation were applied to boost
model performance and efficiency during training [10].
Additionally, architectural choices such as ReLU activation
functions, Flatten layers, and Dense layers were strategically
applied to optimize classification results. Prior studies show
that tuning fully connected layers can significantly impact
model accuracy and performance [11].

Deep learning models continue to demonstrate great promise
in brain tumor classification. However, performance varies
with implementation. In this study, we utilize CNN with
Grad-CAM to highlight important regions on MRI scans and
provide visual insight into model predictions.

1.1 Objective of the Study

The primary objective of this study is to design and
implement a CNN-based deep learning model capable of
accurately identifying brain tumors from MRI scans. This
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research aims to address the challenges associated with
manual diagnosis, including inconsistency, time consumption,
and subjectivity. Additionally, the model leverages Grad-
CAM to provide visual interpretability of its classification
results. Through effective preprocessing, augmentation, and
architectural design, the study seeks to improve classification
accuracy while maintaining model transparency and
efficiency.

1.2 Organization

This article is structured as follows: Section 1 introduces the
background, motivation, and objectives of the study,
highlighting the necessity for enhanced brain tumor
classification through deep learning. Section 2 reviews
relevant literature and recent advances in brain tumor
detection. Section 3 details the theoretical basis and
preprocessing techniques employed in the study. Section 4
describes the design and architecture of the proposed CNN
model along with its main implementation approach. Section
5 outlines the methodology and training process,
accompanied by a comprehensive flowchart. Section 6 covers
the experimental results, evaluation metrics, and model
performance analysis. Section 7 discusses recommendations
for clinical implementation and potential system
enhancements. Finally, Section 8 wraps up the paper by
summarizing the main findings and proposing avenues for
future research.

2. Related Work

Several studies have proposed innovative approaches for
brain tumor identification leveraging deep learning methods.
In the study titled "Deep Learning-Based Identification of
Brain Tumors in MRI Scans", the authors explored the use of
convolutional neural networks (CNNs) to classify tumor
types. However, this approach faced overfitting issues due to
limited training data [1]. To overcome such limitations,
another work titled "Hybrid Feature Fusion-Based Brain
Tumor Recognition System Using Deep Transfer Learning"
introduced a method combining handcrafted and deep
features. While the system improved accuracy, it required
substantial computational resources [2].

A study called "An Efficient Deep Learning Approach for
Brain Tumor Detection Using MR Images" proposed a
lightweight CNN model that reduced computational time but
suffered slightly in classification precision [3]. Similarly,
"Multi-Scale CNN Architecture for Brain Tumor Type
Recognition™ addressed the problem of data variability using
multiscale feature extraction but lacked visualization of
model decisions [4].

In "Brain Tumor Classification Using Capsule Networks", the
authors proposed a solution to the spatial relationship issue in
CNNSs, achieving promising results. However, the training
process was computationally intensive [5]. A more recent
paper titled "A CNN-Based Multiclass Diagnosis for Brain
Tumor Using MR Images" achieved an accuracy of over 97%
using residual blocks, although interpretability of the model
remained a challenge [6].
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Transfer learning has also gained popularity in this domain.
"Brain Tumor Detection Using Pre-Trained VGG-16 and
Fine-Tuned Layers" applied transfer learning to reduce
training time and showed significant improvements in
performance [7]. Meanwhile, "Enhanced Classification of
Brain Tumor MR Images Using Attention Mechanism in
Deep CNN" introduced attention layers to highlight
significant image features, which improved model
interpretability and sensitivity [8].

In "Brain Tumor Segmentation and Classification with
Ensemble Deep Learning Models", the authors combined
multiple CNN models to achieve better generalization, though
the system’s complexity increased significantly [9]. Another
paper, "An Improved Deep Learning Framework for Brain
Tumor MRI Classification Incorporating Grad-CAM
Visualization", addressed interpretability by incorporating
Grad-CAM, allowing better understanding of model
predictions [10].

Earlier research by Renjeni and Mukunthan [26] used
projection pursuit-based multilayer perceptron classifiers for
tumor detection, providing good segmentation results.
Similarly, Ghosh and Roy [27] applied deep learning on MRI
data and achieved high accuracy on a relatively small dataset.
Zahoor et al. (2024) proposed a brain tumor MRI
classification method using a novel deep residual and regional
CNN, demonstrating high accuracy through a combined
architectural design [21], [28]. Alemayehu (2025) introduced
a lightweight CNN model that achieved 98.78% accuracy on
MRI images, using Grad-CAM for interpretability while
maintaining computational efficiency [22], [29]. A study
published in BMC Medical Imaging (2024) presented a
hybrid deep CNN model for brain tumor multi-class
recognition, achieving an accuracy of 99.53% across several
tumor types [23]. Another work by the same journal explored
explainable Al using Grad-CAM with ResNet-50, showing
how interpretability could be enhanced without sacrificing
model performance [24]. Vimala et al. (2023) proposed BTC-
fCNN, a fast convolutional neural network optimized for
multi-class identification, emphasizing lightweight design for
real-time deployment [25].

Further, Renjeni and Mukunthan [26], in the International
Journal of Computer Science and Engineering, proposed a
projection pursuit bivariate multilayer perceptron model,
showing that even simpler neural architectures could
effectively classify brain tumors. Similarly, Ghosh and Roy
[27] utilized deep learning with MRI images and achieved
promising results using a well-tuned CNN structure. These
studies emphasize the potential of both traditional and
modern deep learning models for clinical diagnostic tools.

More recently, Zahoor et al. [28] further improved CNN
models with regional features to boost classification
performance. Alemayehu [29] optimized lightweight CNN
architectures specifically for MRI-based tumor detection.
Vimala et al. [30] introduced BTC-fCNN, a fast and efficient
CNN for real-time multi-class classification, contributing
significantly to the field.
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These studies highlight that deep learning, especially CNN-
based models, offers promising results in brain tumor
classification. However, challenges remain in designing
architectures that generalize well across datasets, balance
precision with computational efficiency, and provide
explainable outputs for clinical use. Building on these
findings, our work proposes an enhanced CNN model trained
on a dataset of 3,060 MRI scans, with performance evaluation
based on essential metrics such as accuracy, sensitivity, and
specificity.

3. Theory

3.1 CNN Architecture

The CNN model that we will be implementing is the
Sequential model, as it offers a straightforward method for
constructing neural networks in Keras by stacking layers one
at a time. Each layer consists of different components such as
Conv2D, activation functions, max pooling, dense layers,
dropout layers, and so on, each with its unique role in the
architecture.

Conv2D: Performs convolution operations on the input to
generate feature maps. Important hyperparameters include
filter count and kernel dimensions.

Activation: Introduces non-linearity into the model. For
image classification tasks, common activation functions are
ReLU and Sigmoid.

MaxPooling2D: Reduces the spatial size of the feature maps
by selecting the maximum value from each subregion, aiding
in downsampling.

The CNN architecture also involves additional components:
Flatten: Transforms the multi-dimensional output into a one-
dimensional array to prepare for dense layer input.

Dense: Connects each neuron from one layer to every neuron
in the next, allowing complex relationships to be learned for
classification.

Together, these components help the network capture and
learn abstract patterns from brain MRI scans.

Evaluation Metrics
To assess the model’s performance, several metrics were
employed:

Precision = L 1)
(TP + FP)

T _ TP 2
Sensitivity = T )
Accuracy = ___[PATN) 3)

(TP +FN +TN +FP)

- _ TN 4

Specificity = T 4

Here, TP = True Positive, FP = False Positive, TN = True
Negative, and FN = False Negative. These metrics
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collectively assess the classification model’s ability to
distinguish tumor types accurately.

Loss Function
The model uses the binary cross-entropy loss function for
optimization in binary classification tasks. It is defined as:

N

1
Hy(@) = =% ) [vi C GN+U-y) (= )]

i=1
This function penalizes incorrect predictions, encouraging the
model to improve during training.

3.2 Implementation of the Proposed Algorithm

After preprocessing the images and storing them in the
dataset, we proceeded to implement our algorithm. The
architecture we adopted is based on a Convolutional Neural
Network (CNN), which has become a widely accepted
approach in medical imaging due to its efficiency in
extracting relevant features and performing precise
classifications [14][21][25].

CNNs derive their name from the convolution operation, a
mathematical process that enables the extraction of local
features from input images. A typical CNN includes multiple
layers: feature extraction layers (convolution and pooling),
non-linear activation layers, and fully connected classification
layers. Trainable parameters are found in convolutional and
dense layers, while pooling and activation perform non-
trainable operations [15][24].

CNNs have achieved high accuracy in image-related tasks
such as classification tasks in benchmark datasets like
ImageNet, object detection, and brain tumor analysis using
MRI images [14][21]. In our study, we utilized a CNN
architecture customized specifically for categorizing brain
tumors into Glioma, Meningioma, and Pituitary classes.

The primary advantage of CNNs in this application is their
capability to autonomously extract and prioritize spatial
patterns from MRI scans, eliminating the need for hand-
engineered features. Our architecture is designed to balance
model complexity with training efficiency by employing a
refined sequence of convolutional, pooling, dropout, and
dense layers [21][23][25].

This tailored approach aims to improve classification
accuracy, reduce training time, and address limitations
identified in previous studies—such as overfitting, poor
generalization, or misclassification of specific tumor types
[81[24].

4. Experimental Method

4.1 Dataset

To conduct our study, we utilized a publicly available dataset
from Kaggle, a well-known platform for sourcing machine
learning datasets [12]. MRI scans produce a substantial
volume of imaging data, which are typically reviewed by
radiologists. Our data consists of 3060 Magnetic Resonance
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Imaging (MRI) images and split into many folders which are

the normal, tumorous and prediction folder.

We chose to work with MRI images as it is known as the best

technique for detecting brain tumors [12].

e The Normal folder contains 1500 MRI images of non-
tumorous patients.

e The Tumorous folder contains 1500 MRI images of
tumorous patients.

e The Prediction folder, serving as validation data, comprises
60 MRI images that include both tumorous and non-
tumorous cases. These images are used to evaluate the
model’s accuracy across several performance indicators.

An overview of our dataset can be visualized in Fig.1.

4.2 Methodology

As mentioned in the introduction, the main goal of our
research is to build a CNN model that can produce a better
result than the existing ones on the brain tumor classification.
So far, many studies have explored brain tumor classification
using various deep learning models, such as the FastAl
model, YOLO V5, as well as the proposed CNN model in this
paper [4], which compared Cropped and Uncropped MRI
images. Our model has demonstrated improved performance
over those reported in the referenced works.

This paper [13] also worked on brain tumor detection by
comparing some well-known Deep Learning algorithms,
including YOLO V3 (PyTorch), YOLO V4 (Darknet), and
YOLO V4-Tiny, and achieved an overall accuracy of 90%.

The implementation of our algorithm was done in many steps

as we will describe below:

e We started by importing all the needed python libraries
such as OpenCV (use to read images from the dataset),
NumPy (turn list into numpy arrays since it is much faster
and uses less memory), Keras, Pillow and so on.

e As our data were saved into different folders (Normal and
Tumorous), we had to do data processing and save them
inside one Python list. Since training requires both classes,
we initialized two separate lists called “Dataset” and
“Label” to store the images and their corresponding classes.

e We ensured that all given images in our dataset were
images by checking the image extension (.jpg) of each
image in the dataset.

e Once the image passes this step, we converted all given
images into array and resize it to 64*64, and lastly, append
the Image to the Dataset list and its label to the Label list.

We also did some data augmentation to artificially increase
the amount of data.

4.3 Proposed Method

The brain tumor classification is a very critical task, and to
get a better accurate result than the related works done in the
past, we had to implement a special CNN architecture. We
started by importing some Keras built-in functions, such as
Sequential, Conv2D, MaxPooling2D, Activation, Dropout,
Flatten, and Dense. Sequential was chosen for its simplicity
in constructing models layer by layer in Keras.
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Using the ‘add()’ method, we inserted three convolutional
layers into our architecture. These layers process input MRI
scans as 2D matrices. Each of them integrates convolution
operations, activation functions, and pooling mechanisms.

For the three layers, we applied a filter of 32 and the kernel
size of 3x3 on the 2D Convolution layer; and also used the
ReLU Activation function on the 3 layers as well as a pool
size of 2x2 on the Max Pooling Operation.

After building the three layers, we added the Flatten,
Dense(64), another ‘ReLU’ activation, Dropout, Dense(1),
and finally another ‘Sigmoid’ activation function. Note that
the Sigmoid function is evaluated from the following

1
formula: F(X) = m

To illustrate the impact of the proposed model on the given
MRI images, we created a separate python function called
"Testing.py” whereby we used to test the model. That
function basically takes an MRI image input from the 60 MRI
images that were allocated for the validation and use the
model.predict() function to predict the output. The output
value ranges from [0, 1], O representing the Normal Patient
and 1 the Tumorous one. We ran the validation on 5 sample
images of our prediction images dataset and the Fig.2
illustrates the results we have obtained.

Our model evaluation has been conducted using several
standard indicators such as accuracy, sensitivity, specificity,
and prediction effectiveness. The following paragraph
explains how the metrics are being evaluated.

5. Results and Discussion

As stated previously, the results obtained for our brain tumor
classification are entirely dependent on the implementation of
our model. For instance, using 3 hidden layers in our model
has produced an overall result of over 99.5% based on the
accuracy metrics. Using more or fewer layers, the results
could have been different. Likewise, we used over 3000 MRI
images to train our model; a different dataset size would
likely yield different outcomes.

Another critical variable influencing performance is the
number of EPOCHS applied during training. EPOCHS
represent how many complete passes the model makes
through the training dataset. For our implementation, 50
EPOCHS were used, resulting in notably high performance.
As shown in Figure 3, model evaluation metrics evolve with
an increase in EPOCHS, highlighting the relationship
between training duration and accuracy. Table 1 demonstrates
that our model outperforms existing models for brain tumor
classification. For instance, the YOLO V5 model produced an
accuracy of only 5.07%, which is significantly lower than our
proposed method's accuracy of 99.39%.

After training our model, we integrated Grad-CAM

(Gradient-weighted Class Activation Mapping), a method that
visually reveals how the model identifies relevant regions in
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an image when making predictions. To demonstrate its
effectiveness, we used random samples from the validation
dataset. Figure 4 illustrates the Grad-CAM outputs. On the
left, non-tumorous images show uniform coloration,
indicating no tumor detection. In contrast, the right image
clearly highlights a tumor region, validating the network’s
classification.

Furthermore, our model’s performance is comparable to and
in some aspects exceeds those in recent literature. For
example, Zahoor et al. [28] introduced a deep residual and
region-based CNN for MRI classification, achieving strong
accuracy, while Alemayehu [29] proposed a lightweight CNN
model with 98.78% accuracy, using Grad-CAM to enhance
interpretability. Similarly, the BTC-fCNN proposed by
Vimala et al. [30] emphasized fast performance for multi-
class classification. These models paved the way for efficient
and interpretable brain tumor classification; however, our
architecture is designed to offer a more optimal trade-off

among prediction accuracy, computational speed, and
interpretability, making it better suited for real-world
deployment.

Normal Tumorous Normal Normal

Image to predict

Input Image Label Tumorous Tumorous Normal Normal

Model Prediction Tumorous Tumorous Normal Normal

Figure.2. The result of our model on 4 sample images.

model accuracy model loss

— Tain 304 = Tain
— Validation \ /\J \/\f\\/"j aldation

0 10 20 » © 5 0 1 20 £ L 0
epoch epoch

Figure 3 Model Accuracy Loss Function
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Original Image

All layers Grad-CAM heat-map Original Image All layers Grad-CAM heat-map

Figure.4. Grad-CAM on normal tumorous sample images

Table 1: Comparison results of proposed method and existing methods

Models Accuracy | Precisio | Specificity | Sensitivity
(%) n (%) (%) (%)
FastAl [20] 95.78 96.70 95.65 95.23
YOLO V5 [13] 95.07 90.46 92.34 91.55
CNN related work [4] 99 98.19 99.19 98.18
Proposed Method 99.39 99.56 99.62 99.31

6. Conclusion and Future Scope

Our main work was to classify images from Normal and
Tumorous patients. We were given a dataset that contained
3060 MRI images and split it into two sets. One set, the
largest one, contains 3000 MRI of both Normal and
Tumorous patients, we used it to train our model, and the
other 60 images were used to validate our model. We built a
specialized classification model using Convolutional Neural
Networks (CNNs), and we implemented a special architecture
containing three hidden layers and ran 50 epochs. The results
demonstrated that our approach delivered superior
performance when compared to other existing techniques.
Implementing the GradCam function has given a good
perception of how the proposed model works on a given
sample MR images at each layer. Although the Result
surrounds 99%, however, it can still be improved if one could
use a large amount of dataset to train our model. In future
work, this study will focus on other datasets and improve
algorithm accuracy.
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