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Abstract: Accurately identifying brain tumors plays a vital role in early diagnosis and the development of appropriate treatment 

strategies. Traditional interpretation of MRI scans by radiologists can be time-consuming and subject to variability. This study 

proposes an automated classification framework based on Convolutional Neural Networks (CNNs) to improve diagnostic 

consistency and speed. Utilizing a dataset comprising 3,060 MRI images, the model leverages the Grad-CAM technique to 

visualize key regions influencing its decisions. Rigorous testing was carried out, measuring performance through metrics 

including accuracy, precision, recall, and specificity. Results demonstrate that the CNN-driven model offers superior 

classification performance and enhanced transparency when compared to conventional methods. This work contributes to 

advancing intelligent diagnostic systems and serves as a valuable tool for medical professionals seeking more dependable and 

rapid evaluations. 
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Graphical Abstract 
The graphical abstract visually summarizes the entire 

research pipeline for automated brain tumor 

classification using deep learning. Starting from MRI 

image input, the images undergo preprocessing and are 

passed through a custom-designed Convolutional 

Neural Network (CNN). The network classifies the 

images into tumor types while the Grad-CAM technique 

provides interpretability by highlighting the regions of 

interest on the MRI scans. The model's output consists 

of predicted tumor categories along with visual 

heatmaps, and its effectiveness is measured using 

metrics such as accuracy, precision, recall, and 

specificity. The graphical summary highlights the main 

achievement of this work: a reliable and interpretable 

deep learning approach for brain tumor identification. 

 
 

1. Introduction  
 

Brain tumors refer to the abnormal and uncontrolled 

multiplication of cells inside the brain. As the brain is one of 
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the most intricate and functionally diverse organs, it regulates 

emotions, cognition, and voluntary actions. Common 

symptoms of brain tumors include persistent headaches and 

migraines [1]. They continue to be one of the main 

contributors to cancer-related deaths in children and still pose 

significant difficulties in treatment despite progress in 

surgical methods and post-operative care [2]. 

 

Diagnosing brain tumors typically depends on analyzing MRI 

scans to differentiate between normal and affected brain 

regions. Traditionally, this classification is performed 

manually by radiologists. However, manual analysis is time-

consuming, prone to inconsistency, and demands significant 

expertise. In this context, computer-aided diagnostic systems 

offer promising support by enhancing accuracy, reducing 

workload, and ensuring consistency [3]. 

 

Among various computational techniques, Convolutional 

Neural Networks (CNNs) have gained widespread use in 

medical imaging. For example, a dataset consisting of 3,064 

contrast-enhanced T1-weighted brain MRIs was applied to 

divide the images into three classes: Glioma, Meningioma, 

and Pituitary Tumor [4]. Several CNN-based models have 

been developed for medical image classification [5], 

including approaches that utilize deep feature fusion and data 

augmentation to address dataset limitations [6]. Other 

methods have incorporated hybrid models with optimized 

multi-feature analysis on MRI data for improved 

classification [7]. 

 

A 2019 study employed a transfer learning method that used a 

pre-trained GoogLeNet model for feature extraction from 

MRI scans. While it achieved 98% accuracy, certain 

limitations such as overfitting and class confusion were 

reported [8]. In 2020, another method based on convolutional 

dictionary learning with local constraints was introduced to 

enhance feature extraction. Although effective, this technique 

became increasingly complex with deeper architectures and 

required careful parameter tuning [9]. 

 

This study proposes a CNN-based deep learning approach for 

classifying brain tumors. Preprocessing steps such as image 

resizing and dataset augmentation were applied to boost 

model performance and efficiency during training [10]. 

Additionally, architectural choices such as ReLU activation 

functions, Flatten layers, and Dense layers were strategically 

applied to optimize classification results. Prior studies show 

that tuning fully connected layers can significantly impact 

model accuracy and performance [11]. 

 

Deep learning models continue to demonstrate great promise 

in brain tumor classification. However, performance varies 

with implementation. In this study, we utilize CNN with 

Grad-CAM to highlight important regions on MRI scans and 

provide visual insight into model predictions.  

 

1.1 Objective of the Study 

The primary objective of this study is to design and 

implement a CNN-based deep learning model capable of 

accurately identifying brain tumors from MRI scans. This 

research aims to address the challenges associated with 

manual diagnosis, including inconsistency, time consumption, 

and subjectivity. Additionally, the model leverages Grad-

CAM to provide visual interpretability of its classification 

results. Through effective preprocessing, augmentation, and 

architectural design, the study seeks to improve classification 

accuracy while maintaining model transparency and 

efficiency. 

 

1.2 Organization 

This article is structured as follows: Section 1 introduces the 

background, motivation, and objectives of the study, 

highlighting the necessity for enhanced brain tumor 

classification through deep learning. Section 2 reviews 

relevant literature and recent advances in brain tumor 

detection. Section 3 details the theoretical basis and 

preprocessing techniques employed in the study. Section 4 

describes the design and architecture of the proposed CNN 

model along with its main implementation approach. Section 

5 outlines the methodology and training process, 

accompanied by a comprehensive flowchart. Section 6 covers 

the experimental results, evaluation metrics, and model 

performance analysis. Section 7 discusses recommendations 

for clinical implementation and potential system 

enhancements. Finally, Section 8 wraps up the paper by 

summarizing the main findings and proposing avenues for 

future research. 

 

2. Related Work  
 

Several studies have proposed innovative approaches for 

brain tumor identification leveraging deep learning methods. 

In the study titled "Deep Learning-Based Identification of 

Brain Tumors in MRI Scans", the authors explored the use of 

convolutional neural networks (CNNs) to classify tumor 

types. However, this approach faced overfitting issues due to 

limited training data [1]. To overcome such limitations, 

another work titled "Hybrid Feature Fusion-Based Brain 

Tumor Recognition System Using Deep Transfer Learning" 

introduced a method combining handcrafted and deep 

features. While the system improved accuracy, it required 

substantial computational resources [2]. 

 

A study called "An Efficient Deep Learning Approach for 

Brain Tumor Detection Using MR Images" proposed a 

lightweight CNN model that reduced computational time but 

suffered slightly in classification precision [3]. Similarly, 

"Multi-Scale CNN Architecture for Brain Tumor Type 

Recognition" addressed the problem of data variability using 

multiscale feature extraction but lacked visualization of 

model decisions [4]. 

 

In "Brain Tumor Classification Using Capsule Networks", the 

authors proposed a solution to the spatial relationship issue in 

CNNs, achieving promising results. However, the training 

process was computationally intensive [5]. A more recent 

paper titled "A CNN-Based Multiclass Diagnosis for Brain 

Tumor Using MR Images" achieved an accuracy of over 97% 

using residual blocks, although interpretability of the model 

remained a challenge [6]. 
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Transfer learning has also gained popularity in this domain. 

"Brain Tumor Detection Using Pre-Trained VGG-16 and 

Fine-Tuned Layers" applied transfer learning to reduce 

training time and showed significant improvements in 

performance [7]. Meanwhile, "Enhanced Classification of 

Brain Tumor MR Images Using Attention Mechanism in 

Deep CNN" introduced attention layers to highlight 

significant image features, which improved model 

interpretability and sensitivity [8]. 

 

In "Brain Tumor Segmentation and Classification with 

Ensemble Deep Learning Models", the authors combined 

multiple CNN models to achieve better generalization, though 

the system’s complexity increased significantly [9]. Another 

paper, "An Improved Deep Learning Framework for Brain 

Tumor MRI Classification Incorporating Grad-CAM 

Visualization", addressed interpretability by incorporating 

Grad-CAM, allowing better understanding of model 

predictions [10]. 

 

Earlier research by Renjeni and Mukunthan [26] used 

projection pursuit-based multilayer perceptron classifiers for 

tumor detection, providing good segmentation results. 

Similarly, Ghosh and Roy [27] applied deep learning on MRI 

data and achieved high accuracy on a relatively small dataset. 

Zahoor et al. (2024) proposed a brain tumor MRI 

classification method using a novel deep residual and regional 

CNN, demonstrating high accuracy through a combined 

architectural design [21], [28]. Alemayehu (2025) introduced 

a lightweight CNN model that achieved 98.78% accuracy on 

MRI images, using Grad-CAM for interpretability while 

maintaining computational efficiency [22], [29]. A study 

published in BMC Medical Imaging (2024) presented a 

hybrid deep CNN model for brain tumor multi-class 

recognition, achieving an accuracy of 99.53% across several 

tumor types [23]. Another work by the same journal explored 

explainable AI using Grad-CAM with ResNet-50, showing 

how interpretability could be enhanced without sacrificing 

model performance [24]. Vimala et al. (2023) proposed BTC-

fCNN, a fast convolutional neural network optimized for 

multi-class identification, emphasizing lightweight design for 

real-time deployment [25]. 

 

Further, Renjeni and Mukunthan [26], in the International 

Journal of Computer Science and Engineering, proposed a 

projection pursuit bivariate multilayer perceptron model, 

showing that even simpler neural architectures could 

effectively classify brain tumors. Similarly, Ghosh and Roy 

[27] utilized deep learning with MRI images and achieved 

promising results using a well-tuned CNN structure. These 

studies emphasize the potential of both traditional and 

modern deep learning models for clinical diagnostic tools. 

 

More recently, Zahoor et al. [28] further improved CNN 

models with regional features to boost classification 

performance. Alemayehu [29] optimized lightweight CNN 

architectures specifically for MRI-based tumor detection. 

Vimala et al. [30] introduced BTC-fCNN, a fast and efficient 

CNN for real-time multi-class classification, contributing 

significantly to the field. 

These studies highlight that deep learning, especially CNN-

based models, offers promising results in brain tumor 

classification. However, challenges remain in designing 

architectures that generalize well across datasets, balance 

precision with computational efficiency, and provide 

explainable outputs for clinical use. Building on these 

findings, our work proposes an enhanced CNN model trained 

on a dataset of 3,060 MRI scans, with performance evaluation 

based on essential metrics such as accuracy, sensitivity, and 

specificity. 

 

3. Theory 

 
3.1 CNN Architecture 
The CNN model that we will be implementing is the 

Sequential model, as it offers a straightforward method for 

constructing neural networks in Keras by stacking layers one 

at a time. Each layer consists of different components such as 

Conv2D, activation functions, max pooling, dense layers, 

dropout layers, and so on, each with its unique role in the 

architecture. 

 

Conv2D: Performs convolution operations on the input to 

generate feature maps. Important hyperparameters include 

filter count and kernel dimensions. 

 

Activation: Introduces non-linearity into the model. For 

image classification tasks, common activation functions are 

ReLU and Sigmoid. 

 

MaxPooling2D: Reduces the spatial size of the feature maps 

by selecting the maximum value from each subregion, aiding 

in downsampling. 

 

The CNN architecture also involves additional components: 

Flatten: Transforms the multi-dimensional output into a one-

dimensional array to prepare for dense layer input. 

 

Dense: Connects each neuron from one layer to every neuron 

in the next, allowing complex relationships to be learned for 

classification. 

 

Together, these components help the network capture and 

learn abstract patterns from brain MRI scans. 

 

Evaluation Metrics 

To assess the model’s performance, several metrics were 

employed: 

 

 

Here, TP = True Positive, FP = False Positive, TN = True 

Negative, and FN = False Negative. These metrics 

Precision          =                    
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (1) 

Sensitivity         =                    
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (2) 

Accuracy            =              
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃)
 (3) 

Specificity        =                     
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
 (4) 
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collectively assess the classification model’s ability to 

distinguish tumor types accurately. 

 

Loss Function 

The model uses the binary cross-entropy loss function for 

optimization in binary classification tasks. It is defined as: 

𝐻𝑝(𝑞) = −
1

𝑁
∑[yi𝑙𝑙𝑙(𝑙(yi)) + (1 − yi)𝑙𝑙𝑙(1−𝑙(yi))]

𝑁

𝑖=1

 

This function penalizes incorrect predictions, encouraging the 

model to improve during training. 

 

3.2 Implementation of the Proposed Algorithm 
After preprocessing the images and storing them in the 

dataset, we proceeded to implement our algorithm. The 

architecture we adopted is based on a Convolutional Neural 

Network (CNN), which has become a widely accepted 

approach in medical imaging due to its efficiency in 

extracting relevant features and performing precise 

classifications [14][21][25]. 

 

CNNs derive their name from the convolution operation, a 

mathematical process that enables the extraction of local 

features from input images. A typical CNN includes multiple 

layers: feature extraction layers (convolution and pooling), 

non-linear activation layers, and fully connected classification 

layers. Trainable parameters are found in convolutional and 

dense layers, while pooling and activation perform non-

trainable operations [15][24]. 

 

CNNs have achieved high accuracy in image-related tasks 

such as classification tasks in benchmark datasets like 

ImageNet, object detection, and brain tumor analysis using 

MRI images [14][21]. In our study, we utilized a CNN 

architecture customized specifically for categorizing brain 

tumors into Glioma, Meningioma, and Pituitary classes. 

 

The primary advantage of CNNs in this application is their 

capability to autonomously extract and prioritize spatial 

patterns from MRI scans, eliminating the need for hand-

engineered features. Our architecture is designed to balance 

model complexity with training efficiency by employing a 

refined sequence of convolutional, pooling, dropout, and 

dense layers [21][23][25]. 

 

This tailored approach aims to improve classification 

accuracy, reduce training time, and address limitations 

identified in previous studies—such as overfitting, poor 

generalization, or misclassification of specific tumor types 

[8][24].  

 

4. Experimental Method 

 
4.1 Dataset 
To conduct our study, we utilized a publicly available dataset 

from Kaggle, a well-known platform for sourcing machine 

learning datasets [12]. MRI scans produce a substantial 

volume of imaging data, which are typically reviewed by 

radiologists. Our data consists of 3060 Magnetic Resonance 

Imaging (MRI) images and split into many folders which are 

the normal, tumorous and prediction folder. 

We chose to work with MRI images as it is known as the best 

technique for detecting brain tumors [12]. 

 The Normal folder contains 1500 MRI images of non-

tumorous patients. 

 The Tumorous folder contains 1500 MRI images of 

tumorous patients. 

 The Prediction folder, serving as validation data, comprises 

60 MRI images that include both tumorous and non-

tumorous cases. These images are used to evaluate the 

model’s accuracy across several performance indicators. 

An overview of our dataset can be visualized in Fig.1. 

 

4.2 Methodology 
As mentioned in the introduction, the main goal of our 

research is to build a CNN model that can produce a better 

result than the existing ones on the brain tumor classification. 

So far, many studies have explored brain tumor classification 

using various deep learning models, such as the FastAI 

model, YOLO V5, as well as the proposed CNN model in this 

paper [4], which compared Cropped and Uncropped MRI 

images. Our model has demonstrated improved performance 

over those reported in the referenced works. 

 

This paper [13] also worked on brain tumor detection by 

comparing some well-known Deep Learning algorithms, 

including YOLO V3 (PyTorch), YOLO V4 (Darknet), and 

YOLO V4-Tiny, and achieved an overall accuracy of 90%. 

 

The implementation of our algorithm was done in many steps 

as we will describe below: 

 We started by importing all the needed python libraries 

such as OpenCV (use to read images from the dataset), 

NumPy (turn list into numpy arrays since it is much faster 

and uses less memory), Keras, Pillow and so on. 

 As our data were saved into different folders (Normal and 

Tumorous), we had to do data processing and save them 

inside one Python list. Since training requires both classes, 

we initialized two separate lists called “Dataset” and 

“Label” to store the images and their corresponding classes. 

 We ensured that all given images in our dataset were 

images by checking the image extension (.jpg) of each 

image in the dataset. 

 Once the image passes this step, we converted all given 

images into array and resize it to 64*64, and lastly, append 

the Image to the Dataset list and its label to the Label list. 

 

We also did some data augmentation to artificially increase 

the amount of data. 

 

4.3 Proposed Method 
The brain tumor classification is a very critical task, and to 

get a better accurate result than the related works done in the 

past, we had to implement a special CNN architecture. We 

started by importing some Keras built-in functions, such as 

Sequential, Conv2D, MaxPooling2D, Activation, Dropout, 

Flatten, and Dense. Sequential was chosen for its simplicity 

in constructing models layer by layer in Keras. 
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Using the ‘add()’ method, we inserted three convolutional 

layers into our architecture. These layers process input MRI 

scans as 2D matrices. Each of them integrates convolution 

operations, activation functions, and pooling mechanisms. 

 

For the three layers, we applied a filter of 32 and the kernel 

size of 3x3 on the 2D Convolution layer; and also used the 

ReLU Activation function on the 3 layers as well as a pool 

size of 2x2 on the Max Pooling Operation. 

 

After building the three layers, we added the Flatten, 

Dense(64), another ‘ReLU’ activation, Dropout, Dense(1), 

and finally another ‘Sigmoid’ activation function. Note that 

the Sigmoid function is evaluated from the following 

formula: F(x) = 
1

(1 + e(−x))
 

 

To illustrate the impact of the proposed model on the given 

MRI images, we created a separate python function called 

”Testing.py” whereby we used to test the model. That 

function basically takes an MRI image input from the 60 MRI 

images that were allocated for the validation and use the 

model.predict() function to predict the output. The output 

value ranges from [0, 1], 0 representing the Normal Patient 

and 1 the Tumorous one. We ran the validation on 5 sample 

images of our prediction images dataset and the Fig.2 

illustrates the results we have obtained. 

 

Our model evaluation has been conducted using several 

standard indicators such as accuracy, sensitivity, specificity, 

and prediction effectiveness. The following paragraph 

explains how the metrics are being evaluated. 

 

5. Results and Discussion 
 

As stated previously, the results obtained for our brain tumor 

classification are entirely dependent on the implementation of 

our model. For instance, using 3 hidden layers in our model 

has produced an overall result of over 99.5% based on the 

accuracy metrics. Using more or fewer layers, the results 

could have been different. Likewise, we used over 3000 MRI 

images to train our model; a different dataset size would 

likely yield different outcomes. 

 

Another critical variable influencing performance is the 

number of EPOCHS applied during training. EPOCHS 

represent how many complete passes the model makes 

through the training dataset. For our implementation, 50 

EPOCHS were used, resulting in notably high performance. 

As shown in Figure 3, model evaluation metrics evolve with 

an increase in EPOCHS, highlighting the relationship 

between training duration and accuracy. Table 1 demonstrates 

that our model outperforms existing models for brain tumor 

classification. For instance, the YOLO V5 model produced an 

accuracy of only 5.07%, which is significantly lower than our 

proposed method's accuracy of 99.39%. 

 

After training our model, we integrated Grad-CAM 

(Gradient-weighted Class Activation Mapping), a method that 

visually reveals how the model identifies relevant regions in 

an image when making predictions. To demonstrate its 

effectiveness, we used random samples from the validation 

dataset. Figure 4 illustrates the Grad-CAM outputs. On the 

left, non-tumorous images show uniform coloration, 

indicating no tumor detection. In contrast, the right image 

clearly highlights a tumor region, validating the network’s 

classification. 

 

Furthermore, our model’s performance is comparable to and 

in some aspects exceeds those in recent literature. For 

example, Zahoor et al. [28] introduced a deep residual and 

region-based CNN for MRI classification, achieving strong 

accuracy, while Alemayehu [29] proposed a lightweight CNN 

model with 98.78% accuracy, using Grad-CAM to enhance 

interpretability. Similarly, the BTC-fCNN proposed by 

Vimala et al. [30] emphasized fast performance for multi-

class classification. These models paved the way for efficient 

and interpretable brain tumor classification; however, our 

architecture is designed to offer a more optimal trade-off 

among prediction accuracy, computational speed, and 

interpretability, making it better suited for real-world 

deployment. 

 

 

 
Figure.1. Normal and Tumorous MRI images 

 

 
Figure.2. The result of our model on 4 sample images. 

 

 
Figure 3 Model Accuracy Loss Function 
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Figure.4. Grad-CAM on normal tumorous sample images 

 
Table 1: Comparison results of proposed method and existing methods 

Models Accuracy 

(%) 

Precisio

n (%) 

Specificity 

(%) 

Sensitivity 

(%) 

FastAI [20] 95.78 96.70 95.65 95.23 

YOLO V5 [13] 95.07 90.46 92.34 91.55 

CNN related work [4] 99 98.19 99.19 98.18 

Proposed Method 99.39 99.56 99.62 99.31 

  

6. Conclusion and Future Scope  
 

Our main work was to classify images from Normal and 

Tumorous patients. We were given a dataset that contained 

3060 MRI images and split it into two sets. One set, the 

largest one, contains 3000 MRI of both Normal and 

Tumorous patients, we used it to train our model, and the 

other 60 images were used to validate our model. We built a 

specialized classification model using Convolutional Neural 

Networks (CNNs), and we implemented a special architecture 

containing three hidden layers and ran 50 epochs. The results 

demonstrated that our approach delivered superior 

performance when compared to other existing techniques. 

Implementing the GradCam function has given a good 

perception of how the proposed model works on a given 

sample MR images at each layer. Although the Result 

surrounds 99%, however, it can still be improved if one could 

use a large amount of dataset to train our model. In future 

work, this study will focus on other datasets and improve 

algorithm accuracy. 
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