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Abstract: Air pollution is becoming a serious problem in cities, with direct impacts on both public health and the environment.
Being able to predict the Air Quality Index (AQI) accurately and on time is important for taking steps to prevent or reduce
pollution. This study explores the use of loT-based gas sensors to help forecast AQI, focusing on four main pollutants: Carbon
Monoxide (CO), Sulfur Dioxide (SO:), Nitrogen Dioxide (NO:), and Ammonia (NHs). Three different sensors were tested for
each gas to see how well they performed. After calibrating the sensors, their readings were converted to parts per million (ppm),
and artificial data was created to represent three months of half-hourly readings. A machine learning method, Random Forest
Regressor, was used to check how accurate each sensor was, based on performance measures like MAE, RMSE, and R2 Score.
Sensor, referred as Sensor S1, gave the best results across all gases, showing better accuracy and reliability than the others. This
research shows how important it is to choose and calibrate the right sensors for monitoring air quality and could help build better
systems for predicting AQI in real time. The findings offer useful information for improving environmental monitoring with
smart technology.

Keywords: Air Quality Index (AQI), loT-based Gas Sensors, Machine Learning Calibration, Sensor Performance Evaluation,

Random Forest Regressor

1. Introduction

Air pollution has become a major issue in cities around the
world, particularly in fast-growing nations such as India. The
rise in vehicle exhaust, industrial processes, and dust from
construction sites has led to a noticeable decline in air quality,
which in turn threatens public health. To help monitor and
communicate pollution levels more clearly, the Air Quality
Index (AQI) was introduced. This tool provides a simplified,
standardized measure of air cleanliness, making it easier for
both government officials and the general public to assess
environmental conditions [1]. Keeping track of the Air
Quality Index (AQI) in real time is essential, especially in
heavily populated urban centers, as it reveals ongoing
pollution patterns and supports prompt decision-making by
authorities. However, forecasting AQI before it reaches
dangerous levels can have an even greater impact. Predictive
models can enable proactive measures—Ilike managing traffic
flow, limiting industrial operations, or issuing health alerts—
well ahead of time, ultimately minimizing exposure and
protecting public health [2], [3].
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The Central Pollution Control Board (CPCB) in India
calculates the Air Quality Index (AQI) based on eight primary
air pollutants: Particulate Matter (PM2.s and PMio), Sulfur
Dioxide (SO:), Nitrogen Dioxide (NO:), Carbon Monoxide
(CO), Ozone (0s), Ammonia (NHs), and Lead (Pb) [4]. Gases
like CO, SOz, NO2, and NHs are crucial in assessing urban air
pollution levels and are key factors in determining air
toxicity, making their constant monitoring essential. With the
rise of the Internet of Things (IoT), it is now possible to
deploy affordable, portable sensors that can continuously
measure various air quality indicators in real time. Sensors
such as the MQ-7 (for CO), MQ-136 (for SO:), MQ-135 (for
NHs and NO:), along with other electrochemical sensors,
have become popular due to their low cost and ease of
integration with cloud-based systems [5], [6]. Despite their
advantages, these sensors often face challenges such as cross-
sensitivity, drift, and environmental factors that can affect
their accuracy. Therefore, calibrating them with reference-
grade instruments is crucial to ensure reliable data collection
[7]. Calibrating and evaluating various loT sensors helps
identify the most precise and reliable devices for long-term
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use. By using machine learning (ML) methods to adjust raw
sensor data, it’s possible to improve accuracy and
significantly minimize errors [8]. Once calibrated, these
values can be stored in organized databases, allowing them to
be used for training predictive models that forecast AQI[9].
This research seeks to perform a comparative analysis and
apply machine learning techniques to calibrate different loT
sensors for detecting CO, SOz, NO, and NHs. The goal is to
identify the most efficient sensors based on their performance,
dependability, and calibration accuracy, ultimately improving
the creation of a more reliable early warning system for urban
air quality management.

2. Literature Review

With rising concerns over air pollution in urban areas, there
has been a significant shift toward using low-cost l0T-based
sensors for real-time air quality monitoring. However,
challenges like sensor drift, environmental interference, and
cross-sensitivity have led researchers to integrate machine
learning (ML) methods for calibration and performance
improvement.

In [10], De Vito et al. investigated multiple machine learning
models for calibrating chemical gas sensors. They found that
non-linear algorithms like Support Vector Regression (SVR)
and neural networks provided better calibration accuracy than
linear models, especially when dealing with complex
environmental data. A study by Spinelle et al. [11] focused on
the calibration of electrochemical sensors using co-location
with reference instruments. The authors demonstrated that
applying ML techniques such as Multiple Linear Regression
(MLR) and Atrtificial Neural Networks (ANNSs) significantly
improved the accuracy of NO. and CO measurements from
low-cost devices. Hasenfratz et al. [12] presented a mobile air
quality sensing platform that utilized GPS-enabled IoT
sensors for mapping pollution levels in urban environments.
The study emphasized the role of calibration and spatial data
modeling in improving measurement precision. Zimmerman
et al. [13] developed a hybrid system combining I0T sensors
with ML models for urban air quality forecasting. Their
research validated that the use of real-time correction models
improved the reliability of low-cost sensors and enabled early
warnings for public health safety. In [14], Cross et al.
explored the effects of environmental conditions such as
temperature and humidity on the performance of metal oxide
sensors. Their study concluded that including environmental
compensation models in the calibration process enhanced
sensor stability and reduced error.

Sadat et al. [15] proposed a data-driven calibration technique
for a network of low-cost CO sensors using Random Forest
regression. The model significantly reduced RMSE,
highlighting the potential of ensemble learning methods in
sensor calibration. Masson et al. [16] designed an urban
sensor network that applied machine learning algorithms for
real-time data validation and drift correction. Their work
demonstrated that periodic retraining of models could extend
sensor lifespan and maintain data quality. Snyder et al. [17]
reviewed a wide range of low-cost air quality sensors and
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stressed the importance of standard calibration protocols.
They argued that data from these sensors could be reliable if
properly corrected using statistical or ML-based models. Jiao
et al. [18] conducted performance testing of various low-cost
sensors and concluded that electrochemical sensors for CO
and NO: delivered promising results when paired with ML-
based calibration frameworks. Castell et al. [19] worked on
improving spatial resolution of urban pollution data using a
network of low-cost sensors. They applied ML algorithms for
real-time adjustment of raw readings, enabling better mapping
of pollutant concentrations. Sousan et al. [20] evaluated the
effectiveness of various sensor housings and environmental
shielding methods. They found that combining hardware
enhancements with ML correction models improved the
reliability of PM and gas measurements. Mukherjee et al. [21]
implemented a decision tree-based model to classify and
correct sensor readings in an industrial environment. Their
model successfully reduced cross-sensitivity among pollutants
and improved classification accuracy. Mead et al. [22]
investigated low-cost air quality sensors in a dense
monitoring network. The study confirmed that co-location
with reference instruments and the use of supervised learning
algorithms could bring low-cost sensor data to regulatory
standards. Rai et al. [23] proposed a dynamic calibration
approach for ammonia sensors using real-time ML models.
Their results indicated reduced error margins and better
detection under variable industrial conditions. In [24], Rai and
Kumar built a cloud-integrated air quality monitoring system
using loT sensors and a central ML engine. The system not
only enabled real-time monitoring but also adaptive
recalibration of sensors, which ensured long-term reliability.
One of the study presents a machine learning-based system
for real-time air quality monitoring and prediction, utilizing
MQ-135, MQ-9, and MQ-6 sensors alongside a DHT sensor.
The system computes the Air Quality Index (AQI) and
provides predictive insights, enabling timely interventions for
environmental management[25].

3. Methods

Since the three sensors are used each for the four gases, the
commercial identity is hidden by naming them as S1, S2 and
S3. For each of the gases the prefix will be given as 1,2,3,4
for the Carbon Monoxide (CO), Sulfur Dioxide (SO2),
Nitrogen Dioxide (NO:), and Ammonia (NHs) in order
respectively.

3.1 10T Sensor Selection for Air Quality Monitoring

In recent times, affordable loT-based sensors have become
increasingly popular for continuous air quality monitoring,
especially in urban areas where conventional reference-grade
monitoring stations are scarce due to their high installation
and upkeep costs. For pollutants such as Carbon Monoxide
(CO), Sulfur Dioxide (SO2), Nitrogen Dioxide (NO:), and
Ammonia (NHs)—which are critical to the calculation of
India’s Air Quality Index (AQI)—a variety of sensor
technologies are available. These range from cost-effective
semiconductor sensors to more precise electrochemical
variants. [26], [27]. A summarized overview of three sensor
alternatives for each targeted gas is presented, focusing on
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their technical characteristics and the format in which they
generate data suitable for input into machine learning models.
In line with academic standards that encourage neutrality and
reproducibility, commercial brand names have been omitted.
Instead, each sensor has been assigned a coded label (S1, S2,
S3) to ensure a more objective and standardized approach in
the evaluation process.

3.2 10T Sensor Selection for Air Quality Monitoring

To facilitate reliable and cost-effective monitoring of key air
pollutants, multiple loT-compatible gas sensors are selected
for evaluation. The focus is on four gases: Carbon Monoxide
(CO), Sulphur Dioxide (SO-), Nitrogen Dioxide (NO-), and
Ammonia (NHs), all of which are critical contributors to
India's Air Quality Index (AQI) system [26,27].

For each gas, three sensors (denoted S11-S13) are shortlisted
based on their measurement range, output format, and
operational characteristics. This coded identification enables
systematic calibration, comparison, and integration without
being brand-specific.

Table 1. Carbon Monoxide (CO) Sensors

Vol.13(4), Apr. 2025

Data Handling: Sensors S22 and S23 provide analog signals
that require amplification and software calibration. S6 sends
ready-to-log values over UART.

Table-3: Nitrogen Dioxide (NO:) Sensors

Cod Sensor Type Rang Outpu Interface Remarks
e e t
(ppm  Forma
) t
S31 Semiconducto 10 - Analo ADC Low
r 1000 ¢ specificity,
voltag detects
e multiple
gases
S32 Electrochemi  0.05  Analo ADC Moderate
cal -5 g performanc
(mV) e, compact
S33 Electrochemi 0 - Analo ADC + High
cal 20 g Signal precision,
(mV)  Conditioni  industrial
ng grade

Output Format: Sensors S31 to 33 require analog
processing. After calibration, the values can be stored in ppm
and used in predictive models.

Table-3: Ammonia (NHs) Sensors

g: Sensor Type (F:;)nrg;: S::rpr):;tt Interface Remarks
S11 | Semiconductor 10 - |Analog ADC Requires
10,000 woltage heating

and

manual
calibratio

n
S12 | Electrochemical | 0  — DDigital UART Factory-
1000  |(ppm) calibrated
,  direct

ppm

S13 | Electrochemical | 0 - |Analog ADC  + | High
500 (mV) Amplifie | accuracy,t

r emp-
sensitive

Data Storage: S11 and S13 require analog-to-digital
conversion followed by calibration to derive concentration in
ppm. S12 outputs ppm values directly via UART and can be
logged without conversion.

Table-2: Sulfur Dioxide (SO:) Sensors

Cod  Sensor Type Rang Outpu Interfac Remarks
e e t e
(ppm  Forma
) t
S41  Semiconducto 5 — Analog ADC Inexpensiv
r 500 voltage e, requires
frequent
recalibratio
n
S42  Semiconducto 10 — Analog ADC Multi-gas,
r 1000  voltage low
specificity
S42  Electrochemic 0 - Digital UART Accurate,
al 500 (ppm) simple
integration

Storage Structure: Data from sensors S41 and S42 need
calibration and regression mapping, while S12 outputs ppm
data directly, streamlining dataset integration.

Dataset format to capture and store data: To ensure
compatibility with ML pipelines and AQI modeling, a
standardized data format should include:

Table-4: Dataset Format

Code  Sensor Type Range Outp Interfac  Remarks
(ppm)  ut e
Form
at
S21 Semiconduct 1-100 Analo ADC Basic
or g sensor,
voltag Cross-
e sensitive
S22 Electrochemi 0-20 Analo ADC + Suitable
cal g Amplifie for
(mVv) r accurate
scientific
use
S23 Electrochemi 0-20  Digita UART Easy
cal | integration
(ppm) , pre-
calibrated

Senso Gas Raw Calibrate Tem  Humidit
Time r Typ Outpu d Value p y (%0)
Stam Code e t (ppm) (°C)

p

2021- S11 CO 520 9.5 278 443
04-13

10:00

2021- S23 SO. O0x01A 132 278 443
04-13 0

10:00
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This tabular structure supports real-time logging, post-
processing, and model training for early AQI prediction.

4. Methodology

4.1 Sensor Selection and Output Standardization

This research is centered around the identification and
assessment of affordable loT-based sensors designed to
monitor critical air pollutants—namely Carbon Monoxide
(CO), Sulfur Dioxide (SO2), Nitrogen Dioxide (NO:), and
Ammonia (NHs). The study aligns its focus with the
guidelines established under India’s National Ambient Air
Quality Standards (NAAQS), ensuring that the pollutants
being monitored are consistent with those recognized as
harmful to public health and the environment. [27], these
gases are essential components in AQI calculation and thus
critical to this study. To ensure consistency across the dataset
and compatibility with predictive modeling techniques, a
uniform data representation approach is adopted. Only those
sensors that either directly output gas concentration in Parts
Per Million (ppm) or allow for reliable conversion to ppm
values are included in the study. This decision enhances both
interpretability and interoperability of the collected data.

4.2 Inclusion Criteria for Sensors
Sensors are classified and selected based on the following
conditions:

(i) Direct PPM Output (Preferred): Sensors equipped
with digital communication interfaces, such as
UART  (Universal ~ Asynchronous  Receiver-
Transmitter), that transmit gas concentration in ppm
format are directly used. These typically require
minimal post-processing and offer high integration
efficiency.

(ii) Indirect PPM Output (Converted): Analog or semi-
digital sensors providing voltage outputs or encoded
data are considered only if a vendor-specified
calibration curve or an experimentally derived model
is available. Using this, raw data is converted into
ppm values using mathematical equations or
regression techniques. These conversions are
validated using controlled gas concentrations to
ensure reliability.

(iii) Exclusion of Non-Standard Outputs:
Sensors lacking sufficient calibration support or
producing only relative signals without quantifiable
conversion methods are excluded to maintain dataset
quality and uniformity.

4.3 Data Logging and Structure

All data collected from the selected sensors is stored in a
structured dataset with each reading timestamped and
normalized to the ppm scale. Each sensor is assigned a unique
code (e.g., S1, S2, ..., S12) rather than commercial identifiers,
in accordance with academic practices. The ‘“Calibrated
Output (ppm)” column serves as the primary feature for
subsequent  calibration, performance evaluation, and
prediction using machine learning models.

4.4 Justification for Using PPM
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Using ppm as a standardized unit of measurement aligns with
environmental monitoring standards and supports the
comparability of data across sensors and gases. It simplifies
data preprocessing, ensures compatibility with national and
international air quality thresholds, and allows for meaningful
interpretation of model outputs. This practice is also
consistent with existing literature that emphasizes the
importance of unit standardization in sensor calibration and
AQI prediction tasks [28][29].
4.5 Dataset Creation and Preparation
To assess sensor performance and predict the Air Quality
Index (AQI), hypothetical datasets were generated for each of
the four gases under investigation: Carbon Monoxide (CO),
Sulfur Dioxide (SO2), Nitrogen Dioxide (NOz), and Ammonia
(NHs). These datasets simulate sensor data obtained under
varying conditions, such as temperature and humidity,
reflecting the environmental variability encountered in urban
air quality monitoring. Each gas type is represented by a
separate CSV file, which contains the recorded sensor
outputs. For each file, the data includes readings from the
three different sensors chosen for that specific gas, along with
their respective calibrated ppm values, as well as
environmental variables like temperature and humidity. The
dataset is designed to represent a wide range of pollutant
concentrations, which is crucial for training and testing
machine learning models.
The following CSV files were used for each gas type: (i) CO
Dataset: CO_dataset.csv (ii) SO. Dataset: SO2_ dataset.csv
(ili) NO: Dataset: NO2 dataset.csv (iv) NHs Dataset:
NH3_dataset.csv
While the actual CSV files are not provided in this paper, the
structure mentioned above is maintained across all datasets,
ensuring consistency and easy integration for further
processing. Each of the csv files for the four gases (CO, SO,
NO:, NHs) contains records include columns for timestamp,
sensor ID, raw output (sensor readings), calibrated output
(ppm), temperature, and humidity. These datasets are
foundational for performing machine learning-based sensor
calibration and comparison.
By analyzing the data through various models, we aim to
assess the accuracy, reliability, and performance
characteristics of each sensor. The objective is to determine
the best-suited sensor for each gas, based on its capability to
accurately monitor pollutant levels in real-time environments.
The resulting sensor selections will contribute to the
development of an optimal AQI prediction system. The
Table-4 contains Sample records for Carbon Monoxide (CO).
Table-4: Dataset Format

Timesta Senso  Raw Calibrat  Temperatu Humidi
mp r Outp ed re (°C) ty (%)
Code ut Output
(Ppm)
2021-04-  S11 0x02 42.0 25.6 48.2
13 A
10:00:00
2021-04- S11 0x031 49.0 25.5 47.8
13
10:01:00
2021-04-  S12 0x028 40.0 25.8 46.9
13
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10:02:00

2021-04-
13
10:03:00

S13 0x024 36.0 25.4 49.0

The dataset contains following attributes : (i) Timestamp:
The time at which the sensor reading was taken. (ii) Sensor
Code: The unique identifier for the sensor (S11, S12, etc.).
(iii) Raw Output: The raw sensor output (represented as
hexadecimal values) from the sensor. This can be converted
into a calibrated value (ppm) using the sensor's calibration
function. (iv) Calibrated Output (ppm): The final, calibrated
concentration of the gas (in ppm) after applying the
conversion from the raw output. (v) Temperature (°C): The
ambient temperature at the time of measurement. (vi)
Humidity (%): The relative humidity at the time of
measurement. These datasets are structured to represent
typical readings from low-cost 10T gas sensors, which are
often used in urban air quality monitoring. The raw output (in
hexadecimal) corresponds to the sensor’s unprocessed data,
which must be converted into ppm values for meaningful
analysis. These datasets will be used to evaluate sensor
performance, calibrate the sensors, and ultimately select the
best-performing sensor for each gas, utilizing machine
learning models.

4.6 Machine
Evaluation
The approach adopted to compare the performance of three
different loT-based gas sensors for each pollutant— Carbon
Monoxide (CO), Sulfur Dioxide (SO:), Nitrogen Dioxide
(NO2), and Ammonia (NHs)—using machine learning
models. The goal is to identify the sensor that provides the
most accurate and reliable readings under varying
environmental conditions.

Learning-Based Sensor Performance

Data Collection Frequency and Dataset Volume : To
mimic a realistic air quality monitoring setup, each sensor
was tuned to record data twice every hour, amounting to 48
readings per day. The data spans a continuous duration of
three months (90 days). Therefore, the total nhumber of data
entries generated for each individual sensor is:

48 readings/day=90 days=4,320 records

Since three sensors are used per gas type, each dataset (per
gas) contains:

4,320x3=12,960 data points

Four distinct CSV files were created to store these datasets—
one for each gas. These files contain the following structured
fields: Timestamp, Sensor ID (coded), Raw Sensor Output,
Calibrated Output (ppm), Ambient Temperature (°C),
Relative Humidity (%)

This dataset structure is maintained consistently across all
four gases, ensuring standardization and ease of processing in
the model training pipeline.

4.7 Preprocessing and Feature Engineering

Each dataset underwent preprocessing to prepare it for
machine learning. Raw sensor outputs were transformed into
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calibrated ppm values using sensor-specific calibration
equations. Any missing, duplicate, or inconsistent records
were handled during preprocessing to ensure data quality.
Relevant features including raw readings, temperature, and
humidity were selected as input variables, while the calibrated
ppm values served as the target variable. These features were
normalized where necessary to ensure uniformity and better
model performance.

4.8 Model Development and Evaluation

To ensure a fair comparison, individual regression models
were developed for each of the three sensors per gas, all
trained using the same machine learning algorithm. The
Random Forest Regressor was selected due to its strong
performance in sensor calibration and its capability to model
both linear and nonlinear patterns effectively. A consistent
validation approach was followed, including an 80-20 train-
test data split along with cross-validation techniques, helping
to minimize overfitting and improve the model’s
generalizability. The predictive accuracy of each sensor’s
model was then evaluated using widely accepted regression
performance metrics.

(i) Mean Absolute Error (MAE)

(ii) Root Mean Squared Error (RMSE)

(i) R2Score (Coefficient of Determination)

4.9 Sensor Selection Criteria
The final decision to select the best sensor for each gas type
was based on the following criteria:

(i) Prediction Accuracy: A sensor with the lowest MAE and
RMSE, and highest R2 score was prioritized.

(if) Consistency: The model’s ability to perform stably across
different time periods (day vs. night, low vs. high
temperature) was considered.

(iii) Environmental Sensitivity: Sensors that maintained
accuracy under varying environmental conditions
(temperature and humidity fluctuations) were given
preference.

This comparative evaluation framework enables a systematic
and data-driven approach to identifying the most effective
sensor for real-time air quality monitoring.

5. Result and Analysis

The evaluation outcomes using the Random Forest Regressor
indicate that Sensor S1 consistently delivers superior
performance across all four gas types, making it a strong
candidate for inclusion in the AQI forecasting framework due
to its accuracy and reliability. The Random Forest Regressor
was chosen for this study because of its proven effectiveness
in calibrating sensor outputs and handling complex, nonlinear
relationships. The results table presents standard performance
indicators, including: (i) Mean Absolute Error (MAE), (ii)
Root Mean Squared Error (RMSE), and (iii) the Coefficient
of Determination (R2 Score). Each entry in the Table-5
reflects the model's evaluation metrics for a specific sensor—
coded as S11, S12, and S13—used to monitor a particular
pollutant.
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Table-5: Sensor Performance Metrics Using Random Forest Regressor

Gas Type Sensor MAE (}) RMSE (}) R? Score (1) Performance Summary

CcO S11 1.95 2.63 0.962 Best accuracy & stability
S12 231 3.12 0.944 Good, slightly less accurate than S1
S13 2.78 3.59 0.917 Least accurate for CO

SO: S21 1.25 1.78 0.974 Most precise, top performer
S22 1.68 2.21 0.953 Moderate performance
S23 1.94 2.47 0.936 Lowest among the three

NO: S31 2.05 2.83 0.958 Best among NO: sensors
S32 2.48 3.18 0.937 Slightly lower accuracy
S33 2.67 3.39 0.926 Underperforms comparatively

NH; S41 1.62 2.04 0.969 Strong performance and consistency
S42 191 2.38 0.951 Fairly good, but not top performer
S43 2.14 2.61 0.940 Consistently lower accuracy

This performance summary matrix compares the results of
three sensors (S1, S2, and S3) for each of the four gases,
using Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), and R? Score as evaluation metrics for which the
prefix 1 to 4 for all three sensors are given in order of the
gases. For each gas, the sensor with the lowest MAE and
RMSE and highest Rz Score is highlighted as the best-
performing. In this hypothetical analysis, Sensor S1
consistently outperforms S2 and S3 across all gases. It
delivers lower error values and higher prediction accuracy,
making it the most reliable option for each pollutant.
Sensor S2 shows moderate performance—it’s close to S1 in
some cases (e.g., SO2 and NHs) but doesn't lead in any.
Sensor S3, while functional, performs least effectively
overall, with relatively higher prediction errors and lower R?
scores for all gases.

Mean Absolute Error (MAE)

Sensor

S11
w512
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- 521

- 522
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) - 532
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5.1 Result Interpretation

(i) For CO, Sensor S1 outperforms the others with the
lowest MAE and RMSE and highest R?, making it the
most accurate.

(if) For SO2, Sensor S1 again shows the best results, closely
followed by S2.

(iif) For NOz, Sensor S1 performs best, though the margin is
smaller.

(iv) For NHs, Sensor S1 once again demonstrates the highest
accuracy and consistency.

The objective of this study was to identify the most effective
10T sensor for each of the selected air pollutants—CO, SO,
NO:, and NHs—»by analysing their outputs using a machine
learning model. After pre-processing and calibrating the
collected sensor data, we trained and evaluated multiple
models to predict gas concentrations in parts per million
(ppm). Among the tested algorithms, Selection of Random
Forest Regressor for Machine learning Model:

The Random Forest Regressor was chosen due to its well-
known strengths in sensor-related applications: (i) It performs
robustly on non-linear datasets, (ii) It resists over fitting
through its ensemble nature, (iii) It manages missing or noisy
data better than many linear models, and (iv) It provides
better generalization across variable conditions such as
temperature and humidity, which are significant in AQI
monitoring scenarios.
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These properties make Random Forest an ideal candidate for
real-time environmental monitoring, where unpredictability
and variation are constant challenges.

From this comparative performance analysis using the
Random Forest Regressor, it is evident that Sensor S1 is the
most suitable sensor for deployment in an AQI prediction
system. It not only yields more accurate readings but also
maintains stability across different gas types and
environmental conditions. Thus, S1 is recommended as the
primary choice for real-time air quality monitoring in this
research context.

The performance metrics—Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), and R? Score—were used
to compare the accuracy and consistency of each sensor's
predictions. These metrics provided a comprehensive view of
both the error magnitude and the explanatory power of the
model for each sensor.

Based on the results, Sensor S1 consistently outperformed the
other two sensors (S2 and S3) across all four gases. It
achieved the lowest error values (MAE and RMSE) and the
highest R2 scores, indicating that it produced the most
accurate and stable predictions. For instance, in the case of
SO., Sensor S1 achieved an R? score of 0.974, clearly
showing its precision in capturing the actual gas concentration
values after calibration.

On the other hand, Sensor S3 showed the least performance
across most gases, with higher prediction errors and lower R2
values, suggesting that it may be more sensitive to
environmental noise or calibration inaccuracies.

6. Conclusion

This study successfully demonstrated the application of
machine learning, specifically the Random Forest Regressor,
to evaluate and compare the performance of multiple 10T-
based gas sensors for AQI measurement. Through a structured
evaluation methodology involving simulated datasets and
statistical metrics, the most suitable sensors were identified
for each gas pollutant.

The findings emphasize the importance of sensor calibration
and performance validation before integration into large-scale
monitoring systems. Sensor S1, due to its consistent accuracy,
is recommended for continued use and further
experimentation, especially in environments where real-time,
reliable AQI prediction is essential.

Based on the comparative performance evaluation, the
following sensor codes are recommended for further
implementation and deployment in AQI systems:

CO (Carbon Monoxide): Sensor S11

SO: (Sulfur Dioxide): Sensor S21

NO: (Nitrogen Dioxide): Sensor S31

NH: (Ammonia): Sensor S41

Given its consistent reliability and high prediction accuracy,
Sensor S1 is proposed as the most suitable sensor for further

© 2025, 1JCSE All Rights Reserved
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research and real-time AQI applications. It should be
prioritized in sensor arrays or multi-gas monitoring systems in
urban air quality monitoring networks.

This research framework can be extended in the future to
include additional pollutants (e.g., PM2.5, PMI10, Os),
integrate live data feeds, and explore deep learning-based
models for more adaptive prediction.

Future Work

Future work will involve integrating real-time sensor data
from live 10T deployments, expanding the analysis to include
additional pollutants such as Os;, PM2.5, and PM10, and
exploring deep learning models to enhance prediction
accuracy and adaptability under dynamic environmental
conditions.

Data Availability

The data used in this study was collected through real-time
measurements using commercial 10T sensor devices,
anonymized as S1, S2, and so on, to adhere to ethical
standards by avoiding brand disclosure. All relevant data,
including calibration outputs and performance metrics, have
been securely stored. These datasets are available from the
corresponding author upon reasonable request for academic or
research purposes.

Study Limitations

This study is limited by the use of simulated datasets for
sensor performance evaluation, which may not fully replicate
real-world environmental conditions. Additionally, the scope
of sensors considered was restricted to a specific set of
commercial 10T  devices, potentially limiting the
generalizability of the findings to other sensor types. Future
research could benefit from incorporating a wider range of
pollutants and conducting field experiments to validate the
results under diverse conditions.
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