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Abstract: Air pollution is becoming a serious problem in cities, with direct impacts on both public health and the environment. 

Being able to predict the Air Quality Index (AQI) accurately and on time is important for taking steps to prevent or reduce 

pollution. This study explores the use of IoT-based gas sensors to help forecast AQI, focusing on four main pollutants: Carbon 

Monoxide (CO), Sulfur Dioxide (SO₂), Nitrogen Dioxide (NO₂), and Ammonia (NH₃). Three different sensors were tested for 

each gas to see how well they performed. After calibrating the sensors, their readings were converted to parts per million (ppm), 

and artificial data was created to represent three months of half-hourly readings. A machine learning method, Random Forest 

Regressor, was used to check how accurate each sensor was, based on performance measures like MAE, RMSE, and R² Score. 

Sensor, referred as Sensor S1, gave the best results across all gases, showing better accuracy and reliability than the others. This 

research shows how important it is to choose and calibrate the right sensors for monitoring air quality and could help build better 

systems for predicting AQI in real time. The findings offer useful information for improving environmental monitoring with 

smart technology. 

 

Keywords: Air Quality Index (AQI), IoT-based Gas Sensors, Machine Learning Calibration, Sensor Performance Evaluation, 

Random Forest Regressor 

 
 

1. Introduction 

Air pollution has become a major issue in cities around the 

world, particularly in fast-growing nations such as India. The 

rise in vehicle exhaust, industrial processes, and dust from 

construction sites has led to a noticeable decline in air quality, 

which in turn threatens public health. To help monitor and 

communicate pollution levels more clearly, the Air Quality 

Index (AQI) was introduced. This tool provides a simplified, 

standardized measure of air cleanliness, making it easier for 

both government officials and the general public to assess 

environmental conditions [1]. Keeping track of the Air 

Quality Index (AQI) in real time is essential, especially in 

heavily populated urban centers, as it reveals ongoing 

pollution patterns and supports prompt decision-making by 

authorities. However, forecasting AQI before it reaches 

dangerous levels can have an even greater impact. Predictive 

models can enable proactive measures—like managing traffic 

flow, limiting industrial operations, or issuing health alerts—

well ahead of time, ultimately minimizing exposure and 

protecting public health [2], [3]. 

The Central Pollution Control Board (CPCB) in India 

calculates the Air Quality Index (AQI) based on eight primary 

air pollutants: Particulate Matter (PM₂.₅ and PM₁₀), Sulfur 

Dioxide (SO₂), Nitrogen Dioxide (NO₂), Carbon Monoxide 

(CO), Ozone (O₃), Ammonia (NH₃), and Lead (Pb) [4]. Gases 

like CO, SO₂, NO₂, and NH₃ are crucial in assessing urban air 

pollution levels and are key factors in determining air 

toxicity, making their constant monitoring essential. With the 

rise of the Internet of Things (IoT), it is now possible to 

deploy affordable, portable sensors that can continuously 

measure various air quality indicators in real time. Sensors 

such as the MQ-7 (for CO), MQ-136 (for SO₂), MQ-135 (for 

NH₃ and NO₂), along with other electrochemical sensors, 

have become popular due to their low cost and ease of 

integration with cloud-based systems [5], [6]. Despite their 

advantages, these sensors often face challenges such as cross-

sensitivity, drift, and environmental factors that can affect 

their accuracy. Therefore, calibrating them with reference-

grade instruments is crucial to ensure reliable data collection 

[7]. Calibrating and evaluating various IoT sensors helps 

identify the most precise and reliable devices for long-term 

mailto:prof.ahujakavita@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9693-0346


International Journal of Computer Sciences and Engineering                                                                           Vol.13(4), Apr. 2025 

© 2025, IJCSE All Rights Reserved                                                                                                                                             85 

use. By using machine learning (ML) methods to adjust raw 

sensor data, it’s possible to improve accuracy and 

significantly minimize errors [8]. Once calibrated, these 

values can be stored in organized databases, allowing them to 

be used for training predictive models that forecast AQI[9]. 

This research seeks to perform a comparative analysis and 

apply machine learning techniques to calibrate different IoT 

sensors for detecting CO, SO₂, NO₂, and NH₃. The goal is to 

identify the most efficient sensors based on their performance, 

dependability, and calibration accuracy, ultimately improving 

the creation of a more reliable early warning system for urban 

air quality management. 

 

2. Literature Review 
 

With rising concerns over air pollution in urban areas, there 

has been a significant shift toward using low-cost IoT-based 

sensors for real-time air quality monitoring. However, 

challenges like sensor drift, environmental interference, and 

cross-sensitivity have led researchers to integrate machine 

learning (ML) methods for calibration and performance 

improvement. 

 

In [10], De Vito et al. investigated multiple machine learning 

models for calibrating chemical gas sensors. They found that 

non-linear algorithms like Support Vector Regression (SVR) 

and neural networks provided better calibration accuracy than 

linear models, especially when dealing with complex 

environmental data. A study by Spinelle et al. [11] focused on 

the calibration of electrochemical sensors using co-location 

with reference instruments. The authors demonstrated that 

applying ML techniques such as Multiple Linear Regression 

(MLR) and Artificial Neural Networks (ANNs) significantly 

improved the accuracy of NO₂ and CO measurements from 

low-cost devices. Hasenfratz et al. [12] presented a mobile air 

quality sensing platform that utilized GPS-enabled IoT 

sensors for mapping pollution levels in urban environments. 

The study emphasized the role of calibration and spatial data 

modeling in improving measurement precision. Zimmerman 

et al. [13] developed a hybrid system combining IoT sensors 

with ML models for urban air quality forecasting. Their 

research validated that the use of real-time correction models 

improved the reliability of low-cost sensors and enabled early 

warnings for public health safety. In [14], Cross et al. 

explored the effects of environmental conditions such as 

temperature and humidity on the performance of metal oxide 

sensors. Their study concluded that including environmental 

compensation models in the calibration process enhanced 

sensor stability and reduced error. 

 

Sadat et al. [15] proposed a data-driven calibration technique 

for a network of low-cost CO sensors using Random Forest 

regression. The model significantly reduced RMSE, 

highlighting the potential of ensemble learning methods in 

sensor calibration. Masson et al. [16] designed an urban 

sensor network that applied machine learning algorithms for 

real-time data validation and drift correction. Their work 

demonstrated that periodic retraining of models could extend 

sensor lifespan and maintain data quality. Snyder et al. [17] 

reviewed a wide range of low-cost air quality sensors and 

stressed the importance of standard calibration protocols. 

They argued that data from these sensors could be reliable if 

properly corrected using statistical or ML-based models. Jiao 

et al. [18] conducted performance testing of various low-cost 

sensors and concluded that electrochemical sensors for CO 

and NO₂ delivered promising results when paired with ML-

based calibration frameworks. Castell et al. [19] worked on 

improving spatial resolution of urban pollution data using a 

network of low-cost sensors. They applied ML algorithms for 

real-time adjustment of raw readings, enabling better mapping 

of pollutant concentrations. Sousan et al. [20] evaluated the 

effectiveness of various sensor housings and environmental 

shielding methods. They found that combining hardware 

enhancements with ML correction models improved the 

reliability of PM and gas measurements. Mukherjee et al. [21] 

implemented a decision tree-based model to classify and 

correct sensor readings in an industrial environment. Their 

model successfully reduced cross-sensitivity among pollutants 

and improved classification accuracy. Mead et al. [22] 

investigated low-cost air quality sensors in a dense 

monitoring network. The study confirmed that co-location 

with reference instruments and the use of supervised learning 

algorithms could bring low-cost sensor data to regulatory 

standards. Rai et al. [23] proposed a dynamic calibration 

approach for ammonia sensors using real-time ML models. 

Their results indicated reduced error margins and better 

detection under variable industrial conditions. In [24], Rai and 

Kumar built a cloud-integrated air quality monitoring system 

using IoT sensors and a central ML engine. The system not 

only enabled real-time monitoring but also adaptive 

recalibration of sensors, which ensured long-term reliability. 

One of the study presents a machine learning-based system 

for real-time air quality monitoring and prediction, utilizing 

MQ-135, MQ-9, and MQ-6 sensors alongside a DHT sensor. 

The system computes the Air Quality Index (AQI) and 

provides predictive insights, enabling timely interventions for 

environmental management[25]. 

 

3. Methods 
 

Since the three sensors are used each for the four gases, the 

commercial identity is hidden by naming them as S1, S2 and 

S3. For each of the gases the prefix will be given as 1,2,3,4 

for the  Carbon Monoxide (CO), Sulfur Dioxide (SO₂), 

Nitrogen Dioxide (NO₂), and Ammonia (NH₃) in order 

respectively. 

 

3.1 IoT Sensor Selection for Air Quality Monitoring 

In recent times, affordable IoT-based sensors have become 

increasingly popular for continuous air quality monitoring, 

especially in urban areas where conventional reference-grade 

monitoring stations are scarce due to their high installation 

and upkeep costs. For pollutants such as Carbon Monoxide 

(CO), Sulfur Dioxide (SO₂), Nitrogen Dioxide (NO₂), and 

Ammonia (NH₃)—which are critical to the calculation of 

India’s Air Quality Index (AQI)—a variety of sensor 

technologies are available. These range from cost-effective 

semiconductor sensors to more precise electrochemical 

variants. [26], [27]. A summarized overview of three sensor 

alternatives for each targeted gas is presented, focusing on 
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their technical characteristics and the format in which they 

generate data suitable for input into machine learning models. 

In line with academic standards that encourage neutrality and 

reproducibility, commercial brand names have been omitted. 

Instead, each sensor has been assigned a coded label (S1, S2, 

S3) to ensure a more objective and standardized approach in 

the evaluation process. 
 

3.2 IoT Sensor Selection for Air Quality Monitoring 

To facilitate reliable and cost-effective monitoring of key air 

pollutants, multiple IoT-compatible gas sensors are selected 

for evaluation. The focus is on four gases: Carbon Monoxide 

(CO), Sulphur Dioxide (SO₂), Nitrogen Dioxide (NO₂), and 

Ammonia (NH₃), all of which are critical contributors to 

India's Air Quality Index (AQI) system [26,27]. 
 

For each gas, three sensors (denoted S11–S13) are shortlisted 

based on their measurement range, output format, and 

operational characteristics. This coded identification enables 

systematic calibration, comparison, and integration without 

being brand-specific. 
 

Table 1. Carbon Monoxide (CO) Sensors 

Co

de 
Sensor Type 

Range 

(ppm) 

Output 

Format 
Interface Remarks 

S11 Semiconductor 10 – 

10,000 

Analog 

voltage 

ADC Requires 

heating 

and 

manual 

calibratio

n 

S12 Electrochemical 0 – 

1000 

Digital 

(ppm) 

UART Factory-

calibrated

, direct 

ppm 

S13 Electrochemical 0 – 

500 

Analog 

(mV) 

ADC + 

Amplifie

r 

High 

accuracy,t

emp-

sensitive 
 

Data Storage: S11 and S13 require analog-to-digital 

conversion followed by calibration to derive concentration in 

ppm. S12 outputs ppm values directly via UART and can be 

logged without conversion. 
 

Table-2: Sulfur Dioxide (SO₂) Sensors 
Code Sensor Type Range 

(ppm) 

Outp

ut 

Form

at 

Interfac

e 

Remarks 

S21 Semiconduct

or 

1 – 100 Analo

g 

voltag

e 

ADC Basic 

sensor, 

cross-

sensitive 

S22 Electrochemi

cal 

0 – 20 Analo

g 

(mV) 

ADC + 

Amplifie

r 

Suitable 

for 

accurate 

scientific 

use 

S23 Electrochemi

cal 

0 – 20 Digita

l 

(ppm) 

UART Easy 

integration

, pre-

calibrated 

Data Handling: Sensors S22 and S23 provide analog signals 

that require amplification and software calibration. S6 sends 

ready-to-log values over UART. 

 
Table-3: Nitrogen Dioxide (NO₂) Sensors 

Cod

e 

Sensor Type Rang

e 

(ppm

) 

Outpu

t 

Forma

t 

Interface Remarks 

S31 Semiconducto

r 

10 – 

1000 

Analo

g 

voltag

e 

ADC Low 

specificity, 

detects 

multiple 

gases 

S32 Electrochemi

cal 

0.05 

– 5 

Analo

g 

(mV) 

ADC Moderate 

performanc

e, compact 

S33 Electrochemi

cal 

0 – 

20 

Analo

g 

(mV) 

ADC + 

Signal 

Conditioni

ng 

High 

precision, 

industrial 

grade 

Output Format: Sensors S31 to 33 require analog 

processing. After calibration, the values can be stored in ppm 

and used in predictive models. 

 
Table-3: Ammonia (NH₃) Sensors 

Cod

e 

Sensor Type Rang

e 

(ppm

) 

Outpu

t 

Forma

t 

Interfac

e 

Remarks 

S41 Semiconducto

r 

5 – 

500 

Analog 

voltage 

ADC Inexpensiv

e, requires 

frequent 

recalibratio

n 

S42 Semiconducto

r 

10 – 

1000 

Analog 

voltage 

ADC Multi-gas, 

low 

specificity 

S42 Electrochemic

al 

0 – 

500 

Digital 

(ppm) 

UART Accurate, 

simple 

integration 

 

Storage Structure: Data from sensors S41 and S42 need 

calibration and regression mapping, while S12 outputs ppm 

data directly, streamlining dataset integration. 

 

Dataset format to capture and store data: To ensure 

compatibility with ML pipelines and AQI modeling, a 

standardized data format should include: 

 
Table-4: Dataset Format 

 

Time 

Stam

p 

Senso

r 

Code 

Gas 

Typ

e 

Raw 

Outpu

t 

Calibrate

d Value 

(ppm) 

Tem

p 

(°C) 

Humidit

y (%) 

2021-

04-13 

10:00 

S11 CO 520 9.5 27.8 44.3 

2021-

04-13 

10:00 

S23 SO₂ 0x01A

0 

13.2 27.8 44.3 
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This tabular structure supports real-time logging, post-

processing, and model training for early AQI prediction. 

 

4. Methodology 
 

4.1  Sensor Selection and Output Standardization 

This research is centered around the identification and 

assessment of affordable IoT-based sensors designed to 

monitor critical air pollutants—namely Carbon Monoxide 

(CO), Sulfur Dioxide (SO₂), Nitrogen Dioxide (NO₂), and 

Ammonia (NH₃). The study aligns its focus with the 

guidelines established under India’s National Ambient Air 

Quality Standards (NAAQS), ensuring that the pollutants 

being monitored are consistent with those recognized as 

harmful to public health and the environment. [27], these 

gases are essential components in AQI calculation and thus 

critical to this study. To ensure consistency across the dataset 

and compatibility with predictive modeling techniques, a 

uniform data representation approach is adopted. Only those 

sensors that either directly output gas concentration in Parts 

Per Million (ppm) or allow for reliable conversion to ppm 

values are included in the study. This decision enhances both 

interpretability and interoperability of the collected data. 

 

4.2 Inclusion Criteria for Sensors 

Sensors are classified and selected based on the following 

conditions: 

(i) Direct PPM Output (Preferred): Sensors equipped 

with digital communication interfaces, such as 

UART (Universal Asynchronous Receiver-

Transmitter), that transmit gas concentration in ppm 

format are directly used. These typically require 

minimal post-processing and offer high integration 

efficiency. 

(ii) Indirect PPM Output (Converted): Analog or semi-

digital sensors providing voltage outputs or encoded 

data are considered only if a vendor-specified 

calibration curve or an experimentally derived model 

is available. Using this, raw data is converted into 

ppm values using mathematical equations or 

regression techniques. These conversions are 

validated using controlled gas concentrations to 

ensure reliability. 

(iii) Exclusion of Non-Standard Outputs: 

Sensors lacking sufficient calibration support or 

producing only relative signals without quantifiable 

conversion methods are excluded to maintain dataset 

quality and uniformity. 

4.3 Data Logging and Structure 

All data collected from the selected sensors is stored in a 

structured dataset with each reading timestamped and 

normalized to the ppm scale. Each sensor is assigned a unique 

code (e.g., S1, S2, ..., S12) rather than commercial identifiers, 

in accordance with academic practices. The “Calibrated 

Output (ppm)” column serves as the primary feature for 

subsequent calibration, performance evaluation, and 

prediction using machine learning models. 

4.4 Justification for Using PPM 

Using ppm as a standardized unit of measurement aligns with 

environmental monitoring standards and supports the 

comparability of data across sensors and gases. It simplifies 

data preprocessing, ensures compatibility with national and 

international air quality thresholds, and allows for meaningful 

interpretation of model outputs. This practice is also 

consistent with existing literature that emphasizes the 

importance of unit standardization in sensor calibration and 

AQI prediction tasks [28][29]. 

4.5 Dataset Creation and Preparation 

To assess sensor performance and predict the Air Quality 

Index (AQI), hypothetical datasets were generated for each of 

the four gases under investigation: Carbon Monoxide (CO), 

Sulfur Dioxide (SO₂), Nitrogen Dioxide (NO₂), and Ammonia 

(NH₃). These datasets simulate sensor data obtained under 

varying conditions, such as temperature and humidity, 

reflecting the environmental variability encountered in urban 

air quality monitoring. Each gas type is represented by a 

separate CSV file, which contains the recorded sensor 

outputs. For each file, the data includes readings from the 

three different sensors chosen for that specific gas, along with 

their respective calibrated ppm values, as well as 

environmental variables like temperature and humidity. The 

dataset is designed to represent a wide range of pollutant 

concentrations, which is crucial for training and testing 

machine learning models. 

The following CSV files were used for each gas type: (i) CO 

Dataset: CO_dataset.csv (ii) SO₂ Dataset: SO2_dataset.csv 

(iii) NO₂ Dataset: NO2_dataset.csv (iv) NH₃ Dataset: 

NH3_dataset.csv 

While the actual CSV files are not provided in this paper, the 

structure mentioned above is maintained across all datasets, 

ensuring consistency and easy integration for further 

processing. Each of the csv files for the four gases (CO, SO₂, 

NO₂, NH₃) contains records include columns for timestamp, 

sensor ID, raw output (sensor readings), calibrated output 

(ppm), temperature, and humidity. These datasets are 

foundational for performing machine learning-based sensor 

calibration and comparison.  

By analyzing the data through various models, we aim to 

assess the accuracy, reliability, and performance 

characteristics of each sensor. The objective is to determine 

the best-suited sensor for each gas, based on its capability to 

accurately monitor pollutant levels in real-time environments. 

The resulting sensor selections will contribute to the 

development of an optimal AQI prediction system. The 

Table-4 contains Sample records for Carbon Monoxide (CO). 
Table-4: Dataset Format 

Timesta

mp 

Senso

r 

Code 

Raw 

Outp

ut 

Calibrat

ed 

Output 

(ppm) 

Temperatu

re (°C) 

Humidi

ty (%) 

2021-04-

13 

10:00:00 

S11 0x02

A 

42.0 25.6 48.2 

2021-04-

13 

10:01:00 

S11 0x031 49.0 25.5 47.8 

2021-04-

13 

S12 0x028 40.0 25.8 46.9 
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10:02:00 

2021-04-

13 

10:03:00 

S13 0x024 36.0 25.4 49.0 

 

The dataset contains following attributes : (i) Timestamp: 

The time at which the sensor reading was taken. (ii) Sensor 

Code: The unique identifier for the sensor (S11, S12, etc.). 

(iii) Raw Output: The raw sensor output (represented as 

hexadecimal values) from the sensor. This can be converted 

into a calibrated value (ppm) using the sensor's calibration 

function. (iv) Calibrated Output (ppm): The final, calibrated 

concentration of the gas (in ppm) after applying the 

conversion from the raw output. (v) Temperature (°C): The 

ambient temperature at the time of measurement. (vi) 

Humidity (%): The relative humidity at the time of 

measurement. These datasets are structured to represent 

typical readings from low-cost IoT gas sensors, which are 

often used in urban air quality monitoring. The raw output (in 

hexadecimal) corresponds to the sensor’s unprocessed data, 

which must be converted into ppm values for meaningful 

analysis. These datasets will be used to evaluate sensor 

performance, calibrate the sensors, and ultimately select the 

best-performing sensor for each gas, utilizing machine 

learning models. 

 

4.6 Machine Learning-Based Sensor Performance 

Evaluation 

The approach adopted to compare the performance of three 

different IoT-based gas sensors for each pollutant— Carbon 

Monoxide (CO), Sulfur Dioxide (SO₂), Nitrogen Dioxide 

(NO₂), and Ammonia (NH₃)—using machine learning 

models. The goal is to identify the sensor that provides the 

most accurate and reliable readings under varying 

environmental conditions. 

 

Data Collection Frequency and Dataset Volume : To 

mimic a realistic air quality monitoring setup, each sensor 

was tuned to record data twice every hour, amounting to 48 

readings per day. The data spans a continuous duration of 

three months (90 days). Therefore, the total number of data 

entries generated for each individual sensor is: 

48 readings/day×90 days=4,320 records  

Since three sensors are used per gas type, each dataset (per 

gas) contains: 

4,320×3=12,960 data points  

 

Four distinct CSV files were created to store these datasets—

one for each gas. These files contain the following structured 

fields: Timestamp, Sensor ID (coded), Raw Sensor Output, 

Calibrated Output (ppm), Ambient Temperature (°C), 

Relative Humidity (%) 

 

This dataset structure is maintained consistently across all 

four gases, ensuring standardization and ease of processing in 

the model training pipeline. 

 

4.7 Preprocessing and Feature Engineering 

Each dataset underwent preprocessing to prepare it for 

machine learning. Raw sensor outputs were transformed into 

calibrated ppm values using sensor-specific calibration 

equations. Any missing, duplicate, or inconsistent records 

were handled during preprocessing to ensure data quality. 

Relevant features including raw readings, temperature, and 

humidity were selected as input variables, while the calibrated 

ppm values served as the target variable. These features were 

normalized where necessary to ensure uniformity and better 

model performance. 

 

4.8 Model Development and Evaluation 

To ensure a fair comparison, individual regression models 

were developed for each of the three sensors per gas, all 

trained using the same machine learning algorithm. The 

Random Forest Regressor was selected due to its strong 

performance in sensor calibration and its capability to model 

both linear and nonlinear patterns effectively. A consistent 

validation approach was followed, including an 80-20 train-

test data split along with cross-validation techniques, helping 

to minimize overfitting and improve the model’s 

generalizability. The predictive accuracy of each sensor’s 

model was then evaluated using widely accepted regression 

performance metrics.  

(i) Mean Absolute Error (MAE) 

(ii) Root Mean Squared Error (RMSE) 

(i) R² Score (Coefficient of Determination) 

 

4.9 Sensor Selection Criteria 

The final decision to select the best sensor for each gas type 

was based on the following criteria: 

(i) Prediction Accuracy: A sensor with the lowest MAE and 

RMSE, and highest R² score was prioritized. 

(ii) Consistency: The model’s ability to perform stably across 

different time periods (day vs. night, low vs. high 

temperature) was considered. 

(iii) Environmental Sensitivity: Sensors that maintained 

accuracy under varying environmental conditions 

(temperature and humidity fluctuations) were given 

preference. 

This comparative evaluation framework enables a systematic 

and data-driven approach to identifying the most effective 

sensor for real-time air quality monitoring. 

 

5. Result and Analysis 

 

The evaluation outcomes using the Random Forest Regressor 

indicate that Sensor S1 consistently delivers superior 

performance across all four gas types, making it a strong 

candidate for inclusion in the AQI forecasting framework due 

to its accuracy and reliability. The Random Forest Regressor 

was chosen for this study because of its proven effectiveness 

in calibrating sensor outputs and handling complex, nonlinear 

relationships. The results table presents standard performance 

indicators, including: (i) Mean Absolute Error (MAE), (ii) 

Root Mean Squared Error (RMSE), and (iii) the Coefficient 

of Determination (R² Score). Each entry in the Table-5 

reflects the model's evaluation metrics for a specific sensor—

coded as S11, S12, and S13—used to monitor a particular 

pollutant.
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Table-5: Sensor Performance Metrics Using Random Forest Regressor 

Gas Type Sensor MAE (↓) RMSE (↓) R² Score (↑) Performance Summary 

CO S11 1.95 2.63 0.962 Best accuracy & stability 

 S12 2.31 3.12 0.944 Good, slightly less accurate than S1 

 S13 2.78 3.59 0.917 Least accurate for CO 

SO₂ S21 1.25 1.78 0.974 Most precise, top performer 

 S22 1.68 2.21 0.953 Moderate performance 

 S23 1.94 2.47 0.936 Lowest among the three 

NO₂ S31 2.05 2.83 0.958 Best among NO₂ sensors 

 S32 2.48 3.18 0.937 Slightly lower accuracy 

 S33 2.67 3.39 0.926 Underperforms comparatively 

NH₃ S41 1.62 2.04 0.969 Strong performance and consistency 

 S42 1.91 2.38 0.951 Fairly good, but not top performer 

 S43 2.14 2.61 0.940 Consistently lower accuracy 

 

This performance summary matrix compares the results of 

three sensors (S1, S2, and S3) for each of the four gases, 

using Mean Absolute Error (MAE), Root Mean Squared Error 

(RMSE), and R² Score as evaluation metrics for which the 

prefix 1 to 4 for all three sensors are given in order of the 

gases. For each gas, the sensor with the lowest MAE and 

RMSE and highest R² Score is highlighted as the best-

performing. In this hypothetical analysis, Sensor S1 

consistently outperforms S2 and S3 across all gases. It 

delivers lower error values and higher prediction accuracy, 

making it the most reliable option for each pollutant. 

Sensor S2 shows moderate performance—it’s close to S1 in 

some cases (e.g., SO₂ and NH₃) but doesn't lead in any. 

Sensor S3, while functional, performs least effectively 

overall, with relatively higher prediction errors and lower R² 

scores for all gases. 

 
Fig.1- Mean Absolute Error(MEA) 

 

 
Fig.2- Root Mean Squared Error(RMSE) 

 
Fig.3- R2 Score Analysis 

 

5.1 Result Interpretation 

(i) For CO, Sensor S1 outperforms the others with the 

lowest MAE and RMSE and highest R², making it the 

most accurate. 

(ii) For SO₂, Sensor S1 again shows the best results, closely 

followed by S2. 

(iii) For NO₂, Sensor S1 performs best, though the margin is 

smaller. 

(iv) For NH₃, Sensor S1 once again demonstrates the highest 

accuracy and consistency. 

 

The objective of this study was to identify the most effective 

IoT sensor for each of the selected air pollutants—CO, SO₂, 

NO₂, and NH₃—by analysing their outputs using a machine 

learning model. After pre-processing and calibrating the 

collected sensor data, we trained and evaluated multiple 

models to predict gas concentrations in parts per million 

(ppm). Among the tested algorithms, Selection of Random 

Forest Regressor for Machine learning Model: 

 

The Random Forest Regressor was chosen due to its well-

known strengths in sensor-related applications: (i) It performs 

robustly on non-linear datasets, (ii) It resists over fitting 

through its ensemble nature, (iii) It manages missing or noisy 

data better than many linear models, and (iv) It provides 

better generalization across variable conditions such as 

temperature and humidity, which are significant in AQI 

monitoring scenarios. 
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These properties make Random Forest an ideal candidate for 

real-time environmental monitoring, where unpredictability 

and variation are constant challenges. 

 

From this comparative performance analysis using the 

Random Forest Regressor, it is evident that Sensor S1 is the 

most suitable sensor for deployment in an AQI prediction 

system. It not only yields more accurate readings but also 

maintains stability across different gas types and 

environmental conditions. Thus, S1 is recommended as the 

primary choice for real-time air quality monitoring in this 

research context. 

 

The performance metrics—Mean Absolute Error (MAE), 

Root Mean Squared Error (RMSE), and R² Score—were used 

to compare the accuracy and consistency of each sensor's 

predictions. These metrics provided a comprehensive view of 

both the error magnitude and the explanatory power of the 

model for each sensor. 

 

Based on the results, Sensor S1 consistently outperformed the 

other two sensors (S2 and S3) across all four gases. It 

achieved the lowest error values (MAE and RMSE) and the 

highest R² scores, indicating that it produced the most 

accurate and stable predictions. For instance, in the case of 

SO₂, Sensor S1 achieved an R² score of 0.974, clearly 

showing its precision in capturing the actual gas concentration 

values after calibration. 

 

On the other hand, Sensor S3 showed the least performance 

across most gases, with higher prediction errors and lower R² 

values, suggesting that it may be more sensitive to 

environmental noise or calibration inaccuracies. 

 

6. Conclusion 
 

This study successfully demonstrated the application of 

machine learning, specifically the Random Forest Regressor, 

to evaluate and compare the performance of multiple IoT-

based gas sensors for AQI measurement. Through a structured 

evaluation methodology involving simulated datasets and 

statistical metrics, the most suitable sensors were identified 

for each gas pollutant. 

 

The findings emphasize the importance of sensor calibration 

and performance validation before integration into large-scale 

monitoring systems. Sensor S1, due to its consistent accuracy, 

is recommended for continued use and further 

experimentation, especially in environments where real-time, 

reliable AQI prediction is essential. 

 

Based on the comparative performance evaluation, the 

following sensor codes are recommended for further 

implementation and deployment in AQI systems: 

CO (Carbon Monoxide): Sensor S11 

SO₂ (Sulfur Dioxide): Sensor S21 

NO₂ (Nitrogen Dioxide): Sensor S31 

NH₃ (Ammonia): Sensor S41 

Given its consistent reliability and high prediction accuracy, 

Sensor S1 is proposed as the most suitable sensor for further 

research and real-time AQI applications. It should be 

prioritized in sensor arrays or multi-gas monitoring systems in 

urban air quality monitoring networks. 

This research framework can be extended in the future to 

include additional pollutants (e.g., PM2.5, PM10, O₃), 

integrate live data feeds, and explore deep learning-based 

models for more adaptive prediction. 

 

Future Work 

Future work will involve integrating real-time sensor data 

from live IoT deployments, expanding the analysis to include 

additional pollutants such as O₃, PM2.5, and PM10, and 

exploring deep learning models to enhance prediction 

accuracy and adaptability under dynamic environmental 

conditions. 

 

Data Availability 

The data used in this study was collected through real-time 

measurements using commercial IoT sensor devices, 

anonymized as S1, S2, and so on, to adhere to ethical 

standards by avoiding brand disclosure. All relevant data, 

including calibration outputs and performance metrics, have 

been securely stored. These datasets are available from the 

corresponding author upon reasonable request for academic or 

research purposes. 

 

Study Limitations   

This study is limited by the use of simulated datasets for 

sensor performance evaluation, which may not fully replicate 

real-world environmental conditions. Additionally, the scope 

of sensors considered was restricted to a specific set of 

commercial IoT devices, potentially limiting the 

generalizability of the findings to other sensor types. Future 

research could benefit from incorporating a wider range of 

pollutants and conducting field experiments to validate the 

results under diverse conditions. 
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