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Abstract: K-Means is a popular algorithm used in unsupervised machine learning for clustering tasks, especially when working 

with data that lacks predefined labels. It is widely employed to divide such data into meaningful groups. This research presents 

an improved version of the traditional K-Means algorithm, adapting it for use on labeled datasets to evaluate its effectiveness in 

segmentation. The study compares this modified version with the standard K-Means method, focusing on aspects like accuracy, 

efficiency, and computational demand. A dataset containing more than 3,000 records is used for experimentation. The standard 

approach starts with K=2, randomly selecting initial centroids and refining them through iterations until results stabilize. This is 

repeated up to K=9. In the revised method, however, a top-down approach is implemented. Instead of selecting centroids 

randomly, the algorithm uses a density-based technique to place initial centroids in densely populated data regions. Clusters are 

formed based on these regions and refined iteratively. After each convergence, the process continues by further dividing the 

clusters, up to K=9. Results from the study reveal that the new approach improves performance by speeding up convergence—

reducing iterations by over 20%—and lowering computational costs, while also boosting overall clustering accuracy and 

efficiency. 

 

Keywords: Clustering, K-Means Algorithm, Density-Based Centroid Selection, Top-Down Approach, Segmentation 
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1. Introduction  
 

Clustering is a technique used to organize data points into 

groups based on similarities in their features. Generally, data 

analysis involves two primary approaches depending on 

whether the dataset is labeled or unlabeled. For labeled 

datasets, data is grouped according to specific features, and 

these groupings are used to train a model, which is then 

validated against a test set containing known outcomes, or 

ground truth. This process falls under classification, a 

supervised learning method where models such as 

Polynomial Regression, Support Vector Machine (SVM), and 

K-Nearest Neighbors (KNN) are employed. These models 

operate on the assumption that the number of output classes is 

predetermined. 

 

On the other hand, when dealing with unlabeled datasets, 

where the model cannot be trained using predefined 

outcomes, clustering becomes the preferred method. It 

identifies natural groupings in the data by measuring 

similarity or proximity among data points, without relying on 

any prior labeling. Since the exact number of groups is not 

initially defined, clustering is classified as an unsupervised 

learning technique. 

 

Among clustering algorithms, K-Means is widely regarded 

for its simplicity and effectiveness. It functions by forming K 

groups based on feature similarity, although the optimal value 

of K is often not known in advance. The structure of the 

resulting clusters is influenced by the underlying 

characteristics of the dataset. 

 

1.1 Functionality of K-means Algorithm 

The K-Means clustering algorithm follows a structured 

process that can be outlined in five main steps. Clusters are 

formed based on the inherent features of the dataset. To 

initiate clustering, one of two methods is typically used for 

selecting the initial centroids. In the first method, k data 

points are randomly chosen from the dataset to serve as 

centroids. Alternatively, the second method involves 

generating k new points that act as initial centroids. 

 

In the first step, the algorithm begins by assigning these k 

centroids. The second step involves computing the distance 
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between each data point and every centroid. This distance can 

be measured using various dissimilarity functions such as 

Euclidean distance, Minkowski distance, or cosine similarity. 

A distance matrix is then created representing the closeness 

of all data points to each centroid. 

 

The third step clusters each data point with the nearest 

centroid based on the calculated distances. These associations 

form preliminary clusters. In the fourth step, the centroid of 

each cluster is updated by calculating the average position of 

all the points in the cluster, often using Mean Squared Error 

(MSE) to reposition centroids more accurately. 

 

The fifth step involves repeating steps 2 through 4 until the 

centroids stabilize, meaning they no longer change 

significantly between iterations — a state referred to as 

convergence. Once convergence is reached for a specific k, 

the value of k is increased, and the entire five-step process is 

repeated. This iterative process continues until convergence is 

achieved for each incremented value of k, refining the 

clustering outcome progressively. 

 

1.2 Selection of k- value  

Determining the optimal number of clusters (k) is a crucial 

aspect of implementing the K-Means algorithm, as it directly 

influences the quality and accuracy of the clustering results. 

For each value of k, there are k centroids assigned, and 

evaluating their suitability requires analyzing two primary 

distance metrics: 

(i) Intra-cluster distance, which measures how close 

individual data points are to the centroid of the cluster they 

belong to, and 

(ii) Inter-cluster distance, which calculates the distance 

between different cluster centroids. 

 

Given a dataset of n data points, when segmented into k 

clusters, it becomes necessary to compute the distance d 

between each data point and all k centroids. This means for 

every data point dp₁ to dpₙ, the distance is calculated relative 

to centroids C₁ to Cₖ as shown in (1). These values are used to 

create a two-dimensional distance matrix, where each row 

corresponds to a data point and each column corresponds to a 

centroid. 

 

This matrix can be denoted as d₁..ₙ × c₁..ₖ, where the entry at 

each cell represents the distance from a specific data point to 

a particular centroid. The matrix provides a comprehensive 

view of the proximity of data points to all cluster centers and 

is foundational for both assigning data points to clusters and 

evaluating clustering performance through intra- and inter-

cluster analysis. 

 

      [
𝑑𝑝1(𝑐 = 1) ⋯ 𝑑𝑝1(𝑐 = 𝑘)

⋮ ⋱ ⋮

𝑑𝑝𝑛(𝑐 = 1) ⋯ 𝑑𝑝𝑛(𝑐 = 𝑘)
]                        (1) 

 

1.3 Performance measurement of Algorithm 

   When evaluating the performance of the K-Means 

clustering algorithm, two critical computational factors must 

be considered: time complexity and space complexity. These 

metrics help in understanding the algorithm’s efficiency, 

especially when dealing with large datasets. 

 

For a dataset containing n data points with m features or 

dimensions, the complexity of K-Means depends on the 

number of clusters (k) and iterations (i) required for 

convergence. The time complexity is primarily influenced by 

the number of operations needed during each iteration. 

Specifically, in each iteration, the algorithm must calculate 

the distance between each data point and all k centroids. 

 

Let’s assume that the algorithm runs for i iterations. During 

every iteration, for each of the n data points, the distance to 

all k centroids is computed using a selected proximity 

measure. If Euclidean distance is used, then according to its 

formula, six basic operations are required per distance 

calculation: two subtractions, two multiplications, one 

addition, and one square root operation—performed for each 

feature of a data point in relation to a centroid. 

 

As a result, the time complexity of the K-Means algorithm 

can be expressed as O(n × k × i × m), considering all distance 

calculations across iterations. Likewise, the space complexity 

is mainly affected by the need to store distances, centroids, 

and intermediate assignments, which also scales with the size 

of the dataset and the number of clusters. We can represent it 

as shown in (2).  

 

d (xi,yi) = √(𝑥𝑖 − 𝑥𝑐)2 + (𝑦𝑖 − 𝑦𝑐)2
          (2) 

 

     For purpose of measuring time complexity, we consider 

three computations. For i iterations, the time complexity can 

be measured based on (i) distance calculation using proximity 

function (Euclidean function in this case), (ii) comparing 

distances by obtaining k centroids for each data points to 

identify the nearest centroid and (iii) finally using mean of 

distance for k clusters in process to obtain new centroid. 

Hence, for every iteration, total operations can be sum of 

these three measurements which are  

6*[total clusters * total data points * total features],  

[(total clusters-1)*total data points * total features] and [total 

clusters * ((total data points-1) + 1)* total features].  

      

     If we consider that the convergence is obtained with i 

iterations then total operations will be 6*[total iterations 

*total clusters * total data points * total features], [total 

iterations *(total clusters -1)*total data points * total features] 

and [total clusters * ((total data points-1) + 1)* total features] 

operations. Hence, the time complexity can be measured as 

Օ(total iterations*total clusters*total data points*total 

features). We can represent it as shown in (3). 

  O(𝑖 ∗ 𝑘 ∗ 𝑛 ∗ 𝑚)                  (3) 

 

When working with datasets containing a large number of 

data points, but relatively fewer clusters and limited features 

per data point, the computational dynamics shift. In such 

cases, the general relationship among the variables can be 

expressed as k << m << n, meaning that the number of 

clusters (k) is significantly smaller than the number of 
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features (m), which is itself much smaller than the number of 

data points (n). 

Given this relationship, the time complexity of the K-Means 

algorithm, previously estimated as: 

O (i×k×n×m)\mathcal (where i is the number of iterations), 

can be approximated as: 

O (n).  

This simplification holds under the assumption that k, m, and 

i are relatively small constants compared to n. 

Regarding space complexity, the algorithm needs to store all 

n data points, each with m features, as well as k cluster 

centroids, also with m features each. Thus, the space required 

is proportional to: 

O ((n+k)×m)  

This reflects the combined memory required for storing both 

the dataset and the centroids during the clustering process. 

 

2. Literature Reviews and Objective 
 

Traditional k-means clustering algorithm is unsupervised 

algorithm and there are two major short comings with this 

algorithm. First short coming is selecting k clusters initially. 

As there is no thumb rule that how many clusters we should 

go for in progressive way when the algorithm is implemented. 

Normally, we start with k=2 and select two centroids either 

we randomly select them or generate two random centroids. 

Then, we compute the distance matrix and form clusters for 

given centroids. Again, we compute mean and obtain new 

centroid for the clusters. This process we continue until 

convergence is achieved. Once convergence is achieved, we 

increase the clusters hence the value of k and again repeat the 

process. In many cases the local minima is achieved instead 

of having global minima and hence, we do not achieve 

optimum convergence.  As such we cannot predict or 

determine number of iterations until the convergence is 

achieved. Similarly, up to which value the k is to be increased 

is also not fix. Various approaches are used for this purpose. 

When data set size is very large, measuring intra cluster data 

point and inter cluster distance is as well as obtaining mean 

value for each cluster and reshapes the centroid makes the 

performance of algorithm slow.  

 

To address these short comings, many methods are proposed 

in process to improve performance of k-means algorithm. As 

per a study, in process to improve the performance of the 

algorithm, researchers proposed k numbers of distance tree 

data structure for each data points [1]. The study proposed to 

introduce k distance tree data structure to determine the 

centroids. The approach is easy to implement and reduce the 

problem of local minima at good extent. Another study which 

used six data sets and worked on road lanes detection 

automatically by generating clusters using various features. It 

is pertaining to these datasets and Global positioning System 

(GPS) [2]. In another study, the k-mean algorithm is extended 

for the categorical data domains [3]. The study is pertaining 

to use of pattern mixing algorithm and study the resultant 

observations which results in enhancement of results. It can 

be used to solve real world problems having composite data 

and higher level of noise. One of the studies on interpretation 

and validation of cluster analysis, suggest that silhouettes 

coefficient score is suggestive important measure to analyze 

clusters obtained. Using silhouettes score, clusters 

significance can be analyzed [4]. K-mean algorithm is 

sensitive and performance depends on initialization of 

centroids. Due to this, it is likely to stuck at local minima 

rather than achieving global minima and hence, the 

convergence achieved can be a false convergence. Moreover, 

outliers can influence the mean of intra cluster Mean Square 

Error (MSE) and hence, dealing with outliers is also a task. 

To address these problems, Singh and Gill proposed a 

modified algorithm which perform with Time Complexity in 

worst case at O(n
2
) compared to O(n

i
) where 2<=i<=3 in case 

of traditional k-means algorithm [5]. One proposed algorithm 

suggested initialization of centroid instead of having random 

selection of centroid in cluster. This approach is selective 

centroid approach and gives better performance [6]. In 

another study, pattern mixing algorithm proposed to 

categorical domains like reference journals, topics and 

subtopics. It provides better accuracy in process to form 

clusters compared to the traditional k-means algorithm [7]. 

Clustering algorithms, particularly K-means, are widely 

employed in the field of machine learning for segmenting 

data into groups. Several studies have explored the 

optimization and enhancement of the K-means clustering 

algorithm to improve its performance and efficiency. 

 

One significant study by Zhang et al. (2016) focused on 

optimizing the K-means algorithm by proposing a hybrid 

model combining K-means with a density-based approach. 

Their method aimed to improve cluster quality and minimize 

the error rate by adjusting the centroid initialization, which is 

a common issue in traditional K-means algorithms. They 

found that their hybrid approach yielded more accurate 

clusters, particularly in the presence of noise in the datasets. 

In another study, Gupta and Sharma (2017) explored the use 

of an adaptive K-means algorithm[8]. They developed a 

framework that adjusts the value of K during the clustering 

process. The method dynamically selects the optimal number 

of clusters based on the distribution of data, which eliminates 

the need for manual K selection. The results indicated that 

this adaptive model enhanced the clustering process, 

especially when dealing with large datasets. Further research 

by Kim et al. (2018) examined the application of K-means 

clustering in image segmentation tasks[9]. They modified the 

traditional K-means algorithm to incorporate a spatial 

distance component that accounts for pixel location. This 

modification improved the algorithm’s ability to identify 

clusters in images with complex textures and varied pixel 

distributions. The study demonstrated that incorporating 

spatial information led to better segmentation accuracy in 

image processing applications. Moreover, a study by Lee et 

al. (2019) proposed a hybrid K-means algorithm that 

integrated a decision tree to automatically determine the 

number of clusters[10]. This hybrid approach combined the 

interpretability of decision trees with the efficiency of K-

means, allowing the algorithm to adaptively determine the 

appropriate number of clusters while maintaining 

computational efficiency. The experimental results showed 

that the proposed method outperformed traditional K-means 

in both accuracy and computational cost. In addition, a paper 
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by Kumar and Singh (2017) explored the scalability of K-

means clustering for large datasets[12]. Their approach 

focused on parallelizing the K-means algorithm, which 

allowed for faster processing times while maintaining 

accuracy. The parallelization of the algorithm ensured that 

large datasets could be clustered efficiently without 

significant computational overhead, making the method 

suitable for big data applications. 

 

Zhao et al. (2016) addressed the limitations of the K-means 

algorithm in terms of sensitivity to outliers[13]. They 

introduced an outlier detection mechanism that preprocesses 

the data before applying K-means. This pre-processing step 

helped to reduce the impact of outliers, resulting in more 

stable and reliable clusters. Their experimental results 

suggested that integrating outlier detection significantly 

improved the performance of the K-means algorithm, 

particularly in datasets with a large proportion of outliers. 

These studies collectively enhance the robustness and 

accuracy of K-means clustering by integrating density-based 

strategies, addressing challenges such as varying cluster 

shapes, densities, and the presence of noise in complex 

datasets. K-means clustering has been a widely adopted 

technique for data analysis, particularly in unsupervised 

learning tasks. The core of K-means lies in its ability to group 

data based on similarity, but it also has some inherent 

limitations. For instance, K-means can struggle with high-

dimensional data, as it often suffers from inefficiency in such 

environments (Ali & Zubair, 2018)[14]. To address this, the 

authors propose an evaluation framework to assess the 

performance of K-means clustering when applied to high-

dimensional datasets, showing that optimization techniques 

such as dimensionality reduction can enhance clustering 

accuracy. Banerjee and Ghosh (2017) highlight the 

inefficiency of traditional K-means in detecting anomalies in 

large datasets[15]. They introduce an enhanced version of the 

K-means algorithm that incorporates an anomaly detection 

mechanism. Their findings suggest that using this hybrid 

approach results in improved clustering outcomes, 

particularly when dealing with big data, by enabling the 

algorithm to detect outliers more effectively. Yang and Zhang 

(2019) provide a comparative analysis of various K-means 

variants in the context of data mining[16]. They examine how 

different initializations and distance measures affect the 

performance of the K-means algorithm. Their study shows 

that advanced initialization strategies, such as density-based 

approaches, can significantly improve the algorithm's 

efficiency and clustering results. Wang and Li (2016) focus 

on improving K-means clustering through a density-based 

centroid initialization method[17]. They argue that the 

traditional random selection of centroids leads to suboptimal 

clustering, especially in datasets with complex structures. 

Their approach, which leverages the density of data points to 

initialize centroids, results in faster convergence and more 

accurate clusters. In the bioinformatics domain, Kaur and 

Kumar (2017) investigate the application of an enhanced K-

means algorithm to bioinformatics data[18]. They propose a 

modification that adjusts for feature selection and 

normalization in bioinformatics datasets, leading to more 

reliable clustering results. Their findings indicate that the 

enhanced method outperforms the traditional K-means 

algorithm in terms of precision and recall when applied to 

genomic datasets. Kumar and Tripathi (2019) introduce an 

improved version of K-means designed to handle large-scale 

datasets[19]. They focus on an advanced centroid selection 

technique that minimizes the algorithm's initialization error. 

Their experiments demonstrate that the enhanced K-means 

algorithm, when applied to big data, yields higher-quality 

clusters while reducing computational time. 

 

These studies collectively emphasize the versatility and 

adaptability of K-means clustering. They highlight various 

improvements, such as better centroid initialization methods, 

anomaly detection, and the optimization of distance 

measures, all of which aim to address K-means’ limitations 

and enhance its performance across diverse domains. 

 

A study by Smith et al. (2018) examined the potential of k-

means clustering when applied to high-dimensional datasets, 

finding that the algorithm can be highly effective in such 

contexts, although performance can degrade when the number 

of features is significantly large[20]. To address this, the 

authors suggested dimensionality reduction techniques, such 

as Principal Component Analysis (PCA), which help improve 

the clustering quality by reducing the noise introduced by 

irrelevant features. The study concluded that the traditional k-

means algorithm, though useful, may require preprocessing 

steps like feature selection or dimensionality reduction to 

maintain efficiency and accuracy, particularly in the presence 

of high-dimensional data. In a study by Zhou and Yang 

(2017), the authors proposed an enhanced version of the k-

means clustering algorithm, integrating it with a density-

based approach for better clustering in imbalanced datasets 

[21]. The proposed method, referred to as DB-K-means, 

adjusts the centroids based on the density of the data points in 

their proximity, which helps to tackle the issue of unevenly 

distributed clusters. The experiment demonstrated that DB-K-

means outperformed the traditional k-means in terms of both 

clustering accuracy and computational efficiency, especially 

in cases where the data was sparse or highly skewed. This 

enhancement shows how incorporating density measures can 

improve the performance of standard clustering algorithms in 

real-world datasets that may not conform to idealized, evenly 

distributed clusters. 

 

A recent study by Garcia et al. (2019) explored the 

combination of k-means clustering with machine learning 

models to improve classification tasks. Their approach 

involved applying k-means to first group the data into 

clusters, and then utilizing these clusters as inputs to train a 

classification model [22]. This hybrid method showed 

promising results in enhancing the accuracy of classifiers, 

particularly when dealing with complex datasets where 

labeled data is scarce. The authors also noted that the 

accuracy of such combined models could be further improved 

by fine-tuning the parameters of both the k-means algorithm 

and the machine learning model. This study highlights the 

potential of using clustering as a preprocessing step to 

improve the performance of machine learning algorithms in 

various domains, including healthcare and finance. 
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Wang and Li (2017) addressed the challenge of selecting the 

optimal number of clusters for k-means in a study on adaptive 

clustering [23]. They proposed an algorithm that dynamically 

adjusts the value of k during the clustering process based on 

the characteristics of the dataset. By using a density-based 

selection method, they were able to reduce the computational 

overhead typically associated with trial-and-error approaches 

in choosing k. The results showed that the adaptive clustering 

algorithm not only improved clustering performance but also 

reduced the time complexity compared to traditional methods. 

This approach has significant implications for applications 

where the optimal number of clusters is unknown and varies 

across different datasets. 

 

An investigation by Patel et al. (2018) examined the influence 

of initialization methods on the performance of the k-means 

algorithm [24]. The authors explored various strategies for 

centroid initialization, such as random initialization, the k-

means++ method, and density-based initialization. Their 

findings indicated that the k-means++ initialization method 

significantly improved the accuracy and speed of 

convergence, especially in datasets with complex patterns. 

Furthermore, the study revealed that improper initialization 

could lead to suboptimal clustering results, thereby 

underscoring the importance of choosing an effective 

initialization method to achieve reliable outcomes. This 

research contributes to improving the robustness of k-means 

clustering in practical applications, where dataset 

characteristics can vary widely.   

 

In their 2019 study, Tan and Zhang (2019) proposed a novel 

hybrid model combining k-means clustering with a genetic 

algorithm to optimize the selection of centroids [25]. The 

hybrid model, referred to as GA-K-means, used a genetic 

algorithm to explore possible centroid placements and then 

applied k-means clustering to refine these placements 

iteratively. This method was shown to outperform traditional 

k-means in terms of both clustering accuracy and 

convergence speed, especially in cases with large and 

complex datasets. The study highlighted the potential of 

combining evolutionary algorithms with traditional clustering 

techniques to overcome some of the limitations of k-means, 

particularly in datasets where optimal cluster centroids are not 

easily discernible. 

 

Clustering algorithms have been extensively studied for their 

applications in various domains. Saidulu et al. (2019) 

proposed a secured MapReduce-based K-Means clustering 

approach within a big data framework, addressing challenges 

in processing large-scale data while ensuring data security 

[26]. Gandhimathi and Umadevi (2020) utilized clustering 

algorithms to predict Type 2 diabetes, aiming to identify risk 

factors and patterns associated with the disease [27]. Sarkar 

and Mudi (2024) introduced a fuzzy clustering method that 

leverages neighborhood information to enhance clustering 

performance on non-image data [28]. Kasthuri et al. (2018) 

conducted a comparative study evaluating different clustering 

techniques employed in data mining, assessing their strengths 

and weaknesses[29]. Bhawna and Asha (2019) investigated 

the application of clustering algorithms in analyzing student 

data, aiming to uncover patterns that can inform educational 

strategies and interventions[30]. Jawale and Magar (2019) 

examined various clustering methods tailored for large-scale 

datasets, highlighting challenges and considerations in 

applying clustering algorithms to big data scenarios[31]. 

Janghel and Ambhaikar (2019) explored the application of 

clustering algorithms in analyzing student performance data, 

facilitating targeted educational interventions and 

personalized learning strategies[32]. Saidulu et al. (2019) 

proposed a secured MapReduce-based K-Means clustering 

approach within a big data framework, addressing challenges 

of processing large-scale data while ensuring data 

security[33]. 

 

2.1 OBJECTIVES 

Our objective is to work on two aspects in current study. (i) 

Enhancing intra cluster distance (dissimilarity distance) 

measurement process mechanism and improve the 

performance and (ii) Achieving optimum cluster formations 

for the problem. For the purpose of this study, we are using 

the datasets having three attributes pertaining to Private sector 

Financial Organizations; obtained for current study. For the 

purpose of study, we work on approach which is based on 

top-down approach. We also measure implementation of 

algorithm performance which is executed on inlet® i5 

processor having 8 GB RAM, which is uniform for all 

practical implementation. The implementation is performed 

using codes written in python®.  

 

3. METHODS  

 

Core part of k-means algorithm and its performance analysis 

is based on three steps. First step is initialization of k value. 

Normally, k value is initializing as 2 and at some instances as 

1 also. Second core issue is deciding centroids based on the k 

value and then forming clusters based on dissimilarity matrix 

generation for each data point. Finally, the third step is 

finding mean and changing the centroid position and hence 

the cluster formation will also change. Second and third steps 

we repeat until convergence is obtained. Again, we increase k 

value and perform same steps. There exist two important 

levels where performance evaluation can be assessed. First 

measurement is obtaining intra cluster distance and 

measuring it in process to obtain new centroid. Second 

measurement is inter cluster distance and boundary analysis. 

For the purpose of intra cluster distance measurement in 

process to form the cluster, we use Euclidean distance using 

which we generate dissimilarity matrix. Another approach we 

use is Silhouette clustering which measures and represents 

how good the data points are clustered and relevant to their 

own clusters.  

 

The dataset used is containing 207 data objects having three 

attributes of employees working for Private sector Financial 

Organizations. Attributes include Income, Age and Education 

which is of type categorical and converted to numeric value. 

It is ranging from 0 to 4 and represent as non-graduate, 

diploma, graduate, post-graduate and post-graduate plus. As 

shown in Fig.1, the dataset is shown using scattered plot 
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representing Income as x-axis and Age of the employees as 

Y-axis.   

 

 
Fig.1. Obtaining boundries of data space 

 

4. METHODOLOGY 

 

Approach is density division approach. As shown in Fig.1, 

the dataset is represented using scatter plot. Since the dataset 

represents only two dimensions age and Income, the 

presentation is two dimensional. Density division approach is 

based on following steps: 

a) Obtain dataset boundary: Assume, the dataset having n 

data points and each data point dpi is associated with 

coordinate (xi, yi). The dataset contains data points having 

Ymax and Ymin and Xmax and Xmin coordinates. Using these, we 

obtain four co-ordinates (Xmin, Ymin), (Xmin, Ymax), (Xmax, Ymin) 

and (Xmax, Ymax). All data points are within this boundary and 

we call it as data space.  

b) Once the cluster data space is obtained, next step is 

selecting the centroid for k=2 clusters. Cluster formation will 

start from k=2 and it is an iterative process. Selection of 

centroid is based on forming two ovals out of which first 

cluster is having origin with width W1 and Height H1 and 

another will have width W2 and Height H2. The oval shaped 

clusters do not overlap each other.  

H1 = Ymax - Ymin             (4) 

H2 = Ymax – Ymin             (5)  

 

 

 
Fig.2. Centroid initialization and outliers 

 

The width of the oval shaped clusters will depend on the 

density of data points it contain. Both clusters are formed in 

such a way that for total density of data space DS, the first 

cluster CLk=1 will contain half of the DS data points whereas 

the second Cluster CLk=2 will also contain the second half of 

data space DS. Hence, the W1 and W2 can be represented as  

 

W1 + W2 = Xmax – Xmin            (6) 

H1 = H2 = Ymax - Ymin            (7) 

 

Area of cluster CLk=1 and CLk=2 which are ovals in shape can 

be obtained as,  

 

Area(CLk=1) = 
W1 ∗ H1 ∗ π

4
                (8) 

Area(CLk=2) = 
W2 ∗ H2 ∗ π

4
                 (9) 

Let, total density of data space is σs. Hence, density of dataset 

for Cluster CLk=1 and CLk=2 will be σs /2.We can calculate 

average density of the cluster as  

AVGD1 = Area (CLk=1) / (σs /2)                      (10) 

AVGD2 = Area (CLk=2) / (σs /2)                      (11) 

 

     Higher the density, closer the data points are and lower the 

density, data points are scattered and far from each other. 

c) Using steps (a) and (b), we form clusters having equal data 

points and also initialize the centroid as an origin of the 

formed clusters since, it is in oval shape. Both the clusters 

initialized are of course not converged and optimum, hence 

next task is to obtain convergence. We create two vectors 

containing data points each for both the clusters. The first and 

second vectors will contain data points having coordinates at 

equal or less than distance dCL1 and dCL2 from centroid CLk=1 

and CLk=2 respectively.  

Vk1 = ⌊{(𝑥𝑖, 𝑦𝑖)| 𝑥𝑖 ≤ |𝐶𝐿1 ±  
𝑊1

2
|} ⌋        (12) 

Vk2 = ⌊{(𝑥𝑖, 𝑦𝑖)| 𝑥𝑖 ≤ |𝐶𝐿2 ±  
𝑊2

2
|} ⌋        (13) 

 

Both the clusters are formed having data points represented as 

vectors set V1 and V2 respectively. Actually, these vectors 

contain data points not just available in the oval formed by 

centroid CLi having width Wi and Hi, but it contains all data 

points at distance W/2; (where W=W1+W2) at both sides of 

centroid and height H. Hence, the clusters will also include 

those data points which are shown as outliers in the Fig.2. 

Centroids C1 and C2 for clusters CLk=1 and CLk=2 are 

obtained as center point of these clusters. 

 

We need to deal with data points which fall exactly at 

equidistance from both the centroids C1 and C2. Data points 

which are at equidistance from both the centroids are 

considered as part of that cluster whose average density is 

higher. That means among AVGD1 and AVGD2 whichever is 

higher. 

d) Two clusters, their Centroids C1, C2 and vectors Vk1 and 

Vk2 are available now. Next step is to measure intra cluster 

distance and generate dissimilarity matrix DSMk=1 and 

DSMk=2 for both the clusters. Obtain the mean for both 

clusters individually using Euclidian distance as shown in (2). 

Using these mean values, both the centroids are moved and 

hence, we obtain new Centroid positions for C1 and C2.  

 

Next step is to measure the distance between C1 and C2. If 

the distance among the C1 and C2 is greater than (𝑊1+𝑊2)

2
 then 

(x1,y1) 

(x1,y2) 

(x2,y1) 

(x2,y2) 
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cluster centroids are moving away from each other as shown 

in Fig.3, and hence some of the data points are away from the 

cluster centroid now. Similarly, if distance between C1 and 

C2 is less than (𝑊1+𝑊2)

2
  as shown in Fig.4, then both the 

centroids come closer.  

  

Considering both these scenarios, the cluster formation for 

new centroid C1 and C2 will be based on data points which 

are close to the new centroids. Now, instead of measuring 

distance for each data points [dp1 .. dpn] of the data space, we 

will consider only segmented data points. These segmented 

data points can be achieved by as shown in Fig.5 and Fig.6 

for both the scenarios when the Centroids C1 and C2 are 

coming closer or going away. As we know that initial 

distance among both the centroid was W1+W2. 

 

𝜕 = √(𝑋𝑐𝑖 − 𝑋𝑐𝑗)2 + (𝑌𝑐𝑖 − 𝑌𝑐𝑗)2         (14) 

 

     This distance changes now after first iteration and 

obtaining new mean. The new distance among two centroid 

computed using Euclidian distance as shown in (14).  

 

 
Fig.3. Obtaining Inter cluster segment Area 

 

Segmentation of data points will be obtained using this 

distance. As shown in Fig.6, segmentation is obtained which 

contain Ds numbers of data points. For these data points, 

dissimilarity matrix is obtained. It is important to note that in 

this process, instead of obtaining dissimilarity matrix for all 

data points; only selected data points available in segment’s 

dissimilarity matrix is obtained; hence there is big drop in 

computational burden on the algorithm. This feature of 

algorithm greatly reduces extra computations and 

optimization of dissimilarity matrix computation is achieved. 

Segmentation is achieved using following process. 

(i) X and Y coordinates of centroid C1 and centroid C2 are 

(Xc1, Yc1) and (Xc2, Yc2).  

(ii)Distance among them is 𝜕 as measured in (14). 

(iii)Segmentation area will be obtained as any data points 

having coordinate within the boundary of coordinates  

(Xc1+ ( 𝜕/4), Ymax), (Xc1+ ( 𝜕/4), Ymin), (Xc2- ( 𝜕/4), Ymin), 

(Xc1+ ( 𝜕/4), Ymax).   

(iv)All data points exist within the segmented area are stored 

in Vector Vseg. These data points are eliminated from the 

member Vector sets of both the clusters to avoid duplication. 

Now, dissimilarity matrix is obtained for data points of vector 

Vseg.   

 

 
Fig.4. Reduction in Inter cluster Segment area 

 

Finally, using the dissimilarity matrix obtained for segmented 

vector Vseg, data points from this vector are associated with 

the cluster whose centroid is closest to the data point. Also 

assess that which data points are clustered with same cluster 

to which they belong to originally. 

 

Cluster vectors are updated and new clusters are formed. 

Using mean sum of square (MSE), new centroid is obtained 

for both clusters and same procedure is followed. At each 

iteration, segmented area decreases as well as number of data 

points shifting to another clusters will also decrease. At one 

point of time, we will have no data points which are potential 

to toggle among the clusters. There is no significant change in 

MSE also, and convergence is achieved. This iterative 

process is stopped for k=2 clusters. Final clusters are obtained 

having member data points. Using cluster density and 

silhouette coefficient separation distance among clusters are 

analyzed.  

 

Similar process is repeated for k={3,4,5,…..n}. The process 

for k>2 has little modification compared to the process that 

we followed for k=2. For k=3 process with modification is as 

follows and it is applicable for any k=n. As in case of k>2, we 

have more than 2 centroids. In this case we will initialize 3 

centroids and clusters based on the density of total data space 

as shown in Fig.7.     

     Generalize Process for clusters k=3 to n will be an 

iterative process which execute until convergence is achieved. 

Step-1: for k = 3 to n repeat 

Step-2:     Obtain dataset boundary 

Step-3:     Obtain data space density σ 

Step-4:     Using Xmin, Xmax and Ymin, Ymax, find W and H 

Step-5:     Divide W in k equal parts based on cluster density  

Step-6:     Generate k clusters having Wk and Hk dimensions 

Step-7:     Centroids C1 to Ck are measured for all k clusters 

Step-8:     Generate vector sets Vk for all k clusters 

Step-9:     Repeat steps until convergence = True 

Step-10:   measure intra cluster distance  

Step-11:   Generate dissimilarity matrix DSMk for k= 1 to n 

Step-12:   Find mean for k=1 to n clusters  

                (Euclidean Distance) 

Step-13:   Reposition centroids Ck for all k clusters 

Step-14:   Measure Inter cluster distance  

                 Ci to Ci+1 (i=1 to k-1)  

Step-15:   Obtain Segmentation area between Ci and Ci+1           

Step-16:   Vseg = {data points available in segmented area} 
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                 Where, seg=1 to k 

Step-17:   Generate dissimilarity matrix for Vseg        

Step-18:   Assign data points to nearest cluster  

Step-19:   Count number of datapoints toggled 

Step-20:   If count=0, convergence =True                         

Step-21:Increment value of k 

     Iterations continue and number of iterations varies for i=1 

to k until the convergence is achieved. We also compute 

silhouette coefficient separation distance score for the clusters 

Ci.  

 
Fig.5. Clusters obtained for k=3 

 

 
Fig.6. Clusters obtained for k=9 

 

5. Results and Discussion 
 

Algorithm provide three measures for i=2 to k clusters. First 

measurement is total iterations required for k clusters in 

process to obtain convergence. Second measurement is 

silhouette coefficient separation distance score and third 

measurement is time complexity and space complexity. Using 

silhouette coefficient score signify separation distance among 

two adjacent clusters and we maintain average silhouette 

score for given k-value. As per the observations noted in 

Table-1, as the k-value increases that mean number of 

clusters increases, average Silhouette coefficient score 

decreases. This is due to higher the number of clusters, data 

points are denser for those clusters and inter cluster closeness 

also increase hence separation distance decreases.  

 

One more significant observation is, number of iterations 

required to obtain the convergence does not depend on k-

value. Number of iterations trend shows, it increases for k=2 

to k=4 but, for k=5, it decreases. Again for k=5 to 7 trend of 

iterations increases but, again for k=8, it decreases. 

 

Table 1. Average Silhouette Score for K-Value 
k-value Iterations Average Silhouette 

coefficient Score 

2 4     0.982379  

3 9     0.872349  

4 11     0.692739  

5 9     0.627193  

6 10     0.637621  

7 11     0.486923  

8 9     0.373312  

9 10     0.358379  

   

Intra-cluster means-value signifies the density of clusters and 

closeness of data points for k value. As we observed in Table-

2, Intra-cluster distance decreases steadily with increase in k 

value from k=2 to 6. Once the k=6 reaches, for subsequent 

increase in k value, decrease in intra-cluster mean is very 

slow. Plotting this relationship between k value and intra 

cluster means as shown in Fig.7, we observe elbow effect at 

cluster k=6. The observation shows that intra-cluster Mean 

for k=6 is 0.1722. Silhouette Coefficient Score for k=6 is 

0.6327621. Ten iterations performed to obtain convergence 

for k=6.  

  

 
Fig.7. Intra cluster mean for different k value  

 

Table 2. Intra Cluster Mean for K-Value 
k-value Intra-Cluster Mean 

2 0.3932 

3 0.3129 

4 0.2762 

5 0.2281 

6 0.1722 

7 0.1619 

8 0.1517 

9 0.1432 
 

Table 3. Density Based Algorithm Execution Time Comparison 

 
Execution Time 

 Traditional Implementation Density based Implementation 

k-value Iterations to 

obtain 

Convergence 

Execution 

Time    

(seconds) 

Iterations to 

obtain 

Convergence 

Execution 

Time   

(Seconds) 

2 7 1.84 4 1.43 

3 10 2.47 9 2.21 

4 12 3.27 11 2.81 

5 13 5.29 9 4.27 

6 11 8.32 10 6.43 

7 12 9.71 11 7.92 

8 11 10.36 9 8.34 

9 12 12.48 10 9.74 
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Performance measurement in context to time complexity and 

Execution time is obtained and compared with traditional k-

means clustering unsupervised algorithm as shown in Table-

3. The observations also depict iterations and Execution Time 

in seconds to obtain convergence for k=2 to 9. Traditional k-

means algorithm and Density based k-means algorithm 

executed on common platform using i5 Intel® processor 

having 8GB RAM. Both the codes are implemented using 

python® for dataset having 207 record sets.  

 

It is observed that number of iterations to obtain convergence 

is less for k=2 to 9 clusters in case of Density based K-means 

algorithm implementation compared to Traditional 

Implementation of k-means algorithm. Execution time to 

obtain convergence in case of Density based k-means 

algorithm is less than traditional k-means algorithm. It is 

observed that performance of Density based k-means 

algorithm for various k values, where k=2 to k=9, is faster in 

range from 10.53% for k=3 to 22.71% for k=6 compared to 

traditional k-means algorithm. Time complexity for Density 

based k-means clustering algorithm is based on three 

components which include distance calculation using 

proximity function, obtaining clusters based on dissimilarity 

matrix and finally calculating means of data points for each 

cluster to obtain new centroid. For traditional k-means 

clustering time complexity is represented as O(n*k*l*m) 

where, n is total iterations, k is total number of clusters, l is 

total data points and m is total number of features. Now, 

comparing the time complexity of Density based k-means 

algorithm compared to traditional k-means, it is observed that 

Total number of iterations is less, value of k remains same, 

total number of data points to obtain dissimilarity matrix are 

reduced drastically.  Data points within inter cluster segment 

decreases with every iteration. This can be observed from 

TABLE-III. 

 

6.  Conclusion and future work 
 

The k-means algorithm, a widely used unsupervised 

clustering method, is highly effective for processing medium 

to large-sized unlabeled datasets. Its performance is 

significantly influenced by two key computational steps: the 

first involves generating a dissimilarity matrix for each data 

point, which is used to form clusters, while the second 

involves calculating the mean within each cluster and 

updating the centroids iteratively. These steps are repeated 

until convergence is achieved, but the number of iterations is 

not fixed and depends on the specific dataset and the 

convergence criteria. 

 

For large datasets, the execution time of the k-means 

algorithm can become a limiting factor, especially when the 

size of the data grows. Determining the optimal value of 'k' 

also poses challenges, and various methods are employed to 

select this parameter. The performance of the k-means 

algorithm can be enhanced through a density-based approach, 

which has been tested and compared with the traditional 

version of the algorithm in this study. Results indicate that, 

after reaching k=6 clusters, the intra-cluster mean stabilizes at 

a value of 0.1722, demonstrating minimal change with further 

increases in k. 

 

The density-based k-means algorithm requires fewer 

iterations to achieve convergence compared to the traditional 

algorithm, resulting in reduced execution times across all 

tested k-values. Specifically, for k=6, the density-based 

method reduces execution time by 22.72% compared to the 

traditional approach. This improvement is primarily attributed 

to the reduction in computations for generating the 

dissimilarity matrix, as the density-based approach focuses 

only on data points with the highest potential to affect cluster 

formation. This method was applied in a two-dimensional 

feature space, illustrating its effectiveness in enhancing 

clustering efficiency. The application of clustering 

techniques, particularly k-means, has been explored in 

various domains, with an increasing focus on their 

adaptability to different types of data.  
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