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Abstract: Soil classification is a crucial step in agricultural and environmental planning. Current innovations in computer vision 

and deep learning have enabled automatic soil classification using image-based approaches. This paper, explore comparative 

analysis of two popular convolutional neural network architectures, VGG16 and VGG19, for soil image classification. A use of 

soil image dataset containing various soil types used to evaluate the performance of both models. These models fine-tuned using 

transfer learning, and performance determined using metrics such as accuracy, precision, recall, F1-score, and training time. The 

result shows that both VGG16 and VGG19 achieve high classification accuracy, with VGG19 slightly outperforming than 

VGG16 in terms of accuracy but requiring more computational resources and time. This paper demonstrates the effectiveness of 

deep learning models in soil image classification and provides understandings into their comparative performance. 
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1. Introduction  
 

Soil classification is essential in agriculture, geology, and 

environmental science, influencing decisions related to crop 

selection, irrigation management, and land use planning [1] 

[2]. Traditional soil classification techniques depend on 

physical and chemical analysis, which are often time-

consuming and costly [3]. Recent developments in machine 

learning and deep learning have opened new opportunities for 

automated and efficient soil classification using soil images 

[4] [5]. 

 

Convolutional Neural Networks (CNNs) have shown 

significant success in image classification tasks [6]. VGG16 

and VGG19 are two widely used CNN architectures 

developed by the Visual Geometry Group at the University of 

Oxford [7]. Both models have deep architecture and use small 

convolution filters, which capture fine-grained image 

features. However, they differ in depth and computational 

requirements. 

 

This paper compares the performance of VGG16 and VGG19 

for soil image classification. Our objective is to measure the 

accuracy, robustness, and efficiency of each model to 

determine their suitability for practical applications in 

precision agriculture and soil monitoring. 

2. Related work  
 

Several studies have explored the application of machine 

learning and deep learning, particularly Convolutional Neural 

Networks (CNNs) for soil classification using image or 

spectral data. These studies highlight the growing potential of 

deep learning approaches in enhancing accuracy and 

automation in soil assessment. 

 

Srivastava et al. (2021) presented a comprehensive review of 

soil classification techniques using deep learning and 

computer vision. They highlighted how CNNs have 

revolutionized feature extraction in soil imagery, moving 

away from traditional hand-crafted descriptors. Their survey 

included applications in soil texture classification, fertility 

prediction, and even erosion detection. They concluded that 

hybrid models combining spectral and visual features offer 

significant promise for more accurate soil diagnostics [8]. 

 

Deng et al. (2020) explored the use of hyperspectral image 

classification using CNNs and 3D-CNN architectures. By 

processing spatial and spectral dimensions simultaneously, 

their model achieved higher classification performance in soil 

mineral analysis. Although not purely image-based, their 

research demonstrated the value of spectral-spatial fusion 

using deep learning techniques [9]. 
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Ramesh and Suruliandi (2019) proposed a CNN model 

trained on a large-scale soil database containing region-

tagged soil images from across India. Their model showed 

improved accuracy by incorporating soil moisture and texture 

as auxiliary input features alongside image data. They also 

explored region-wise accuracy to assess model generalization 

in diverse agro-climatic zones [10]. 

 

Zhang et al. (2021) utilized attention mechanisms within 

CNNs to improve soil classification. They implemented a 

spatial attention module that emphasized key regions in soil 

imagery, helping the model to ignore irrelevant background 

elements like vegetation or shadows. The resulting model 

outperformed baseline CNNs in datasets with variable 

lighting and field conditions [11]. 

 

Hossain et al. (2022) examined the role of explainable AI 

(XAI) in soil classification by combining CNN-based 

classification with Grad-CAM visualizations. Their system 

allowed users (especially farmers and agronomists) to see 

which parts of the soil image influenced the model’s decision, 

thereby increasing trust and interpretability in AI-powered 

systems [12]. 

 

Nguyen et al. (2023) proposed a federated learning 

framework for soil image classification, enabling models to 

train across multiple edge devices without sharing raw data. 

This privacy-preserving approach achieved comparable 

performance to centralized training, making it suitable for 

remote field applications in data-sensitive regions [13]. 

 

Alam et al. (2022) evaluated the impact of data augmentation 

and image enhancement techniques (like histogram 

equalization and CLAHE) on CNN performance for soil 

image classification. Their study found that contrast 

enhancement significantly improved classification results, 

especially when training on low-quality mobile images [14]. 

 

Goswami et al. (2020) applied a standard CNN architecture to 

classify soil images into six distinct types: clay, loamy, sandy, 

silty, peaty, and chalky. The dataset used consisted of field-

collected images under natural lighting conditions. Their 

model achieved an overall accuracy of approximately 90%, 

demonstrating the feasibility of using CNNs for soil 

classification. The study also noted that model performance 

was sensitive to image quality and background noise, 

emphasizing the importance of preprocessing and data 

augmentation [15]. 

 

Khan et al. (2021) investigated the use of transfer learning for 

soil classification by leveraging pre-trained CNN models 

such as ResNet50, MobileNetV2, and InceptionV3. Their 

work focused on reducing training time and improving 

generalization by fine-tuning these models on a small dataset 

of soil images. The results indicated that MobileNetV2 

provided a good trade-off between accuracy and 

computational efficiency, while ResNet50 achieved the 

highest accuracy (93%) when fine-tuned appropriately [16]. 

 

Yadav et al. (2022) proposed a hybrid deep learning approach 

for classifying soil fertility levels by combining image data 

with hyperspectral data. Their model architecture used 

parallel CNN branches to process RGB images and spectral 

inputs before fusing the extracted features for classification. 

This multi-modal approach achieved higher accuracy than 

single-modality models, highlighting the benefits of 

integrating diverse data sources for soil analysis [17]. 

 

Nandhini and Kavitha (2020) developed a soil texture 

classification system using CNNs on satellite-derived soil 

images. Their approach involved segmenting the region of 

interest and then applying CNN-based classification. The 

study emphasized the role of remote sensing in large-scale 

soil monitoring and the adaptability of CNNs in processing 

low-resolution satellite data [18]. 

 

Patil et al. (2021) focused on real-time soil type prediction 

using a deep CNN integrated with a mobile application. The 

app allowed users to capture soil images directly from the 

field and receive instant predictions. They deployed a 

lightweight CNN architecture optimized for mobile inference, 

demonstrating how soil image classification can be made 

accessible and scalable in real-world agricultural scenarios 

[19]. 

 

Zhao et al. (2022) conducted a comparative analysis of CNN 

architectures including VGG16, ResNet50, and DenseNet121 

for soil profile classification using RGB images of soil pits. 

DenseNet121 outperformed the others in accuracy and 

robustness, but VGG16 demonstrated faster convergence 

during training, especially when data augmentation was 

applied. Their study supports the relevance of architecture 

selection based on application constraints such as 

computation and deployment platforms [20].  

 

These studies collectively demonstrate the effectiveness of 

CNNs and transfer learning in soil classification tasks, while 

also highlighting emerging trends such as mobile deployment, 

multi-modal fusion, and real-time analysis. However, there 

remains a need for a focused comparison between closely 

related architectures like VGG16 and VGG19 specifically in 

the domain of soil image classification, which this paper aims 

to address. 

 

3. Methodology 
 

This section outlines the methodology adopted for soil image 

classification using the VGG16 and VGG19 deep learning 

architectures. The methodology consists of three main 

components: Soil image dataset, model design and selection, 

and training configuration. 

 

3.1 Soil Image Dataset  
 

A custom soil image dataset was developed for this paper to 

ensure diversity and representation of common soil types. 

Soil images collected from two primary sources: field 

photography and publicly available online repositories. Field 

images captured using high-resolution mobile camera under 

natural lighting conditions to reflect real-world scenarios, 
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while online sources provided additional variability in 

texture, colour, and environmental conditions. 

 

Four distinct soil types chosen based on their relevance to 

agriculture and pedological studies and assign nine number of 

labels like B1, B2, B3 for Black Soil, R1, R2, for Red Soil, 

L1, L2 for Laterite Soil, and W1, W2 for White Soil. Images 

captured by mobile camera for used to ensure balanced class 

representation. Following table 1 shows the labels and 

categories of soil images dataset. 

 
Table 1: Labels and Categories of Soil Images dataset  

Categories / Labels Dataset of Soil Images 

Black Soil (B1, B2, B3) 

 

Red Soil (R1, R2) 

 

Laterite Soil (L1, L2) 

 

White Soil (W1, W2) 

 
 

 

Following figure 1 shows the class-wise distribution of soil 

images within the dataset, comprising nine distinct categories 

such that B1, B2, B3, L1, L2, R1, R2, W1, and W2. Each 

category contains an equal number of 400 images, resulting in 

a total of 3600 samples. This uniform distribution ensures 

class balance, which is a critical factor in training deep 

learning models for classification tasks. 
 

 
Figure 1: Distribution for Soil Images Dataset 

 

3.2 Image Preprocessing  

Following figure 2 shows preprocessing pipeline with 

multiple steps applied on soil image dataset. 

 
Figure 2: Flow Diagram of Image Preprocessing 

Input Image: This is the original image that fed into the 

pipeline for preprocessing. 

 

Resizing: All images were resized to 224x224 pixels to 

match the input size required by VGG16 and VGG19 models. 

 

Colour Conversion: Converts the image from one color 

space to another. Common conversions include RGB to 

grayscale, HSV, colour models. Grayscale conversion is done 

to reduce computational complexity. 
 

Normalization: Pixel intensity values normalized to the [0, 

1] range by dividing by 255, which helps in stabilizing and 

accelerating the training process. 

Noise Reduction: Removes unwanted noise from the image to 

enhance quality. Common filtering techniques include 

Gaussian filter for Smoothens the image while preserving 

edges and Median filter for Removes salt-and-pepper noise 

effectively. 

 

Data Augmentation: Enhance model generalization and 

reduce overfitting, data augmentation techniques were 

applied: Random rotations (up to 20°), Horizontal and 

vertical flipping, Zooming (up to 10%), Width and height 

shifts. These augmentations increased dataset variability, 

representing different soil conditions and camera orientations 

in real-world environments. 

 

3.2 Model Architecture 

Two well-known convolutional neural network architectures, 

VGG16 and VGG19 are used for soil image classification. 

400 
400 

400 

400 
400 

400 

400 

400 
400 

Soil Images Dataset Distribution 

B1 B2 B3 L1 L2 R1 R2 W1 W2
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Both models are originally proposed by the Visual Geometry 

Group (VGG) at the University of Oxford and have been pre-

trained on the ImageNet dataset, which contains over 1.2 

million images across 1000 object categories. 

 

VGG16 Comprises 13 convolutional layers, followed by 3 

fully connected layers and a final softmax classification layer. 

Uses 3x3 convolution filters and 2x2 max-pooling layers. 

Contains approximately 138 million trainable parameters. 

Noted for its simplicity and depth balance, making it effective 

for mid-sized image classification tasks. 

 

VGG19 A deeper variant of VGG16 with 16 convolutional 

layers and 3 fully connected layers. Also uses 3x3 

convolution kernels and 2x2 max-pooling layers. Contains 

approximately 143 million parameters. The added depth 

allows for learning more abstract features but increases 

computational cost and training time. 

 

Transfer Learning Strategy Both models fine-tuned using 

transfer learning. 

 

Base weights: Pre-trained on ImageNet and imported without 

the top (classification) layers. 

 

Top layers replacement: Added a new classification head 

consisting of, 

 Global Average Pooling 

 Dense layer (256 units, ReLU) 

 Dropout (rate: 0.5) for regularization 

 Output layer (6 units, softmax activation) 

 

Trainable layers: The top classification layers trained from 

scratch, while convolutional layers either frozen or partially 

unfrozen in later stages for fine-tuning. 

 

3.3 Training Configuration 

To ensure optimal training performance and convergence, the 

models trained using the following configuration: 

i) Optimizer: 
Adam optimizer chosen due to its adaptive learning rate and 

computational efficiency. It combines the benefits of 

AdaGrad and RMSProp for faster convergence. Step by step 

formula of Adam optimizer is as follows, 

 

 Gradient 

              
𝑔𝑡 = 𝛻𝜃𝐽(𝜃𝑡)                                        (1) 

 

a. Exponential Moving Averages 

 

 First moment (mean) 

 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡                           (2) 

 

 Second moment (uncentered variance) 

 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2                             (3) 

 

b. Bias Correction 

 

 Correct for initialization bias 

 

𝑚̂𝑡 =
𝑚𝑡

1−𝛽1
𝑡 , 𝑣̂𝑡 =

𝑣𝑡

1−𝛽2
𝑡                                     (4) 

 

c. Parameter Update 

 

𝜃𝑡 + 1 = 𝜃𝑡 − 𝛼 ⋅
𝑚̂𝑡

√𝑣̂𝑡+𝜖
                                     (5) 

 

Common Hyperparameter Values are, 

 

i) α=0.001  iii)   β1=0.9 

ii) β2=0.999 iv)   ϵ=10
−8

 

 

Where: 

 𝜃𝑡: parameters at time step t 

 𝑔𝑡: gradient at time step t 

 𝑚𝑡: first moment (mean of gradients) 

 𝑣𝑡: second moment (uncentered variance of 

gradients) 

 β1,β2: decay rates for the moment estimates 

 α: learning rate 

 ϵ: small constant to prevent division by zero 

(10
−8

) 

 

ii) Learning Rate: 

An initial learning rate of 0.001 was set. This low 

value was suitable for fine-tuning pre-trained models 

without overshooting minima. 

 

iii) Batch Size: 
. 
A batch size of 32 was used, which provided a good 

balance between training speed and memory usage. 

 

iv) Epochs: 

Models trained for ten epochs. Training monitored 

using validation accuracy, and early stopping was 

working based on validation loss to avoid 

overfitting. 

 

v) Loss Function: 
Categorical Cross-Entropy used as the loss function, 

suitable for multi-class classification tasks with 

softmax output. Here,  

𝑦𝑖  = true label (one-hot encoded, [0, 0, 1, 0] 

𝑦̂𝑖 = predicted probability for class 𝑖 
then loss is, 

 

𝐿𝑜𝑠𝑠 = − ∑ 𝑦𝑖

𝑐

𝑖=1

 𝑙𝑜𝑔(𝑦̂𝑖)                                   (6) 

  

Where: 

 C = number of classes, 

 𝑦𝑖   = 1 if class 𝑖 is the correct class, 0 otherwise, 

 𝑦̂𝑖 = model's predicted probability for class 𝑖 
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vi) Validation Strategy: 

A 20% validation split applied to the dataset during 

training to evaluate model performance and monitor 

overfitting in real-time. 

 

vii) Hardware and Environment: 

Training conducted on a high-performance 

workstation equipped with Google colab TPU 

acceleration (v2-8 TPU), using TensorFlow and 

Keras frameworks. 

 

4. Results and Discussion 
 

The results indicate that both VGG16 and VGG19 

architectures are highly effective for soil image classification, 

achieving validation accuracies above 88%. VGG19 

consistently outperforms than VGG16 across multiple 

evaluation metrics, including precision, recall, and F1-score 

and accuracy. 

 

Precision is a metric used in classification problems to 

evaluate the accuracy of positive predictions. It defined as the 

ratio of true positive predictions to the total number of classes 

predicted as positive. The formula for precision is as follows. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                (7) 

 

Where: 

 True Positives (TP): The number of instances that 

are correctly predicted as positive. 

 False Positives (FP): The number of instances that 

are incorrectly predicted as positive. 

 

Recall (also known as Sensitivity or True Positive Rate) is a 

metric used to evaluate the ability of a model to correctly 

identify all relevant positive instances. It is the ratio of true 

positive predictions to the total number of actual positive 

classes. The formula for recall is as follows. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                       (8) 

 

Where: 

 True Positives (TP): The number of instances that 

correctly predicted as positive. 

 False Negatives (FN): The number of instances that 

incorrectly predicted as negative. 

 

The F1 score is the harmonic mean of precision and recall. It 

provides a balanced measure of a model’s performance, 

particularly when there is an uneven class distribution. The 

formula for F1 score is as follows. 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                            (9) 

 

The accuracy of a model is a metric that measures the overall 

correctness of the model's predictions. It defined as the ratio 

of the number of correct predictions to the total number of 

predictions. The formula for accuracy is as follows. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
                            (10) 

 

Where: 

 True Positives (TP): The number of correctly 

predicted positive classes. 

 True Negatives (TN): The number of correctly 

predicted negative classes. 

 False Positives (FP): The number of incorrectly 

predicted positive classes. 

 False Negatives (FN): The number of incorrectly 

predicted negative classes. 

 

This performance gain attributed to VGG19 is deeper 

architecture, which enables the extraction of more complex 

and hierarchical features from soil images. The additional 

layers in VGG19 allow it to learn finer texture patterns and 

complex color variations, which are crucial for differentiating 

between similar soil types. However, the increased depth of 

VGG19 comes at the cost of higher computational 

complexity, longer training times, and larger model size. 

VGG16, while slightly less accurate, provides faster inference 

and requires less memory,  

 

4.1 Training, Validation Accuracy and Loss 

VGG16 models trained using the Adam optimizer with a 

learning rate of 0.001, a batch size of 32, and categorical 

cross-entropy as the loss function over ten epochs. Following 

figure 3 shows the training accuracy and validation accuracy 

performance against the ten number of epochs and figure 4 

show the training loss and validation loss performance. 

 

 
Figure 3: VGG16 Training and Validation Accuracy 

 

VGG16 Training and Validation Accuracy over ten 

Epochs 

Initial Epochs (0-2) accuracy increases rapidly, indicating that 

the model quickly learns fundamental patterns from the 

training data. Mid Epochs (3-6) the model continues to 

improve, with validation accuracy closely following training 

accuracy suggesting a good generalization capability during 

these phases. Later Epochs (7-9) training accuracy reaches 

near-perfect levels (0.99), while validation accuracy slightly 

fluctuates and ends around 0.92. This indicates a minor 

generalization gap and hints at the onset of overfitting. 
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Figure 4: VGG16 Training and Validation Loss 

 

VGG16 Training and Validation Loss over ten Epochs 

Epoch 0: The loss starts high (Training Loss 2.0 and 

Validation Loss 1.0), at this stage the model has not yet 

learned to make accurate predictions. Epochs 1-3 loss 

decreases sharply for both training and validation sets and 

confirming rapidly coming together. Epochs 4-8 loss values 

stabilize, with minimal fluctuations, indicating a well-

optimized model. Epoch 9 a slight uptick in validation loss is 

observed while training loss continues to decrease, a typical 

early sign of overfitting, where the model begins to memorize 

training data at the expense of generalization. 

 

VGG19 models trained using the Adam optimizer with a 

learning rate of 0.001, a batch size of 32, and categorical 

cross-entropy as the loss function over ten epochs. Following 

figure 5 shows the training accuracy and validation accuracy 

performance against the ten number of epochs and figure 6 

show the training loss and validation loss performance. 

 

 
Figure 5: VGG19 Training and Validation Accuracy 

 

VGG19 Training and Validation Accuracy over ten 

Epochs 

Epochs 1-2 training accuracy is rapidly increasing (0.5 to 

0.75) the model quickly learns basic patterns such as edges, 

textures etc. from the training data and validation accuracy 

follows closely (0.55 to 0.72) in this epochs 1-2 the model 

generalizes well in early stages. Epochs 3-4 training accuracy 

slower improvement (0.75 to 0.82) the model refines its 

understanding of finer features. Validation Accuracy plateaus 

(0.74) Early signs of overfitting. Training accuracy rises 

while validation stalls. Epochs 5-6 training accuracy 

continues climbing (0.82 to 0.88) The model memorizes 

training-specific details such as noise, outliers etc. Validation 

accuracy slightly fluctuations (0.73-0.75) divergence between 

curves indicate overfitting. Epochs 7-8 training accuracy 

nears peak (0.9) Further memorization of training data. 

Validation accuracy drops slightly (0.72). 

 
Figure 6: VGG19 Training and Validation Loss 

 

VGG16 Training and Validation Loss over ten Epochs 

Epoch 0 training loss is high (up to 2.5) expected due to 

random weight initialization and validation loss is lower (2.0) 

reasons is validation set simpler samples. Initial randomness 

coincidentally fits validation data better. Epochs 1-2 training 

loss is sharp decline (2.5 to 1.0) the model is rapidly learns 

meaningful patterns such as edges, shapes etc., and validation 

loss is as follows a similar drop (2.0 to 0.8) and confirms the 

model generalizes well initially. Epochs 3-4 training loss 

slower decrease (1.0 to 0.6) the model fine-tunes on complex 

features in the training data and validation loss plateaus (0.7-

0.8) that is first sign of overfitting, and this time training loss 

improves, but validation loss is slow down. Epochs 5-6 

training loss is continues dropping (0.6 to 0.4) the model 

starts memorizing training data specifics such as noise and, 

validation loss is slight increase (0.8 to 0.9). Epochs 7-8 

training loss nears minimum (0.3) than model achieves near-

perfect fit on training data and, validation loss is peaks (1.0).  

 

4.2 Performance Metrics 
The comparative performance metrics for both VGG16 and 

VGG19 models obtained on the test dataset summarized in 

Table 2. 
Table 2: Comparatively Performance Metrics 

Metric VGG16 (%) VGG19 (%) 

Accuracy 88.80 94.39 

Precision 92.88 94.14 

Recall 88.50 93.81 

F1-Score 89.16 93.57 

Training Time 21 min 43 sec 27 min 95 sec 

Model Size 528 MB 574 MB 
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The above table 2 indicates that both VGG16 and VGG19 are 

effective for soil image classification. VGG19 slightly 

outperforms than VGG16 in accuracy, precision, Recall. F1-

score, training time and model size, VGG16 is more suitable 

due to its faster inference and smaller size. VGG19 is a better 

choice for high-accuracy requirements in research and 

industrial applications. Transfer learning played a crucial role 

in the high performance of both models, highlighting the 

importance of pre-trained weights when dealing with limited 

datasets. 

 

5. Conclusion and Future Scope 
 

This paper presented a comparative analysis of VGG16 and 

VGG19 Convolutional Neural Network architectures for soil 

image classification. Both models demonstrated excellent 

performance, with VGG19 achieving slightly superior 

accuracy, precision, Recall, F1-score metrics as well as 

training time and model size. This performance gain 

attributed to VGG19 is deeper architecture, which enables the 

extraction of more complex and hierarchical features from 

soil images. The additional layers in VGG19 allow it to learn 

finer texture patterns and complex color variations, which are 

crucial for differentiating between similar soil types. The 

increased depth of VGG19 comes at the cost of higher 

computational complexity, longer training times, and larger 

model size. VGG16, while slightly less accurate, provides 

faster inference and requires less memory. VGG19 is 

achieved a final training accuracy of 96.8% and validation 

accuracy of 94.39%. The validation loss for VGG19 was 

slightly lower than VGG16, indicating better generalization. 

The findings suggest that deep learning, especially CNN-

based models, effectively classify soil types based on image 

data. 

 

Future research focus on exploring more efficient and 

lightweight CNN architectures such as MobileNet, 

EfficientNet, or ShuffleNet. These models are well-suited for 

real-time and mobile-based applications, offering a 

favourable balance between accuracy and computational 

efficiency. Furthermore, the integration of multi-modal data 

including hyperspectral images, ASD spectral data, and 

sensor-based measurements holds promise for enhancing 

model robustness and enabling the classification of visually 

similar soil types. 

In addition, advanced techniques such as transfer learning, 

ensemble modelling, and attention-based mechanisms for 

transformers  contribute to further performance 

improvements. The development of GIS-integrated, mobile-

accessible platforms based on these models significantly 

broaden the practical utility of soil classification systems, 

making them accessible to end users. 

 

Data Availability 

There is one soil image dataset used in this paper. These 

Images/photographs taken with digital cameras. These 

Images are in JPEG format. The soil picture dataset 

represents a variety of soil types such as Black Soil, Laterite 

Soil, Red Soil, and White Soil. Each image in the collection 

accompanied by a label or class identifier that indicates the 

soil type belongs to which class. This labelling is necessary 

for supervised machine learning tasks such as classification. 

Soil images are varied in size and resolution. High-resolution 

photos that capture tiny features of soil texture, while others 

may be lower resolution and more suited for broad land 

categorization. This dataset divided into training (80%) and 

testing (20%) sets. 
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