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Abstract: Soil classification is a crucial step in agricultural and environmental planning. Current innovations in computer vision
and deep learning have enabled automatic soil classification using image-based approaches. This paper, explore comparative
analysis of two popular convolutional neural network architectures, VGG16 and VGG19, for soil image classification. A use of
soil image dataset containing various soil types used to evaluate the performance of both models. These models fine-tuned using
transfer learning, and performance determined using metrics such as accuracy, precision, recall, F1-score, and training time. The
result shows that both VGG16 and VGG19 achieve high classification accuracy, with VGG19 slightly outperforming than
VGG16 in terms of accuracy but requiring more computational resources and time. This paper demonstrates the effectiveness of

deep learning models in soil image classification and provides understandings into their comparative performance.
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1. Introduction

Soil classification is essential in agriculture, geology, and
environmental science, influencing decisions related to crop
selection, irrigation management, and land use planning [1]
[2]. Traditional soil classification techniques depend on
physical and chemical analysis, which are often time-
consuming and costly [3]. Recent developments in machine
learning and deep learning have opened new opportunities for
automated and efficient soil classification using soil images

[4] [3]-

Convolutional Neural Networks (CNNs) have shown
significant success in image classification tasks [6]. VGG16
and VGG19 are two widely used CNN architectures
developed by the Visual Geometry Group at the University of
Oxford [7]. Both models have deep architecture and use small
convolution filters, which capture fine-grained image
features. However, they differ in depth and computational
requirements.

This paper compares the performance of VGG16 and VGG19
for soil image classification. Our objective is to measure the
accuracy, robustness, and efficiency of each model to
determine their suitability for practical applications in
precision agriculture and soil monitoring.

© 2025, 1JCSE All Rights Reserved

2. Related work

Several studies have explored the application of machine
learning and deep learning, particularly Convolutional Neural
Networks (CNNs) for soil classification using image or
spectral data. These studies highlight the growing potential of
deep learning approaches in enhancing accuracy and
automation in soil assessment.

Srivastava et al. (2021) presented a comprehensive review of
soil classification techniques using deep learning and
computer vision. They highlighted how CNNs have
revolutionized feature extraction in soil imagery, moving
away from traditional hand-crafted descriptors. Their survey
included applications in soil texture classification, fertility
prediction, and even erosion detection. They concluded that
hybrid models combining spectral and visual features offer
significant promise for more accurate soil diagnostics [8].

Deng et al. (2020) explored the use of hyperspectral image
classification using CNNs and 3D-CNN architectures. By
processing spatial and spectral dimensions simultaneously,
their model achieved higher classification performance in soil
mineral analysis. Although not purely image-based, their
research demonstrated the value of spectral-spatial fusion
using deep learning techniques [9].
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Ramesh and Suruliandi (2019) proposed a CNN model
trained on a large-scale soil database containing region-
tagged soil images from across India. Their model showed
improved accuracy by incorporating soil moisture and texture
as auxiliary input features alongside image data. They also
explored region-wise accuracy to assess model generalization
in diverse agro-climatic zones [10].

Zhang et al. (2021) utilized attention mechanisms within
CNNs to improve soil classification. They implemented a
spatial attention module that emphasized key regions in soil
imagery, helping the model to ignore irrelevant background
elements like vegetation or shadows. The resulting model
outperformed baseline CNNs in datasets with variable
lighting and field conditions [11].

Hossain et al. (2022) examined the role of explainable Al
(XAIl) in soil classification by combining CNN-based
classification with Grad-CAM visualizations. Their system
allowed users (especially farmers and agronomists) to see
which parts of the soil image influenced the model’s decision,
thereby increasing trust and interpretability in Al-powered
systems [12].

Nguyen et al. (2023) proposed a federated learning
framework for soil image classification, enabling models to
train across multiple edge devices without sharing raw data.
This privacy-preserving approach achieved comparable
performance to centralized training, making it suitable for
remote field applications in data-sensitive regions [13].

Alam et al. (2022) evaluated the impact of data augmentation
and image enhancement techniques (like histogram
equalization and CLAHE) on CNN performance for soil
image classification. Their study found that contrast
enhancement significantly improved classification results,
especially when training on low-quality mobile images [14].

Goswami et al. (2020) applied a standard CNN architecture to
classify soil images into six distinct types: clay, loamy, sandy,
silty, peaty, and chalky. The dataset used consisted of field-
collected images under natural lighting conditions. Their
model achieved an overall accuracy of approximately 90%,
demonstrating the feasibility of using CNNs for soil
classification. The study also noted that model performance
was sensitive to image quality and background noise,
emphasizing the importance of preprocessing and data
augmentation [15].

Khan et al. (2021) investigated the use of transfer learning for
soil classification by leveraging pre-trained CNN models
such as ResNet50, MobileNetV2, and InceptionV3. Their
work focused on reducing training time and improving
generalization by fine-tuning these models on a small dataset
of soil images. The results indicated that MobileNetV2
provided a good trade-off between accuracy and
computational efficiency, while ResNet50 achieved the
highest accuracy (93%) when fine-tuned appropriately [16].
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Yadav et al. (2022) proposed a hybrid deep learning approach
for classifying soil fertility levels by combining image data
with hyperspectral data. Their model architecture used
parallel CNN branches to process RGB images and spectral
inputs before fusing the extracted features for classification.
This multi-modal approach achieved higher accuracy than
single-modality models, highlighting the benefits of
integrating diverse data sources for soil analysis [17].

Nandhini and Kavitha (2020) developed a soil texture
classification system using CNNs on satellite-derived soil
images. Their approach involved segmenting the region of
interest and then applying CNN-based classification. The
study emphasized the role of remote sensing in large-scale
soil monitoring and the adaptability of CNNs in processing
low-resolution satellite data [18].

Patil et al. (2021) focused on real-time soil type prediction
using a deep CNN integrated with a mobile application. The
app allowed users to capture soil images directly from the
field and receive instant predictions. They deployed a
lightweight CNN architecture optimized for mobile inference,
demonstrating how soil image classification can be made
accessible and scalable in real-world agricultural scenarios
[19].

Zhao et al. (2022) conducted a comparative analysis of CNN
architectures including VGG16, ResNet50, and DenseNet121
for soil profile classification using RGB images of soil pits.
DenseNet121 outperformed the others in accuracy and
robustness, but VGG16 demonstrated faster convergence
during training, especially when data augmentation was
applied. Their study supports the relevance of architecture
selection based on application constraints such as
computation and deployment platforms [20].

These studies collectively demonstrate the effectiveness of
CNNs and transfer learning in soil classification tasks, while
also highlighting emerging trends such as mobile deployment,
multi-modal fusion, and real-time analysis. However, there
remains a need for a focused comparison between closely
related architectures like VGG16 and VGG19 specifically in
the domain of soil image classification, which this paper aims
to address.

3. Methodology

This section outlines the methodology adopted for soil image
classification using the VGG16 and VGG19 deep learning
architectures. The methodology consists of three main
components: Soil image dataset, model design and selection,
and training configuration.

3.1 Soil Image Dataset

A custom soil image dataset was developed for this paper to
ensure diversity and representation of common soil types.
Soil images collected from two primary sources: field
photography and publicly available online repositories. Field
images captured using high-resolution mobile camera under
natural lighting conditions to reflect real-world scenarios,
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while online sources provided additional variability in
texture, colour, and environmental conditions.

Four distinct soil types chosen based on their relevance to
agriculture and pedological studies and assign nine number of
labels like B1, B2, B3 for Black Soil, R1, R2, for Red Soil,
L1, L2 for Laterite Soil, and W1, W2 for White Soil. Images
captured by mobile camera for used to ensure balanced class
representation. Following table 1 shows the labels and
categories of soil images dataset.

Table 1: Labels and Categories of Soil Images dataset
Categories / Labels Dataset of Soil Images
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Black Soil (B1, B2, B3)

Red Soil (R1, R2)

Laterite Soil (L1, L2)

~

White Soil (W1, W2)

Following figure 1 shows the class-wise distribution of soil
images within the dataset, comprising nine distinct categories
such that B1, B2, B3, L1, L2, R1, R2, W1, and W2. Each
category contains an equal number of 400 images, resulting in
a total of 3600 samples. This uniform distribution ensures
class balance, which is a critical factor in training deep
learning models for classification tasks.

Soil Images Dataset Distribution

=Bl=B2+B3=L1=L2=R1=R2=sW1=W2
Figure 1: Distribution for Soil Images Dataset
3.2 Image Preprocessing

Following figure 2 shows preprocessing pipeline with
multiple steps applied on soil image dataset.
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Figure 2: Flow Diagram of Image Preprocessing

Input Image: This is the original image that fed into the
pipeline for preprocessing.

Resizing: All images were resized to 224x224 pixels to
match the input size required by VGG16 and VGG19 models.

Colour Conversion: Converts the image from one color
space to another. Common conversions include RGB to
grayscale, HSV, colour models. Grayscale conversion is done
to reduce computational complexity.

Normalization: Pixel intensity values normalized to the [0,
1] range by dividing by 255, which helps in stabilizing and
accelerating the training process.

Noise Reduction: Removes unwanted noise from the image to
enhance quality. Common filtering techniques include
Gaussian filter for Smoothens the image while preserving
edges and Median filter for Removes salt-and-pepper noise
effectively.

Data Augmentation: Enhance model generalization and
reduce overfitting, data augmentation techniques were
applied: Random rotations (up to 20°), Horizontal and
vertical flipping, Zooming (up to 10%), Width and height
shifts. These augmentations increased dataset variability,
representing different soil conditions and camera orientations
in real-world environments.

3.2 Model Architecture

Two well-known convolutional neural network architectures,
VGG16 and VGG19 are used for soil image classification.
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Both models are originally proposed by the Visual Geometry
Group (VGG) at the University of Oxford and have been pre-
trained on the ImageNet dataset, which contains over 1.2
million images across 1000 object categories.

VGG16 Comprises 13 convolutional layers, followed by 3
fully connected layers and a final softmax classification layer.
Uses 3x3 convolution filters and 2x2 max-pooling layers.
Contains approximately 138 million trainable parameters.
Noted for its simplicity and depth balance, making it effective
for mid-sized image classification tasks.

VGG19 A deeper variant of VGG16 with 16 convolutional
layers and 3 fully connected layers. Also uses 3x3
convolution kernels and 2x2 max-pooling layers. Contains
approximately 143 million parameters. The added depth
allows for learning more abstract features but increases
computational cost and training time.

Transfer Learning Strategy Both models fine-tuned using
transfer learning.

Base weights: Pre-trained on ImageNet and imported without
the top (classification) layers.

Top layers replacement: Added a new classification head
consisting of,

e  Global Average Pooling

o Dense layer (256 units, ReLU)

e Dropout (rate: 0.5) for regularization

e  Output layer (6 units, softmax activation)

Trainable layers: The top classification layers trained from

scratch, while convolutional layers either frozen or partially
unfrozen in later stages for fine-tuning.

3.3 Training Configuration

To ensure optimal training performance and convergence, the
models trained using the following configuration:

i) Optimizer:

Adam optimizer chosen due to its adaptive learning rate and
computational efficiency. It combines the benefits of
AdaGrad and RMSProp for faster convergence. Step by step
formula of Adam optimizer is as follows,

e Gradient
9t =Val(6r) (1)
a. Exponential Moving Averages
e  First moment (mean)
mt = pfimey + (11— B1)9g: (2)
e Second moment (uncentered variance)

Ve = Boveq + (11— ﬁz)gtz (3)
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iii)

v)
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Bias Correction
Correct for initialization bias

My = L7, By = —= (4)

Parameter Update

0, +1=0,—a -2 (5)

Dete
Common Hyperparameter Values are,

) 0=0.001
i) p,=0.999

i) p,=0.9
iv) e=10"*

Where:

e  0,: parameters at time step t

e g, gradient at time step t

o m,: first moment (mean of gradients)

e v, second moment (uncentered variance of
gradients)

e  [1,B,: decay rates for the moment estimates

e o learning rate

e ¢ small constant to prevent division by zero

(10°)

Learning Rate:

An initial learning rate of 0.001 was set. This low
value was suitable for fine-tuning pre-trained models
without overshooting minima.

Batch Size:

A batch size of 32 was used, which provided a good
balance between training speed and memory usage.

Epochs:

Models trained for ten epochs. Training monitored
using validation accuracy, and early stopping was
working based on validation loss to avoid
overfitting.

Loss Function:

Categorical Cross-Entropy used as the loss function,
suitable for multi-class classification tasks with
softmax output. Here,

y; = true label (one-hot encoded, [0, 0, 1, 0]

¥; = predicted probability for class i

then loss is,
c
Loss == ) yi log®) ©)
i=1
Where:

e  C =number of classes,
e y; =1lifclass i isthe correct class, O otherwise,
e $; = model's predicted probability for class i

18



International Journal of Computer Sciences and Engineering

vi) Validation Strategy:
A 20% validation split applied to the dataset during
training to evaluate model performance and monitor
overfitting in real-time.

vii) Hardware and Environment:
Training conducted on a high-performance
workstation equipped with Google colab TPU
acceleration (v2-8 TPU), using TensorFlow and
Keras frameworks.

4. Results and Discussion

The results indicate that both VGG16 and VGG19
architectures are highly effective for soil image classification,
achieving validation accuracies above 88%. VGG19
consistently outperforms than VGG16 across multiple
evaluation metrics, including precision, recall, and F1-score
and accuracy.

Precision is a metric used in classification problems to
evaluate the accuracy of positive predictions. It defined as the
ratio of true positive predictions to the total number of classes
predicted as positive. The formula for precision is as follows.

TP
TP+FP

Precision =

()

Where:
e True Positives (TP): The number of instances that
are correctly predicted as positive.
e False Positives (FP): The number of instances that
are incorrectly predicted as positive.

Recall (also known as Sensitivity or True Positive Rate) is a
metric used to evaluate the ability of a model to correctly
identify all relevant positive instances. It is the ratio of true
positive predictions to the total number of actual positive
classes. The formula for recall is as follows.

TP
TP+FN

Recall =

(8)

Where:
e True Positives (TP): The number of instances that
correctly predicted as positive.
e False Negatives (FN): The number of instances that
incorrectly predicted as negative.

The F1 score is the harmonic mean of precision and recall. It
provides a balanced measure of a model’s performance,
particularly when there is an uneven class distribution. The
formula for F1 score is as follows.

PrecisionXxRecall

F1Score =2 X — ©)
Precision+Recall

The accuracy of a model is a metric that measures the overall
correctness of the model's predictions. It defined as the ratio
of the number of correct predictions to the total number of

predictions. The formula for accuracy is as follows.
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TP+TN

Accuracy = ————
TP+FP+FN+TN

(10)
Where:
e True Positives (TP): The number of correctly
predicted positive classes.
e True Negatives (TN): The number of correctly
predicted negative classes.
e False Positives (FP): The number of incorrectly
predicted positive classes.
e False Negatives (FN): The number of incorrectly
predicted negative classes.

This performance gain attributed to VGG19 is deeper
architecture, which enables the extraction of more complex
and hierarchical features from soil images. The additional
layers in VGG19 allow it to learn finer texture patterns and
complex color variations, which are crucial for differentiating
between similar soil types. However, the increased depth of
VGG19 comes at the cost of higher computational
complexity, longer training times, and larger model size.
VGG16, while slightly less accurate, provides faster inference
and requires less memory,

4.1 Training, Validation Accuracy and Loss

VGG16 models trained using the Adam optimizer with a
learning rate of 0.001, a batch size of 32, and categorical
cross-entropy as the loss function over ten epochs. Following
figure 3 shows the training accuracy and validation accuracy
performance against the ten number of epochs and figure 4
show the training loss and validation loss performance.

VGG16 - Accuracy over Epochs
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Validation Accuracy
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Figure 3: VGG16 Training and Validation Accuracy

VGG16 Training and Validation Accuracy over ten
Epochs

Initial Epochs (0-2) accuracy increases rapidly, indicating that
the model quickly learns fundamental patterns from the
training data. Mid Epochs (3-6) the model continues to
improve, with validation accuracy closely following training
accuracy suggesting a good generalization capability during
these phases. Later Epochs (7-9) training accuracy reaches
near-perfect levels (0.99), while validation accuracy slightly
fluctuates and ends around 0.92. This indicates a minor
generalization gap and hints at the onset of overfitting.
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VGG16 - Loss over Epochs
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Figure 4: VGG16 Training and Validation Loss

VGG16 Training and Validation Loss over ten Epochs
Epoch 0: The loss starts high (Training Loss 2.0 and
Validation Loss 1.0), at this stage the model has not yet
learned to make accurate predictions. Epochs 1-3 loss
decreases sharply for both training and validation sets and
confirming rapidly coming together. Epochs 4-8 loss values
stabilize, with minimal fluctuations, indicating a well-
optimized model. Epoch 9 a slight uptick in validation loss is
observed while training loss continues to decrease, a typical
early sign of overfitting, where the model begins to memorize
training data at the expense of generalization.

VGG19 models trained using the Adam optimizer with a
learning rate of 0.001, a batch size of 32, and categorical
cross-entropy as the loss function over ten epochs. Following
figure 5 shows the training accuracy and validation accuracy
performance against the ten number of epochs and figure 6
show the training loss and validation loss performance.

VGG19 - Accuracy over Epochs
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Figure 5: VGG19 Training and Validation Accuracy

VGG19 Training and Validation Accuracy over ten
Epochs

Epochs 1-2 training accuracy is rapidly increasing (0.5 to
0.75) the model quickly learns basic patterns such as edges,
textures etc. from the training data and validation accuracy
follows closely (0.55 to 0.72) in this epochs 1-2 the model
generalizes well in early stages. Epochs 3-4 training accuracy
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slower improvement (0.75 to 0.82) the model refines its
understanding of finer features. Validation Accuracy plateaus
(0.74) Early signs of overfitting. Training accuracy rises
while validation stalls. Epochs 5-6 training accuracy
continues climbing (0.82 to 0.88) The model memorizes
training-specific details such as noise, outliers etc. Validation
accuracy slightly fluctuations (0.73-0.75) divergence between
curves indicate overfitting. Epochs 7-8 training accuracy
nears peak (0.9) Further memorization of training data.
Validation accuracy drops slightly (0.72).

VGG19 - Loss over Epochs
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Figure 6: VGG19 Training and Validation Loss

VGGL16 Training and Validation Loss over ten Epochs
Epoch 0 training loss is high (up to 2.5) expected due to
random weight initialization and validation loss is lower (2.0)
reasons is validation set simpler samples. Initial randomness
coincidentally fits validation data better. Epochs 1-2 training
loss is sharp decline (2.5 to 1.0) the model is rapidly learns
meaningful patterns such as edges, shapes etc., and validation
loss is as follows a similar drop (2.0 to 0.8) and confirms the
model generalizes well initially. Epochs 3-4 training loss
slower decrease (1.0 to 0.6) the model fine-tunes on complex
features in the training data and validation loss plateaus (0.7-
0.8) that is first sign of overfitting, and this time training loss
improves, but validation loss is slow down. Epochs 5-6
training loss is continues dropping (0.6 to 0.4) the model
starts memorizing training data specifics such as noise and,
validation loss is slight increase (0.8 to 0.9). Epochs 7-8
training loss nears minimum (0.3) than model achieves near-
perfect fit on training data and, validation loss is peaks (1.0).

4.2 Performance Metrics

The comparative performance metrics for both VGG16 and
VGG19 models obtained on the test dataset summarized in
Table 2.

Table 2: Comparatively Performance Metrics

Metric VGG16 (%) VGG19 (%)
Accuracy 88.80 94.39
Precision 92.88 94.14

Recall 88.50 93.81
F1-Score 89.16 93.57
Training Time 21 min 43 sec 27 min 95 sec
Model Size 528 MB 574 MB
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The above table 2 indicates that both VGG16 and VGG19 are
effective for soil image classification. VGG19 slightly
outperforms than VGG16 in accuracy, precision, Recall. F1-
score, training time and model size, VGG16 is more suitable
due to its faster inference and smaller size. VGG19 is a better
choice for high-accuracy requirements in research and
industrial applications. Transfer learning played a crucial role
in the high performance of both models, highlighting the
importance of pre-trained weights when dealing with limited
datasets.

5. Conclusion and Future Scope

This paper presented a comparative analysis of VGG16 and
VGG19 Convolutional Neural Network architectures for soil
image classification. Both models demonstrated excellent
performance, with VGG19 achieving slightly superior
accuracy, precision, Recall, F1-score metrics as well as
training time and model size. This performance gain
attributed to VGG19 is deeper architecture, which enables the
extraction of more complex and hierarchical features from
soil images. The additional layers in VGG19 allow it to learn
finer texture patterns and complex color variations, which are
crucial for differentiating between similar soil types. The
increased depth of VGG19 comes at the cost of higher
computational complexity, longer training times, and larger
model size. VGG16, while slightly less accurate, provides
faster inference and requires less memory. VGG19 is
achieved a final training accuracy of 96.8% and validation
accuracy of 94.39%. The validation loss for VGG19 was
slightly lower than VGG186, indicating better generalization.
The findings suggest that deep learning, especially CNN-
based models, effectively classify soil types based on image
data.

Future research focus on exploring more efficient and
lightweight CNN architectures such as MobileNet,
EfficientNet, or ShuffleNet. These models are well-suited for
real-time and mobile-based applications, offering a
favourable balance between accuracy and computational
efficiency. Furthermore, the integration of multi-modal data
including hyperspectral images, ASD spectral data, and
sensor-based measurements holds promise for enhancing
model robustness and enabling the classification of visually
similar soil types.

In addition, advanced techniques such as transfer learning,
ensemble modelling, and attention-based mechanisms for
transformers contribute to  further  performance
improvements. The development of GIS-integrated, mobile-
accessible platforms based on these models significantly
broaden the practical utility of soil classification systems,
making them accessible to end users.

Data Availability

There is one soil image dataset used in this paper. These
Images/photographs taken with digital cameras. These
Images are in JPEG format. The soil picture dataset
represents a variety of soil types such as Black Soil, Laterite
Soil, Red Soil, and White Soil. Each image in the collection
accompanied by a label or class identifier that indicates the
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soil type belongs to which class. This labelling is necessary
for supervised machine learning tasks such as classification.
Soil images are varied in size and resolution. High-resolution
photos that capture tiny features of soil texture, while others
may be lower resolution and more suited for broad land
categorization. This dataset divided into training (80%) and
testing (20%) sets.
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