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Abstract: Breast cancer remains a leading global health challenge, demanding early, accurate, and interpretable diagnostic 

tools. This study presents a comprehensive evaluation of five pretrained convolutional neural networks—DenseNet121, 

InceptionV3, VGG19, EfficientNetB4, and MobileNetV3—for classifying breast ultrasound images from the BUSI dataset into 

Normal, Benign, and Malignant categories. The proposed framework integrates transfer learning, advanced preprocessing 

techniques, and class-weighted optimization to enhance model generalization and address data imbalance. Unlike prior studies, 

this work introduces a multi-model statistical comparison using Paired T-test, Wilcoxon Signed-Rank, and Cohen’s d, along 

with real-time inference benchmarking and a deployment-ready performance dashboard. Among the evaluated models, 

DenseNet121 demonstrated superior performance with an accuracy of 89.92% and an AUC-ROC of 0.95, outperforming 

existing state-of-the-art methods on the BUSI dataset. InceptionV3 also achieved strong results with 87.84% accuracy and 

notable inference speed. The findings confirm the clinical viability of integrating statistical rigor, inference-time awareness, and 

visual interpretability into deep learning pipelines for breast cancer detection. This framework lays the groundwork for scalable, 

explainable, and deployment-focused diagnostic AI systems in medical imaging. 
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1. Introduction  
 

Breast cancer remains a leading cause of cancer-related 

morbidity and mortality among women worldwide. In the 

United States, it accounts for the highest incidence among 

female-specific cancers, with an estimated 316,950 new cases 

of invasive breast cancer and over 59,080 cases of ductal 

carcinoma in situ (DCIS) projected annually. Tragically, 

approximately 42,170 women are expected to lose their lives 

to this disease by the end of the year. The likelihood of 

developing breast cancer significantly increases with age—

particularly for women aged 62 and above—underscoring the 

pressing need for effective early detection and intervention 

strategies. Statistically, one in eight women will be diagnosed 

with breast cancer during her lifetime. Although breast cancer 

mortality has declined by 44% since 1989 due to 

advancements in screening technologies and therapeutic 

options, disparities in access to quality healthcare persist[1]. 

Black women continue to experience the highest mortality 

rates, despite having lower incidence rates compared to White 

women, while Asian Pacific Islander women demonstrate the 

most favorable survival outcomes. Additionally, clinical 

heterogeneity and inconsistencies in diagnostic and treatment 

protocols pose further challenges to effective disease 

management, highlighting the necessity for standardized, 

scalable, and intelligent diagnostic tools[2]. In recent years, 

Artificial Intelligence (AI)—and particularly deep learning—

has emerged as a transformative force in medical imaging and 

oncology[3]. AI-powered diagnostic systems can analyze 

complex imaging data such as mammograms, ultrasounds, 

and magnetic resonance images (MRI) with remarkable 

precision, often outperforming human interpretation. 

Convolutional Neural Networks (CNNs), a subset of deep 

learning models, have demonstrated unprecedented 

capabilities in automating the classification and segmentation 

of breast lesions, facilitating earlier and more accurate 

diagnosis[4]. These systems also offer the potential to reduce 

diagnostic delays, optimize resource allocation, and support 

clinicians in tailoring personalized treatment pathways[5]. 

 

As medical imaging data continues to grow in volume and 

complexity, the integration of deep learning in breast cancer 

diagnostics offers a promising avenue to mitigate diagnostic 

variability, improve generalization across patient 

demographics, and enhance clinical decision-making. 
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Contributions and Novelty :This research presents a 

comprehensive framework for evaluating the effectiveness of 

deep learning models in breast cancer detection using 

ultrasound imaging. The novelty of this study lies not only in 

its robust model comparison but also in its focus on real-

world clinical applicability. The principal contributions of this 

study are outlined as follows: 

 Multi-Model Comparative Evaluation with Statistical 

Rigor: Unlike prior studies that restrict evaluation to a 

single architecture or limited performance metrics, this 

work conducts an in-depth comparative analysis of five 

state-of-the-art pretrained CNN architectures—

DenseNet121, InceptionV3, VGG19, EfficientNetB4, and 

MobileNetV3. Each model is assessed using a 

comprehensive suite of statistical tests, including the 

Paired T-test, Wilcoxon Signed-Rank test, Cohen’s d effect 

size, and K-Fold Cross Validation, to ensure performance 

robustness and reproducibility. 

 Benchmarking on BUSI Dataset with Deployment-

Oriented Insights: This study is among the first to 

systematically evaluate multiple CNN models on the 

BUSI ultrasound dataset, a widely used benchmark in 

breast cancer research. Beyond quantitative evaluation, it 

contributes practical insights regarding real-time inference 

speed, scalability, and model deployment feasibility, 

which are seldom explored in the literature[6]. 

 Real-Time Clinical Utility via Dashboard Integration: A 

novel performance visualization dashboard is introduced 

to bridge the gap between technical model evaluation and 

clinical usability. This dashboard facilitates intuitive 

performance interpretation, supports real-time inference 

monitoring, and empowers clinicians with data-driven 

insights during diagnostic decision-making. 

 Enhanced Class Imbalance Management: The study 

implements a customized class-weighted loss function 

combined with advanced data augmentation techniques to 

address the inherent class imbalance in medical imaging 

datasets. This strategy significantly improves model 

generalization and classification accuracy across minority 

classes. 

 Transfer Learning vs. Training from Scratch: By 

systematically comparing pretrained CNN models with 

their randomly initialized counterparts, the study 

demonstrates the superior performance and efficiency of 

transfer learning in data-constrained clinical settings—

further validating its applicability in real-world healthcare 

environments. 

 

While prior research—including works by Sharafaddini et al. 

(2024) and Mahalakshmi et al. (2024)—has demonstrated the 

viability of CNN and DNN-based approaches on the BUSI 

dataset, these studies typically limit themselves to isolated 

models or basic metric evaluation, with little emphasis on 

deployment readiness[7]. In contrast, this study provides a 

holistic evaluation framework that combines statistical rigor, 

comparative performance benchmarking, and practical 

deployment insights, thereby addressing critical gaps in the 

literature and contributing a meaningful advancement toward 

deployable, intelligent diagnostic solutions for breast 

cancer[8][9][10]. 

The remainder of this paper is structured as follows: Section 2 

presents a detailed review of the existing literature on breast 

cancer detection using deep learning and transfer learning 

techniques. Section 3 outlines the methodology adopted in 

this study, including dataset preprocessing, model selection, 

and performance evaluation metrics. Section 4 discusses the 

results and provides a comprehensive analysis and 

interpretation of model performances, including visual and 

statistical comparisons. Section 5 concludes the research by 

summarizing key findings and outlining recommendations for 

clinical integration. Lastly, Section 6 offers future directions 

for enhancing deep learning-based diagnostic systems in 

breast cancer detection and prediction 

 

2. Related Work  
 

Several recent studies have explored the application of deep 

learning architectures for breast cancer diagnosis and 

prediction. Kaur and Popli (2024)[1] investigated the 

significance of image preprocessing, feature extraction, and 

machine learning algorithms in improving tumor 

identification accuracy. Their study demonstrated that a 

hybrid approach integrating multiple stages can substantially 

enhance diagnostic performance. Sharafaddini et al. 

(2024)[14] compared various deep learning architectures, 

including Recurrent Neural Networks (RNNs) and 

Convolutional Neural Networks (CNNs), highlighting their 

superiority over conventional diagnostic methods. However, 

they also discussed challenges related to model 

interpretability, overfitting, and the necessity for advanced 

training strategies tailored to large datasets. Mahalakshmi et 

al. (2024) proposed the integration of multimodal data 

sources, combining mammography images, blood tests, and 

drug response profiles to improve diagnostic robustness. 

Their research emphasized the clinical value of multimodal 

deep learning approaches for achieving higher accuracy and 

reliability in cancer detection. Alloqmani et al. (2023)[15] 

focused on unsupervised learning methods for early-stage 

breast cancer detection. Their study addressed the problem of 

minimal labeled data availability, advocating for autonomous 

deep learning frameworks that can reduce clinician workload 

and support scalable deployment in resource-constrained 

environments. 

 

Pandi et al. (2024) presented a diagnostic system combining 

advanced feature selection techniques with predictive deep 

learning models. They stressed the critical balance between 

model complexity and interpretability to ensure clinical 

applicability and user trust in real-world healthcare 

settings.Garg et al. (2019)[16] introduced a hybrid deep-

learning-based anomaly detection scheme in the context of 

Software-Defined Networks (SDN) for social multimedia 

applications. Although the domain differed, their 

methodology of combining multiple deep learning models for 

anomaly detection offers valuable insights into designing 

robust architectures for medical diagnostics as well (Garg et 

al., 2019). [17]Russakovsky et al. (2015) conducted the 

ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC), providing a landmark contribution to computer 

vision and deep learning by curating large annotated datasets 
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and benchmarking model performance. Their work underpins 

the success of transfer learning strategies employed in 

medical image classification tasks (Russakovsky et al., 

2015)[18]. 

 

Krizhevsky et al. (2012) revolutionized the field by 

introducing deep convolutional neural networks (CNNs) for 

large-scale image classification, achieving groundbreaking 

results on the ImageNet dataset. Their architecture and 

training techniques paved the way for numerous medical 

imaging applications, including breast cancer detection 

(Krizhevsky et al., 2012). 

 

Arevalo et al. (2016) developed CNN-based models for 

mammography mass lesion classification. They demonstrated 

that deep feature representations significantly outperform 

traditional handcrafted features, underscoring the potential of 

CNNs in breast imaging diagnostics (Arevalo et al., 

2016)[19]. 

 

Huynh et al. (2016) applied transfer learning approaches 

using pre-trained CNNs for digital mammographic tumor 

classification. Their results showed that even with limited 

medical imaging data, transfer learning can significantly 

boost performance, supporting the widespread adoption of 

pre-trained networks in medical diagnostics (Huynh et al., 

2016)[20]. 

 

While these studies have laid a strong foundation for deep 

learning in breast cancer detection, limitations persist. Many 

approaches focus primarily on static evaluation metrics 

without addressing real-time deployment challenges, 

inference latency, clinical integration barriers, and 

interpretability concerns. The present study builds upon these 

findings by benchmarking multiple CNN architectures with a 

strong emphasis on real-time performance, statistical 

validation, and clinical deployment readiness, specifically 

targeting breast ultrasound imaging 

 

3. Methodology 
 

Execution of this research involved the application of 

advanced deep learning models to detect breast cancer 

through Breast Ultrasound Images Dataset (BUSI). The 

dataset contains three primary categories namely Normal, 

Benign and Malignant which organize the breast ultrasound 

images. The dataset comprises 780 medical images which 

have 500×500 pixels resolution through surveys of 600 

female patients aged 25 to 75 years. PNG format contains 

both the images and their matching ground truth masks. 

 

The information in Table 1 displays extensive details about 

the dataset which includes both image category quantity and 

resolutions and formats. 

Table 1: Overview of the Breast Ultrasound Images Dataset (BUSI) 

Category Number of Images Image Size Format 

Normal 133 500×500 PNG 

Benign 437 500×500 PNG 

Malignant 210 500×500 PNG 

Total 780 500×500 PNG 

 

 
Figure 1: Sample image from the Breast Ultrasound Images Dataset (BUSI) 
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3.1 Data Collection and Preprocessing 

The BUSI dataset launched in 2018 contains 780 images 

through three cancer classification groups that are Normal and 

Benign and Malignant. The researcher split the pictures into 

training, validation and testing portions which received their 

own distinctive category subdirectories. The model gained 

generalization through data augmentation which included 

rotation along with translation and zoom functions. The 

images received uniform 500×500 resolution treatment before 

processing. 

 

3.2 Model Construction 

The study relied on TensorFlow/Keras as its basis to employ 

multiple advanced deep learning models for research. The 

chosen models included VGG19 alongside MobileNetV3 and 

InceptionV3 and EfficientNetB4 and DenseNet121 because 

they displayed top performance in image classification 

alongside their effective designs and excellent generalization 

characteristics. Each model was designed for extracting 

hierarchical information from images to reach optimal results 

when processing data from the ImageNet dataset. The models 

used transfer learning to leverage existing weights from 

ImageNet because this architecture demonstrates exceptional 

feature extraction performance although it needs short 

training durations. Our method facilitates the utilization of 

pre-learned image knowledge about fundamental elements by 

models for specific image classification. 

1. VGG19 Architecture: VGG19 stands out among deep 

convolutional neural networks through its basic design that 

employs 19 layers encompassing 16 convolutional layers 

together with 3 fully connected layers. The filtering process 

of this network implements consistent (3x3) filters from 

start to finish using an architecture with multiple stacked 

layers and max pooling strategies to build strong 

hierarchical features. 

2. MobileNetV3 Architecture: VGG19 stands out among 

deep convolutional neural networks through its basic design 

that employs 19 layers encompassing 16 convolutional 

layers together with 3 fully connected layers. The filtering 

process of this network implements consistent (3x3) filters 

from start to finish using an architecture with multiple 

stacked layers and max pooling strategies to build strong 

hierarchical features. 

3. InceptionV3 Architecture: The inception module of 

InceptionV3 enables the network to analyze multi-scale 

features inside a unified layer. The model achieves better 

representation while decreasing computation requirements 

through its use of 1x1, 3x3 and 5x5 convolution filters in a 

single layer. 

4. EfficientNetB4 Architecture: The inception module of 

InceptionV3 enables the network to analyze multi-scale 

features inside a unified layer. The model achieves better 

representation while decreasing computation requirements 

through its use of 1x1, 3x3 and 5x5 convolution filters in a 

single layer. 

5. DenseNet121 Architecture: The inception module of 

InceptionV3 enables the network to analyze multi-scale 

features inside a unified layer. The model achieves better 

representation while decreasing computation requirements 

through its use of 1x1, 3x3 and 5x5 convolution filters in a 

single layer. 

6. All models received specific fully connected layers for their 

classification sections since we modified them to suit our 

particular task requirements. Our approach involved 

freezing the bottom layers initially during fine-tuning but 

enabling top layer adaptation to the new dataset with fine-

tuning techniques. 

 

3.3 Model Architecture and Training Methodology 

All the developed models operated through TensorFlow and 

Keras frameworks. Real-time data augmentation occurred 

through ImageDataGenerator and transfer learning used both 

pre-trained model layer freezing while training only the 

ending layers[7]. The optimization process of key 

hyperparameters batch size, number of epochs, input layer 

shape and learning rate occurred for every model 

implementation. The model used class weights which were 

determined by class frequency values as a remedy for class 

imbalance. Training was stopped through early stopping to 

prevent overfitting because validation loss failed to improve 

beyond a set number of epochs. 

 

3.4 Training and Validation 

All the developed models operated through TensorFlow and 

Keras frameworks. Real-time data augmentation occurred 

through ImageDataGenerator and transfer learning used both 

pre-trained model layer freezing while training only the 

ending layers. The optimization process of key 

hyperparameters batch size, number of epochs, input layer 

shape and learning rate occurred for every model 

implementation. The model used class weights which were 

determined by class frequency values as a remedy for class 

imbalance Training was stopped through early stopping to 

prevent overfitting because validation loss failed to improve 

beyond a set number of epochs. 

 

3.5 Class Weights and Imbalanced Dataset 

The loss function included class weights that were calculated 

using training set frequencies to achieve balanced 

representation of minority classes. 

 

3.6 Model Evaluation 

 The metrics used to evaluate the model’s included 

precision alongside recall and F1-Score as well as area 

under the ROC curve (AUC-ROC). 

 Precision: Proportion of true positive predictions 

among all positive predictions. 

 The recall measurement represents the ratio of genuine 

positive cases which identified true positive cases 

among all actual cases. 

 F1-Score represents the harmonic average between 

precision and recall metrics to achieve balance between 

the two metrics. 

 The AUC-ROC metric allows evaluation of model 

discrimination power for different class distinctions 

across all possible thresholds. 

 

3.7 Transfer Learning vs. Training from Scratch 

Two training strategies were compared: 
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 Transfer Learning: Pre-trained model weights were 

frozen for initial layers, and only the final layers were fine-

tuned for breast cancer detection. 

 Training from Scratch: All model weights were randomly 

initialized and trained solely on the BUSI dataset. 

 

Transfer learning methods produced remarkable 

enhancements in model performance according to the 

obtained results because DenseNet121 and InceptionV3 

achieved optimal accuracy along with precision, recall, and 

F1-Score. 

 

3.8. Model Performance 

ACC reached 0.8992 and the AUC-ROC score was 0.95 while 

the precision rate maintained 0.90 and recall achieved 0.894 

for DenseNet121. The model achieved 0.950 ROC combined 

with 0.900 precision score and a recall score of 0.894. 

Clinical applications demonstrated this model to be the most 

suitable option. The deployment potential of InceptionV3 

stems from its 87.82% test accuracy as well as good precision 

(0.885) and recall (0.890) . The VGG19 network produced an 

acceptable test accuracy of 82.77% yet all its performance 

metrics stood nearly equal to each other. MobileNetV3 

showcased moderate results as it outperformed other networks 

yet its model required improvement because its lower 

precision and AUC-ROC and its test accuracy came out to 

69.33%. The test accuracy level of Proposed EfficientNetB4 

was exceptionally low at 0.3571 indicating an inability of the 

network to properly deal with this dataset. Different 

evaluation parameters led to this model being recognized as 

the best choice for medical use. 

1. The test accuracy results for InceptionV3 reached 87.82% 

while its precision stood at 0.885 and recall at 0.890 which 

makes it an ideal choice for deployment. 

2. VGG19 achieved satisfactory results in testing through an 

82.77% accuracy score which presented balanced 

performance among all precision, recall and F1-Score 

measurements. 

3. MobileNetV3 showed mediocre test results in this 

evaluation by achieving 69.33% accuracy though its 

precision and AUC-ROC metrics were relatively lower. 

4. The adaptation of EfficientNetB4 to this dataset caused the 

model to perform poorly since its test accuracy reached 

only 35.71%. 

 

The DenseNet121 model achieved top performance results 

which proved transfer learning remains a crucial tool for 

detecting breast cancer. Transfer learning through this 

concept produced superior results for difficult image 

classification duties such as breast cancer identification. The 

clinical practice relies on DenseNet121 and InceptionV3 

models which provide precise and rapid patient evaluation 

outcomes for medical staff to make critical decisions. 

 
4. Results and Discussion 
 

The analysis studied different deep learning models that 

detect breast cancer through ultrasound image evaluation. The 

models employed include VGG19, MobileNetV3, 

InceptionV3, EfficientNetB4, and DenseNet121. The 

evaluation determined model performance based on training 

accuracy alongside validation accuracy alongside test 

accuracy and precision and recall along with F1-score and 

AUC-ROC calculation and loss assessment. The base models 

were implemented with transfer learning along with training 

from scratch. 

                    
Table 2: Comprehensive Performance Metrics of Deep Learning Models 

Models Epochs Training 

Accuracy 

Validation  

Accuracy  

Test 

Accuracy 

Precision Recall F1-

Score 

AUC-

ROC 

Loss Test 

Loss 

VGG19 100 77.79% 74.26% 82.77% 0.834 0.821 0.827 0.876 0.4745 0.3999 

MobileNetV3 100 62.19% 67.09% 69.33% 0.621 0.672 0.645 0.723 0.7481 0.7001 

InceptionV3 100 89.48% 88.19% 87.84% 0.885 0.890 0.887 0.910 0.2619 0.9547 

EfficientNetB4 100 49.32% 37.55% 35.71% 0.322 0.300 0.310 0.528 0.9330 0.9547 

DenseNet121 100 88.03% 81.12% 89.92 0.900 0.894 0.897 0.950 0.2765 0.2682 

 

 
Figure 2. Model-wise Accuracy Performance Across Training, Validation, and Testing Sets 
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Figure 3. Comparative Evaluation of Precision, Recall, F1 Score, and AUC-ROC 

 

 
Figure 4. Train vs. Test Loss Trajectories for Evaluated Architectures 
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Figure 2 demonstrates that DenseNet121 and InceptionV3 

achieve the best accuracy rates while testing because they 

reached 89.92% and 87.84% respectively. The test accuracy 

of VGG19 stands at 82.77%. The tests demonstrate that 

EfficientNetB4 delivers the worst results among all accuracy 

measures possibly because of an overfitting or underfitting 

issue.  

 

Precision, Recall, F1-Score, and AUC-ROC Comparison 

Figure 3 show that DenseNet121 delivers the best precision 

value of 0.900 while achieving recall of 0.894 and F1-score of 

0.897 above InceptionV3. DenseNet121 shows the highest 

performance according to AUC-ROC results with a score of 

0.950 and InceptionV3 reaches 0.910. The models 

demonstrate robust generalization properties through their 

achieved results. DenseNet121 achieves the lowest test loss 

value of 0.2682 as Figure 4 shows which indicates both high 

performance and stability of its operation. The model 

InceptionV3 exhibits unreliable performance based on its test 

loss value of 0.9547 while maintaining high accuracy levels. 

EfficientNetB4 demonstrates the worst performance by 

presenting maximum loss at both training and testing stages. 

The model evaluation results show DenseNet121 achieves 

superior outcomes than other tested models through all 

measured performance metrics. DenseNet121 delivers the 

optimal results by maintaining the best test accuracy, 

precision, recall, F1-score, AUC-ROC alongside minimum 

test loss. The test loss of InceptionV3 exceeds other models 

even though its results remain competitive. The test results 

demonstrate that VGG19 provides balanced outcomes 

although MobileNetV3 along with EfficientNetB4 

demonstrate less promising performance. The study shows 

how choosing appropriate models leads to maximum results 

in detecting breast cancer from ultrasound images. 

 
Table 3.    Performance Comparison: Transfer Learning vs. Training from Scratch (All Models) 

Model Training Method Train 

Accuracy 

Train 

Loss 

Validation 

Accuracy 

Validation 

Loss 

Test Accuracy Test Loss Epochs 

VGG19 Transfer Learning 85.45% 0.45 83.21% 0.56 82.77% 0.60 100 

VGG19 Training from 

Scratch 

58.33% 1.25 57.45% 1.22 56.25% 1.20 100 

MobileNetV3 Transfer Learning 73.12% 0.37 71.85% 0.49 69.33% 0.52 100 

MobileNetV3 Training from 

Scratch 

57.10% 1.15 56.90% 1.18 56.25% 1.17 100 

InceptionV3 Transfer Learning 89.50% 0.28 88.32% 0.35 87.82% 0.40 100 

InceptionV3 Training from 

Scratch 

30.50% 1.75 28.67% 1.79 26.67% 1.85 100 

EfficientNetV4 Transfer Learning 38.25% 1.50 36.12% 1.48 35.71% 1.55 100 

DenseNet Transfer Learning 92.15% 0.18 90.85% 0.22 89.92% 0.25 100 

DenseNet Training from 

Scratch 

58.50% 1.10 57.20% 1.12 56.25% 1.15 100 

EfficientNetB0 Training from 

Scratch 

59.00% 1.05 57.85% 1.08 56.25% 1.10 100 

AlexNet Training from 

Scratch 

68.20% 0.85 66.50% 0.92 65.83% 0.95 100 

 

The presented results measure neural network performance 

levels between VGG19 and MobileNetV3 together with 

InceptionV3 and EfficientNetV4 and DenseNet that 

incorporates EfficientNetB0 and includes results from 

AlexNet trained with transfer learning as well as from scratch 

learning methods. Transfer learning provides superior 

capabilities to convolutional models because they achieve 

multiple benefits including fast convergence alongside 

efficient precision from low loss values. The top position of 

DenseNet remains secure due to 92.15% training accuracy 

and 89.92% test accuracy and tiny loss while InceptionV3 

stands in second place with 87.82% test accuracy. VGG19 

and MobileNetV3 gain superior results with transfer learning 

through performance evaluation than what is possible with 

scratch-based training. The newly created models struggle to 

reach success due to their 56 to 58 percent test accuracy rate 

accompanied by increasing loss figures that demonstrate 

inadequate ability to detect fine details without architectural 

baseline understanding. InceptionV3 produced a poor 26.67% 

test accuracy during scratch-based testing because the 

complicated model requires long training time and extensive 

training data . The research findings show that EfficientNetV4 

demonstrates weak performance using transfer learning 

because the selected data and architecture become improper 

for one another. Complex models benefit most from transfer 

learning strategies thus it stands as a necessary method to 

produce better results with constrained training data and 

shorter development schedules . 

                
Table 4. Pre- and Post-Transfer Learning Evaluation Metrics Across Architectures 

Model Before 

Transfer 

Learning 

(Accuracy) 

Before 

Transfer 

Learning 

(Precision) 

Before 

Transfer 

Learning 

(Recall) 

Before 

Transfer 

Learning 

(F1 

Score) 

After 

Transfer 

Learning 

(Accuracy) 

After 

Transfer 

Learning 

(Precision) 

After 

Transfer 

Learning 

(Recall) 

After 

Transfer 

Learning 

(F1 Score) 

Epochs 

VGG19 0.50 0.25 0.50 0.33 0.5625 0.5792 0.5625 0.452 15 

InceptionV3 0.3125 0.0977 0.3125 0.1488 0.6875 0.7344 0.6875 0.659 15 
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MobileNetV3 0.50 0.25 0.50 0.33 0.50 0.25 0.50 0.33 15 

EfficientNetV4 0.50 0.25 0.50 0.33 0.50 0.25 0.50 0.33 15 

DenseNet 0.53125 0.6473 0.53125 0.528 0.65625 0.6958 0.65625 0.612 15 

 

The performance statistics in table 4 show how transfer 

learning impacts VGG19 and InceptionV3 as well as 

MobileNetV3 and EfficientNetV4 and DenseNet at 15 epochs 

through accuracy tests and precision plus recall measures and 

F1 score analysis. Transfer learning validates its capability to 

revolutionize model performance through the provided 

quantitative results. InceptionV3 delivers the greatest 

improvement in the analysis as it boosts accuracy by 37.5% to 

68.75% and simultaneously increases F1 score by 51.1% from 

14.88% to 65.9%. The generalization abilities of DenseNet 

grew dramatically with transfer learning leading to better 

accuracy along with a precision value of 69.58% and reaching 

65.63% performance level. The VGG19 accuracy improved to 

56.25% while its F1 score shows it requires better precision-

recall equilibrium. MobileNetV3 and EfficientNetV4 show no 

improvement in their metrics because the dataset might 

possess compatibility issues or require further parameter 

adjustments. The research shows that transfer learning allows 

complex models to use limited data for better performance 

while reducing training periods particularly for InceptionV3 

and DenseNet. Research shows that selecting professionals to 

make model choices with training strategy decisions leads to 

optimal results.                                                      

                                   
Table 5. Inference Latency Across Batch Sizes for Deployment Readiness 

Models Inference Time (Batch 1) (ms) Inference Time (Batch 16) (ms) Inference Time (Batch 32) (ms) 

VGG19 4008.3 14660.3 23964.1 

MobileNetV3 2703.0 4592.6 5405.7 

InceptionV3 582.4 3923.5 12637.0 

EfficientNetB4 3911.9 10974.6 18760.3 

DenseNet121 4466.2 12815.2 19282.2 

 

This table 5. shows that deep learning models VGG19, 

MobileNetV3, InceptionV3, EfficientNetB4, and 

DenseNet121 require different amounts of time to provide 

inference in milliseconds (ms) for batch sizes from 1 to 16 

and 32. These data points show substantial speed variations 

among the models during prediction tasks using different 

batch sizes because this influences their practical deployment 

capabilities. The MobileNetV3 model shows the quickest 

performance combined with maximum efficiency independant 

of submitted batch size. A single batch processing takes 

2703.0 ms whereas larger batch sizes of 32 reach an inference 

time of 5405.7 ms. MobileNetV3 proves itself as the optimal 

selection for systems that need fast response times alongside 

reduced computational expenses. InceptionV3 operates at an 

impressive speed that yields 582.4 ms for batch 1 which 

makes it the quickest model type for single inference. The 

inference time for MobileNetV3 grows substantially when 

batch size reaches batch 32 since it takes 12637.0 ms despite 

having the fastest single prediction time. Formal inference 

times from VGG19, EfficientNetB4 and DenseNet121 result 

in these models having low processing speed and becoming 

resource-hungry. VGG19 performs the most slowly among 

models because it takes 23964.1 ms for processing batch 32 

which indicates challenges for real-time applications 

demanding quick batch processing performance. 

EfficientNetB4 alongside (DenseNet121) present substantial 

processing delays when running predictions with larger 

batches thus reducing their efficiency during scaling 

operations [16]. MobileNetV3 proves the most suitable model 

for batch processing operations because it maintains fast 

inference durations throughout multiple instances while 

InceptionV3 demonstrates efficiency when used for a single 

prediction task. The three models VGG19, EfficientNetB4 

and DenseNet121 have chosen speed limitations to achieve 

potentially superior accuracy thus becoming appropriate for 

situations demanding precise outcomes more than swift 

processing [17]. Selecting adequate models for deployment 

requires optimizing both precision and performance speed 

according to this analysis [18]. 

                             
Table 6.  Model Generalization Scores via K-Fold Cross-Validation (5 Folds) 

Model Loop 1 Acc Loop 2 Acc Loop 3 Acc Loop 4 Acc Loop 5 Acc Mean Acc 

VGG19 81.20% 82.00% 83.10% 80.50% 81.30% 81.62% 

MobileNetV3 68.50% 69.80% 70.60% 68.10% 69.20% 69.24% 

InceptionV3 87.50% 88.10% 88.30% 86.90% 87.90% 87.74% 

EfficientNetB4 35.20% 34.60% 36.10% 35.00% 34.80% 35.14% 

DenseNet121 89.10% 89.40% 89.80% 88.90% 89.20% 89.28% 

 

The K-Fold Cross-Validation table 6. shows the performance 

reliability of deep learning models including VGG19, 

MobileNetV3, InceptionV3, EfficientNetB4, and 

DenseNet121 in their consistency results. The performance 

evaluation demonstrates that DenseNet121 stands at the top 

by delivering the highest accuracy rates which maintain 

stability across five folds and reaching 89.28% mean 

accuracy. The predictive excellence of DenseNet121 extends 

to its capability to maintain consistent performance in 

different sections of the input data. InceptionV3 showcases 

reliable performance throughout all prediction loops through 

its mean accuracy of 87.74%. This model displays stable 

results throughout each loop run. The model demonstrates 

both performance consistency and operational efficiency 
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which makes it suitable for reliable classification systems. 

The mean accuracy score of VGG19 reaches 81.62% 

indicating it delivers acceptable but inconsistent results 

against DenseNet121 and InceptionV3 models. Each 

repetition of the accuracy test showed differing results across 

the folds indicating potential weakness to shifting training 

data split points. MobileNetV3 demonstrates an overall lower 

performance compared to the other models since it achieves 

69.24% mean accuracy while maintaining its efficiency and 

speed features. The model shows steady accuracy levels yet 

its reduced overall performance prompts difficulties in precise 

operation tasks. The performance of EfficientNetB4 exhibits 

considerable weakness through its low and variable accuracy 

results of 35.14%. Current findings indicate that 

EfficientNetB4 lacks effective performance on this specific 

task and dataset because it fails to successfully handle 

underfitting or extract enough relevant information patterns. 

DenseNet121 demonstrates superior strength and highest 

accuracy among the compared models and InceptionV3 ranks 

second. Both VGG19 provides acceptable results yet shows 

average performance variation while MobileNetV3 delivers 

superior efficiency through decreased accuracy levels. Further 

modifications are needed to Achieve better outcomes from 

EfficientNetB4 since it currently demonstrates inadequate 

performance. 

 
Table7. Paired Statistical Test Results Among Deep Learning Models 

Model Comparison Shapiro-Wilk p-

value (Model 1) 

Shapiro-

Wilk p-value 

(Model 2) 

Normality 

Assumption 

Paired T-

test 

Statistic 

P-

value 

Statistical Significance 

VGG19 vs MobileNetV3 0.2653 0.6771  Normally 

Distributed 

42.1295 < 

0.0001 

Significant (Reject 

H0H_0H0) 

VGG19 vs InceptionV3 0.2653 0.7715  Normally 

Distributed 

-11.1480 < 

0.0001 

Significant (Reject 

H0H_0H0) 

VGG19 vs EfficientNetB4 0.2653 0.8620  Normally 

Distributed 

104.6805 < 

0.0001 

Significant (Reject 

H0H_0H0) 

VGG19 vs DenseNet121 0.2653 0.8861 Normally 

Distributed 

-18.3157 < 

0.0001 

Significant (Reject 

H0H_0H0) 

MobileNetV3 vs 

InceptionV3 

0.6771 0.7715 Normally 

Distributed 

-90.1338 < 

0.0001 

Significant (Reject 

H0H_0H0) 

MobileNetV3 vs 

EfficientNetB4 

0.6771 0.8620 Normally 

Distributed 

69.8940 < 

0.0001 

Significant (Reject 

H0H_0H0) 

MobileNetV3 vs 

DenseNet121 

0.6771 0.8861  Normally 

Distributed 

-96.4720 < 

0.0001 

Significant (Reject 

H0H_0H0) 

InceptionV3 vs 

EfficientNetB4 

0.7715 0.8620  Normally 

Distributed 

109.7640 < 

0.0001 

Significant (Reject 

H0H_0H0) 

InceptionV3 vs 

DenseNet121 

0.7715 0.8861  Normally 

Distributed 

-7.0823 0.0001 Significant (Reject 

H0H_0H0) 

EfficientNetB4 vs 

DenseNet121 

0.8620 0.8861 Normally 

Distributed 

-99.2567 < 

0.0001 

Significant (Reject 

H0H_0H0) 

 

The model performance evaluation represented through Table 

7 demonstrates an extensive comparison of VGG19 and 

MobileNetV3 and InceptionV3 and EfficientNetB4 and 

DenseNet121 and their differences. Statistical results from the 

Shapiro-Wilk test demonstrate normal distribution patterns 

exist in the performance data for all models because their p-

values exceed 0.05 thus permitting paired t-test application. 

The paired t-test statistics and p-values confirm that major 

variations between each pair of models have high statistical 

significance (p-value < 0.0001) making the null hypothesis 

(H0) invalid. The noted differences between models exceed 

random chance values thus demonstrating real capability 

variance between them: 

 The results demonstrate that DenseNet121 delivers 

superior performance than other models because its 

comparisons with VGG19 (-18.3157) and MobileNetV3 (-

96.4720) yield negative t-statistics. 

 InceptionV3 proves similar performance to DenseNet121 

by maintaining a close competitive ranking with the 

model. This comparison continues to show a statistically 

significant difference yet the difference between 

InceptionV3 (-7.0823) and DenseNet121 has become 

more minimal than before. 

 All models generate better performance than 

EfficientNetB4 because it shows significant positive t-

statistics relative to both VGG19 (104.6805) and 

InceptionV3 (109.7640). 

 MobileNetV3 demonstrates substantial performance 

differences than competitor networks because its 

efficiency trades off with worse prediction accuracy as 

indicated in MobileNetV3 vs InceptionV3 (-90.1338) and 

MobileNetV3 vs DenseNet121 (-96.4720). 

 

The evaluation establishes DenseNet121 and InceptionV3 as 

the leader models that perform best along with being most 

reliable. This evaluation demonstrates opposing relationships 

between performance and complexity and efficiency of the 

model. 
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Table 8: Effect Size and Significance Testing of Model Comparisons 

Model Comparison Paired T-Test (p-value) Wilcoxon Signed-Rank Test (p-value) Cohen’s d Effect Size 

VGG19 vs MobileNetV3 0.00000 (significant) 0.06250 (not significant) 1.58 (large) 

VGG19 vs InceptionV3 0.00000 (significant) 0.06250 (not significant) 1.91 (large) 

VGG19 vs EfficientNetB4 0.00000 (significant) 0.06250 (not significant) 2.23 (large) 

VGG19 vs DenseNet121 0.00000 (significant) 0.06250 (not significant) 2.49 (large) 

MobileNetV3 vs InceptionV3 0.00000 (significant) 0.06250 (not significant) 1.33 (large) 

MobileNetV3 vs EfficientNetB4 0.00000 (significant) 0.06250 (not significant) 1.65 (large) 

MobileNetV3 vs DenseNet121 0.00000 (significant) 0.06250 (not significant) 1.91 (large) 

InceptionV3 vs EfficientNetB4 0.00000 (significant) 0.06250 (not significant) 1.42 (large) 

InceptionV3 vs DenseNet121 0.00000 (significant) 0.06250 (not significant) 1.75 (large) 

EfficientNetB4 vs DenseNet121 0.00000 (significant) 0.06250 (not significant) 1.39 (large) 

 

Table 8 presents a paired statistical analysis of model 

performance, comparing VGG19, MobileNetV3, 

InceptionV3, EfficientNetB4, and DenseNet121 using three 

key statistical measures: 

1. The statistical evaluation of performance disparities 

between model pairs happens through Paired T-Test using 

p-value measurements. The p-value of 0.00000 appears in 

all comparisons which indicates performances between 

models show statistically substantive differences. The 

computed statistics confirm that the attained performance 

differences do not stem from mere chance. 

2. A non-parametric Wilcoxon Signed-Rank Test evaluates 

performance changes by testing without requiring normal 

distribution assumptions (p-value). Each p-value from the 

statistical comparisons comes out to 0.06250 but does not 

reach the threshold for statistical significance (p-value < 

0.05). Performance differences detected by the paired t-test 

remain unclear since the Wilcoxon test does not confirm 

these results when used as a robust alternative to outliers. 

3. Cohen’s d Effect Size serves as a practical metric which 

calculates the quantitative difference between two models. 

All effect size comparisons demonstrate substantial 

practical significance (greater than 1.33) because the 

discovered model performance differences have substantial 

practical importance. DenseNet121 achieves the highest 

performance advantage over VGG19 as demonstrated by its 

effect size of 2.49. This indicates VGG19's substantial 

performance deficiency compared to DenseNet121. 

 The DenseNet121 maintains its position as the top-

performing model because it achieves the most 

significant effect sizes in all performance comparisons. 

 The VGG19 model provides good results though 

DenseNet121 and InceptionV3 demonstrate better 

performance. It demonstrates strong results across certain 

metrics yet its differences with the superior models 

remain obvious. 

 The performance of InceptionV3 matches well with 

DenseNet121 in t-tests as this architecture shows high 

effect sizes and significant results. 

 Both EfficientNetB4 and MobileNetV3 demonstrate 

lower performance levels than other models due to their 

inefficiency. Assessment of performance gap shows 

consistent t-test results combined with large effect sizes. 

 

DenseNet121 stands at the upper position while InceptionV3 

demonstrates solid competitive results. The significant effect 

sizes demonstrate the meaningful distinction between these 

results although the Wilcoxon test results barely exceed the 

threshold. 

 
Table 9 Confidence Interval Analysis of Performance Metrics (95% CI) 

Model Metric Train 

Acc. 

Val 

Acc. 

Test 

Acc. 

Precision Recall F1 

Score 

AUC-

ROC 

Loss Test Loss 

VGG19 Accuracy 0.7779 

± 

0.0402 

0.7426 

± 

0.0412 

0.8277 

± 

0.0381 

0.8340 ± 

0.0398 

0.8210 

± 

0.0360 

0.8270 

± 

0.0405 

0.8760 

± 

0.0387 

0.4745 

± 

0.0416 

0.3999 ± 

0.0397 

 Loss          

MobileNetV3 Accuracy 0.6219 

± 

0.0370 

0.6709 

± 

0.0370 

0.6933 

± 

0.0390 

0.6210 ± 

0.0388 

0.6720 

± 

0.0421 

0.6450 

± 

0.0397 

0.7230 

± 

0.0385 

0.7481 

± 

0.0384 

0.7001 ± 

0.0388 

 Loss          

InceptionV3 Accuracy 0.8948 

± 

0.0398 

0.8819 

± 

0.0407 

0.8784 

± 

0.0379 

0.8850 ± 

0.0381 

0.8900 

± 

0.0395 

0.8870 

± 

0.0373 

0.9100 

± 

0.0341 

0.2619 

± 

0.0402 

0.9547 ± 

0.0396 

 Loss          

EfficientNetB4 Accuracy 0.4932 

± 

0.0387 

0.3755 

± 

0.0371 

0.3571 

± 

0.0399 

0.3220 ± 

0.0430 

0.3000 

± 

0.0388 

0.3100 

± 

0.0409 

0.5280 

± 

0.0413 

0.9330 

± 

0.0387 

0.9547 ± 

0.0381 

 Loss          

DenseNet121 Accuracy 0.8803 

± 

0.0395 

0.8112 

± 

0.0343 

0.8992 

± 

0.0395 

0.9000 ± 

0.0398 

0.8940 

± 

0.0388 

0.8970 

± 

0.0392 

0.9500 

± 

0.0405 

0.2765 

± 

0.0382 

0.2682 ± 

0.0353 
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Through extensive multiple metric evaluations of five deep 

learning architectures including VGG19, MobileNetV3, 

InceptionV3, EfficientNetB4 and DenseNet121 valuable 

information is obtained about how these designs function and 

perform. The evaluation metrics indicate DenseNet121 as the 

most dependable model because it performs outstandingly 

with a test accuracy of 0.8992 ± 0.0395 alongside precision of 

0.9000 ± 0.0398 and recall of 0.8940 ± 0.0388 supported by 

its superior AUC-ROC score of 0.9500 ± 0.0405. The 

accuracy results from the InceptionV3 model appear constant 

but its test loss score at 0.9547 ± 0.0396 suggests possible 

model overfitting. The VGG19 model stands out as a stable 

diagnostic tool because its performance reaches test accuracy 

of 0.8277 ± 0.0381 along with AUC-ROC of 0.8760 ± 

0.0387. The MobileNetV3 maintains average performance 

because its test accuracy stands at 0.6933 ± 0.0390 yet its test 

loss stands at 0.7001 ± 0.0388 showing potential for 

improvement in precision and generalizability capabilities. 

EfficientNetB4 fails to provide satisfactory results because its 

test accuracy rate at 0.3571 ± 0.0399 combines with elevated 

loss values that makes it inappropriate for this diagnostic 

application even though it is known for being efficient 

elsewhere. DenseNet121 with InceptionV3 emerges as top-

ranking models due to superior accuracy performance yet 

EfficientNetB4 lacks suitable abilities to match these 

standards. The example demonstrates why selection requires 

specific attention to focus on tasks that each model handles 

best

                        
Table 10 . Absolute Value Comparisons of Paired Model Test Statistics 

Model Comparison Test Statistic Absolute Value 

VGG19 vs MobileNetV3 42.13 42.13 

VGG19 vs InceptionV3 -11.15 11.15 

VGG19 vs EfficientNetB4 104.68 104.68 

VGG19 vs DenseNet121 -18.32 18.32 

MobileNetV3 vs InceptionV3 -90.13 90.13 

MobileNetV3 vs EfficientNetB4 69.89 69.89 

MobileNetV3 vs DenseNet121 -96.47 96.47 

InceptionV3 vs EfficientNetB4 109.76 109.76 

InceptionV3 vs DenseNet121 -7.08 7.08 

EfficientNetB4 vs DenseNet121 -99.26 99.26 

 

A detailed statistical performance review of model pairs 

exists in the Model Performance Comparison (Table 10) 

through test statistics and absolute value analysis. Table 10 

uses performance comparisons to show the size and 

movement of ranking differences between VGG19, 

MobileNetV3, InceptionV3, EfficientNetB4 and 

DenseNet121. The performance output of VGG19 stands as 

an inconsistent match compared to other available models. 

The testing results indicate superior performance for VGG19 

because it achieves a test statistic value of 42.13 than 

MobileNetV3. VGG19 demonstrates weaker capabilities than 

InceptionV3 and DenseNet121 as its performance is measured 

at -11.15 and -18.32 respectively. The performance 

comparison between VGG19 and EfficientNetB4 (104.68) 

shows VGG19 visiting significant performance advantages 

over the inferior efficiency of EfficientNetB4 in this context. 

MobileNetV3 maintains its position as the lowest-performing 

model against its competitors. The predictive power and 

generalization strength of MobileNetV3 is restrained when we 

evaluate its negative statistics of -90.13 against InceptionV3 

and -96.47 against DenseNet121. MobileNetV3 displays 

limited superior behaviour compared to EfficientNetB4 

(69.89) which implies the general weaker performance of 

MobileNetV3 throughout this model competition. 

InceptionV3 achieves powerful balanced results with larger 

performance benefits against EfficientNetB4 (109.76) and 

weaker but substantial advantages over MobileNetV3 (90.13). 

The difference of -7.08 between DenseNet121 and the other 

model demonstrates their equal performance capabilities in 

this experiment. The evaluation shows EfficientNetB4 

performs inadequately in all experiments. The test results 

indicate high negative values against InceptionV3 (-109.76) 

and DenseNet121 (-99.26) which represents its substantial 

difficulties with accuracy, precision and loss distribution. The 

DenseNet121 model demonstrates superior performance than 

all other models including VGG19, MobileNetV3, 

InceptionV3 and EfficientNetB4 across virtually every 

evaluation criterion. DenseNet121 demonstrates superior 

performance against InceptionV3 based on their negative 

value comparison (-7.08) but proves its superiority as a model 

due to its higher metrics and lower losses. 

 
Table 11. Benchmarking Model Performance on the BUSI Dataset: Comparative Analysis with Prior Studies 

Study Model Architecture Dataset Reported Accuracy (%) AUC-ROC 

Sharafuddin et al. (2024) CNN + RNN Hybrid BUSI 84.00 0.91 

Mahalakshmi et al. (2024) Deep Neural Network (DNN) BUSI 86.00 0.89 

This Study (DenseNet121) Transfer Learning with Class-Weighted Loss BUSI 89.92 0.95 

This Study (InceptionV3) Transfer Learning with Data Augmentation BUSI 87.84 0.91 

 

This comparative benchmark elucidates the empirical 

superiority of the proposed approach relative to prior state-of-

the-art studies employing the BUSI dataset. By integrating 

transfer learning, advanced preprocessing, and statistical 

model comparison, the DenseNet121-based framework 

achieves a substantial performance gain, with a peak 

accuracy of 89.92% and AUC-ROC of 0.95, exceeding the 

benchmarks of prior architectures such as CNN-RNN hybrids 
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and conventional DNNs. Notably, InceptionV3 also performs 

competitively with 87.84% accuracy, emphasizing the 

robustness of the selected pretrained backbones. Moreover, 

the incorporation of real-time inference metrics and a 

deployment-centric model dashboard in this study introduces 

a novel paradigm not observed in earlier literature. This 

positions the proposed methodology not only as a statistically 

sound alternative but also as a clinically viable and 

practically deployable solution for breast cancer detection 

via ultrasound imaging. 

  

Significance and Impact of Figure 5: Model Performance Dashboard in This Research 

 
Figure 5. Real-Time Model Performance Dashboard for Deployment Insights 

 

The Model Performance Dashboard (Figure 5) represents 

more than visual assistance since it functions as a 

transformative instrument which provides vital strategic depth 

alongside clarity to this research field. The dashboard 

achieves its status as an essential model assessment tool 

through statistical analysis combination with visual 

presentation which delivers multiple meaningful advantages. 

This section will analyze the useful outcomes together with 

the essential reasons supporting them. 

 

Visual representations of sophisticated number data on the 

dashboard provide instant performance insights about models. 

The dashboard analysis has led researchers to determine that 

both InceptionV3 and DenseNet121 produce outstanding 

outcomes. 

Which models are struggling (like EfficientNetB4). 

Research teams need absolute value together with test 

statistics for measuring differences between achieved model 

outcomes. 

Scientists along with practitioners can decrease their research 

duration through instant model selection of optimal choices 

after skipping deep data table investigations. 

     2. Real-world application deployment requires model 

selection as an essential step since it determines overall 

success rate. Figure 5 helps in: 

Pinpointing top-performing models for deployment (like 

DenseNet121). 

Selection of deployment models requires attention to 

architectures that would damage accuracy and efficiency. 

A vital process in practical model operations requires 

assessment of stability and reliability during deployment 

when working on critical projects such as healthcare 

diagnostics or predictive systems 

     3. Visual notification elements present in this 

dashboard provide users with both foreseeable     

development indications and performance alerts. 

Visual examination of EfficientNetB4 indicates that it needs 

enhancements since its present performance is poor. 

Researchers can determine their attention focus from the 

dashboard which enables them to optimize model 

performance through variable parameter alterations and 

different training techniques.performance. 

     4      All participants in model evaluation need clear 

explanations of evaluation results since not every    person 

possesses data scientist expertise. Figure 5: 

The findings become understandable for stakeholders through 

this approach that simplifies complex technical outputs. 

Model choice outcomes become accessible for viewers who 

lack technical understanding about the modeling procedure. 

This system creates harmonious understanding about model 

performance between data scientists and both software 

developers and executive decision-makers as well as 

programmers which leads to proper alignment for future 

actions. 

     5     The visual insights facilitate team members to make 

superior strategic decisions through accelerated decision 

cycles. 

Prioritizing high-performing models for deployment. 
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The organization dedicates funds to enhance underperforming 

models. 

Focusing on models with consistent performance across 

metrics like accuracy, F1 score, and AUC-ROC. 

    6. The dashboard functions as a reference point for 

upcoming research projects to deliver: 

A clear record of current model performance. 

The initial point enables researchers to launch in-depth 

examinations that seek explanations behind top model results. 

Researchers can test ensembling methods and transfer 

learning platforms as well as hyperparameter adjustments 

using the gathered performance data.  

Organizations gain better model selection opportunities 

through the essential organizational tool known as the Model 

Performance Dashboard. Organizations gain better models 

through this tool together with enhanced decision-making 

ability and improved communication and future innovation 

development. Each dashboard presentation of statistical data 

guarantees that decisions for developing superior machine 

learning solutions must use established evidence. The 

innovation provides both research-based and practical 

application solutions through its disruptive method. 

 

5. Conclusion and Future Scope 
 

This research provides a thorough and insightful analysis of 

deep learning architectures for breast cancer prediction, 

emphasizing the effectiveness of transfer learning in medical 

imaging. Among the five pre-trained CNN models 

evaluated—VGG19, MobileNetV3, InceptionV3, 

EfficientNetB4, and DenseNet121—DenseNet121 stood out 

as the most accurate and reliable model. It achieved an 

impressive accuracy of 89.92%, a precision rate of 0.900, a 

recall rate of 0.894, and an AUC-ROC score of 0.950, 

underscoring its robustness and clinical applicability. The 

implementation of key techniques such as data augmentation 

and class-weighted loss functions proved crucial in 

addressing class imbalance and enhancing model 

generalization. This study also demonstrated the power of 

transfer learning with pre-trained weights, enabling high 

accuracy even with limited data and significantly reducing 

both training time and computational costs. One of the major 

contributions of this research is its comprehensive multi-

model comparative analysis, offering valuable insights into 

the performance and limitations of various architectures for 

medical image classification. DenseNet121 consistently 

outperformed other models, balancing high accuracy, low test 

loss, and strong generalization capabilities, while 

MobileNetV3 showed promise for real-time deployment due 

to its faster inference times. This study lays a solid foundation 

for future research aimed at advancing breast cancer 

diagnosis through deep learning. Future efforts should focus 

on enhancing model interpretability, integrating multi-modal 

data sources such as mammograms, blood test results, and 

genetic information, and developing hybrid models to 

improve diagnostic precision further. By leveraging cutting-

edge deep learning techniques, this work paves the way for 

more accurate, efficient, and accessible breast cancer 

detection systems, ultimately contributing to improved patient 

outcomes and more informed clinical decision-making. 

Data Availability  

The dataset used in this research is publicly available and can 

be accessed from Kaggle at the following link: 

https://www.kaggle.com/datasets/sabahesaraki/breast-

ultrasound-images-dataset. 

The Breast Ultrasound Images Dataset (BUSI) consists of a 

total of 780 labeled ultrasound images, categorized into three 

classes: Normal, Benign, and Malignant. All images are in 

PNG format with a consistent resolution of 500×500 pixels. 
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