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Abstract: Breast cancer remains a leading global health challenge, demanding early, accurate, and interpretable diagnostic
tools. This study presents a comprehensive evaluation of five pretrained convolutional neural networks—DenseNet121,
InceptionV3, VGG19, EfficientNetB4, and MobileNetV3—for classifying breast ultrasound images from the BUSI dataset into
Normal, Benign, and Malignant categories. The proposed framework integrates transfer learning, advanced preprocessing
techniques, and class-weighted optimization to enhance model generalization and address data imbalance. Unlike prior studies,
this work introduces a multi-model statistical comparison using Paired T-test, Wilcoxon Signed-Rank, and Cohen’s d, along
with real-time inference benchmarking and a deployment-ready performance dashboard. Among the evaluated models,
DenseNet121 demonstrated superior performance with an accuracy of 89.92% and an AUC-ROC of 0.95, outperforming
existing state-of-the-art methods on the BUSI dataset. InceptionV3 also achieved strong results with 87.84% accuracy and
notable inference speed. The findings confirm the clinical viability of integrating statistical rigor, inference-time awareness, and
visual interpretability into deep learning pipelines for breast cancer detection. This framework lays the groundwork for scalable,

explainable, and deployment-focused diagnostic Al systems in medical imaging.

Keywords: Breast Cancer, Deep Learning, Ultrasound Imaging, Transfer Learning, DenseNet121, InceptionV3.

1. Introduction

Breast cancer remains a leading cause of cancer-related
morbidity and mortality among women worldwide. In the
United States, it accounts for the highest incidence among
female-specific cancers, with an estimated 316,950 new cases
of invasive breast cancer and over 59,080 cases of ductal
carcinoma in situ (DCIS) projected annually. Tragically,
approximately 42,170 women are expected to lose their lives
to this disease by the end of the year. The likelihood of
developing breast cancer significantly increases with age—
particularly for women aged 62 and above—underscoring the
pressing need for effective early detection and intervention
strategies. Statistically, one in eight women will be diagnosed
with breast cancer during her lifetime. Although breast cancer
mortality has declined by 44% since 1989 due to
advancements in screening technologies and therapeutic
options, disparities in access to quality healthcare persist[1].
Black women continue to experience the highest mortality
rates, despite having lower incidence rates compared to White
women, while Asian Pacific Islander women demonstrate the
most favorable survival outcomes. Additionally, clinical
heterogeneity and inconsistencies in diagnostic and treatment
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protocols pose further challenges to effective disease
management, highlighting the necessity for standardized,
scalable, and intelligent diagnostic tools[2]. In recent years,
Artificial Intelligence (Al)—and particularly deep learning—
has emerged as a transformative force in medical imaging and
oncology[3]. Al-powered diagnostic systems can analyze
complex imaging data such as mammograms, ultrasounds,
and magnetic resonance images (MRI) with remarkable
precision, often outperforming human interpretation.
Convolutional Neural Networks (CNNs), a subset of deep
learning models, have demonstrated unprecedented
capabilities in automating the classification and segmentation
of breast lesions, facilitating earlier and more accurate
diagnosis[4]. These systems also offer the potential to reduce
diagnostic delays, optimize resource allocation, and support
clinicians in tailoring personalized treatment pathways[5].

As medical imaging data continues to grow in volume and
complexity, the integration of deep learning in breast cancer
diagnostics offers a promising avenue to mitigate diagnostic
variability,  improve  generalization  across  patient
demographics, and enhance clinical decision-making.
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Contributions and Novelty :This research presents a
comprehensive framework for evaluating the effectiveness of
deep learning models in breast cancer detection using
ultrasound imaging. The novelty of this study lies not only in
its robust model comparison but also in its focus on real-
world clinical applicability. The principal contributions of this
study are outlined as follows:

e Multi-Model Comparative Evaluation with Statistical
Rigor: Unlike prior studies that restrict evaluation to a
single architecture or limited performance metrics, this
work conducts an in-depth comparative analysis of five
state-of-the-art ~ pretrained = CNN  architectures—
DenseNet121, InceptionV3, VGG19, EfficientNetB4, and
MobileNetV3. Each model is assessed using a
comprehensive suite of statistical tests, including the
Paired T-test, Wilcoxon Signed-Rank test, Cohen’s d effect
size, and K-Fold Cross Validation, to ensure performance
robustness and reproducibility.

e Benchmarking on BUSI Dataset with Deployment-
Oriented Insights: This study is among the first to
systematically evaluate multiple CNN models on the
BUSI ultrasound dataset, a widely used benchmark in
breast cancer research. Beyond quantitative evaluation, it
contributes practical insights regarding real-time inference
speed, scalability, and model deployment feasibility,
which are seldom explored in the literature[6].

e Real-Time Clinical Utility via Dashboard Integration: A
novel performance visualization dashboard is introduced
to bridge the gap between technical model evaluation and
clinical usability. This dashboard facilitates intuitive
performance interpretation, supports real-time inference
monitoring, and empowers clinicians with data-driven
insights during diagnostic decision-making.

e Enhanced Class Imbalance Management: The study
implements a customized class-weighted loss function
combined with advanced data augmentation techniques to
address the inherent class imbalance in medical imaging
datasets. This strategy significantly improves model
generalization and classification accuracy across minority
classes.

o Transfer Learning vs. Training from Scratch: By
systematically comparing pretrained CNN models with
their randomly initialized counterparts, the study
demonstrates the superior performance and efficiency of
transfer learning in data-constrained clinical settings—
further validating its applicability in real-world healthcare
environments.

While prior research—including works by Sharafaddini et al.
(2024) and Mahalakshmi et al. (2024)—has demonstrated the
viability of CNN and DNN-based approaches on the BUSI
dataset, these studies typically limit themselves to isolated
models or basic metric evaluation, with little emphasis on
deployment readiness[7]. In contrast, this study provides a
holistic evaluation framework that combines statistical rigor,
comparative performance benchmarking, and practical
deployment insights, thereby addressing critical gaps in the
literature and contributing a meaningful advancement toward
deployable, intelligent diagnostic solutions for breast
cancer[8][9][10].
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The remainder of this paper is structured as follows: Section 2
presents a detailed review of the existing literature on breast
cancer detection using deep learning and transfer learning
techniques. Section 3 outlines the methodology adopted in
this study, including dataset preprocessing, model selection,
and performance evaluation metrics. Section 4 discusses the
results and provides a comprehensive analysis and
interpretation of model performances, including visual and
statistical comparisons. Section 5 concludes the research by
summarizing key findings and outlining recommendations for
clinical integration. Lastly, Section 6 offers future directions
for enhancing deep learning-based diagnostic systems in
breast cancer detection and prediction

2. Related Work

Several recent studies have explored the application of deep
learning architectures for breast cancer diagnosis and
prediction. Kaur and Popli (2024)[1] investigated the
significance of image preprocessing, feature extraction, and
machine learning algorithms in  improving tumor
identification accuracy. Their study demonstrated that a
hybrid approach integrating multiple stages can substantially
enhance diagnostic performance. Sharafaddini et al.
(2024)[14] compared various deep learning architectures,
including Recurrent Neural Networks (RNNs) and
Convolutional Neural Networks (CNNs), highlighting their
superiority over conventional diagnostic methods. However,
they also discussed challenges related to model
interpretability, overfitting, and the necessity for advanced
training strategies tailored to large datasets. Mahalakshmi et
al. (2024) proposed the integration of multimodal data
sources, combining mammography images, blood tests, and
drug response profiles to improve diagnostic robustness.
Their research emphasized the clinical value of multimodal
deep learning approaches for achieving higher accuracy and
reliability in cancer detection. Allogmani et al. (2023)[15]
focused on unsupervised learning methods for early-stage
breast cancer detection. Their study addressed the problem of
minimal labeled data availability, advocating for autonomous
deep learning frameworks that can reduce clinician workload
and support scalable deployment in resource-constrained
environments.

Pandi et al. (2024) presented a diagnostic system combining
advanced feature selection techniques with predictive deep
learning models. They stressed the critical balance between
model complexity and interpretability to ensure clinical
applicability and wuser trust in real-world healthcare
settings.Garg et al. (2019)[16] introduced a hybrid deep-
learning-based anomaly detection scheme in the context of
Software-Defined Networks (SDN) for social multimedia
applications.  Although the domain differed, their
methodology of combining multiple deep learning models for
anomaly detection offers valuable insights into designing
robust architectures for medical diagnostics as well (Garg et
al., 2019). [17]Russakovsky et al. (2015) conducted the
ImageNet Large Scale Visual Recognition Challenge
(ILSVRC), providing a landmark contribution to computer
vision and deep learning by curating large annotated datasets
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and benchmarking model performance. Their work underpins
the success of transfer learning strategies employed in
medical image classification tasks (Russakovsky et al.,
2015)[18].

Krizhevsky et al. (2012) revolutionized the field by
introducing deep convolutional neural networks (CNNs) for
large-scale image classification, achieving groundbreaking
results on the ImageNet dataset. Their architecture and
training techniques paved the way for numerous medical
imaging applications, including breast cancer detection
(Krizhevsky et al., 2012).

Arevalo et al. (2016) developed CNN-based models for
mammography mass lesion classification. They demonstrated
that deep feature representations significantly outperform
traditional handcrafted features, underscoring the potential of
CNNs in breast imaging diagnostics (Arevalo et al.,
2016)[19].

Huynh et al. (2016) applied transfer learning approaches
using pre-trained CNNs for digital mammographic tumor
classification. Their results showed that even with limited
medical imaging data, transfer learning can significantly
boost performance, supporting the widespread adoption of
pre-trained networks in medical diagnostics (Huynh et al.,
2016)[20].

Vol.13(4), Apr. 2025

While these studies have laid a strong foundation for deep
learning in breast cancer detection, limitations persist. Many
approaches focus primarily on static evaluation metrics
without addressing real-time deployment challenges,
inference latency, clinical integration barriers, and
interpretability concerns. The present study builds upon these
findings by benchmarking multiple CNN architectures with a
strong emphasis on real-time performance, statistical
validation, and clinical deployment readiness, specifically
targeting breast ultrasound imaging

3. Methodology

Execution of this research involved the application of
advanced deep learning models to detect breast cancer
through Breast Ultrasound Images Dataset (BUSI). The
dataset contains three primary categories namely Normal,
Benign and Malignant which organize the breast ultrasound
images. The dataset comprises 780 medical images which
have 500x500 pixels resolution through surveys of 600
female patients aged 25 to 75 years. PNG format contains
both the images and their matching ground truth masks.

The information in Table 1 displays extensive details about
the dataset which includes both image category quantity and
resolutions and formats.

Table 1: Overview of the Breast Ultrasound Images Dataset (BUSI)

Category Number of Images Image Size Format
Normal 133 500x500 PNG
Benign 437 500x500 PNG

Malignant 210 500x500 PNG
Total 780 500x500 PNG

malignant

.

Figure 1: Sample image from the Breast Ultrasound Images Dataset (BUSI)
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3.1 Data Collection and Preprocessing

The BUSI dataset launched in 2018 contains 780 images
through three cancer classification groups that are Normal and
Benign and Malignant. The researcher split the pictures into
training, validation and testing portions which received their
own distinctive category subdirectories. The model gained
generalization through data augmentation which included
rotation along with translation and zoom functions. The
images received uniform 500x500 resolution treatment before
processing.

3.2 Model Construction

The study relied on TensorFlow/Keras as its basis to employ

multiple advanced deep learning models for research. The

chosen models included VGG19 alongside MobileNetV3 and

InceptionV3 and EfficientNetB4 and DenseNet121 because

they displayed top performance in image classification

alongside their effective designs and excellent generalization
characteristics. Each model was designed for extracting
hierarchical information from images to reach optimal results
when processing data from the ImageNet dataset. The models
used transfer learning to leverage existing weights from

ImageNet because this architecture demonstrates exceptional

feature extraction performance although it needs short

training durations. Our method facilitates the utilization of
pre-learned image knowledge about fundamental elements by
models for specific image classification.

1.VGG19 Architecture: VGG19 stands out among deep
convolutional neural networks through its basic design that
employs 19 layers encompassing 16 convolutional layers
together with 3 fully connected layers. The filtering process
of this network implements consistent (3x3) filters from
start to finish using an architecture with multiple stacked
layers and max pooling strategies to build strong
hierarchical features.

2.MobileNetV3 Architecture: VGG19 stands out among
deep convolutional neural networks through its basic design
that employs 19 layers encompassing 16 convolutional
layers together with 3 fully connected layers. The filtering
process of this network implements consistent (3x3) filters
from start to finish using an architecture with multiple
stacked layers and max pooling strategies to build strong
hierarchical features.

3.InceptionVV3 Architecture: The inception module of
InceptionV3 enables the network to analyze multi-scale
features inside a unified layer. The model achieves better
representation while decreasing computation requirements
through its use of 1x1, 3x3 and 5x5 convolution filters in a
single layer.

4. EfficientNetB4 Architecture: The inception module of
InceptionV3 enables the network to analyze multi-scale
features inside a unified layer. The model achieves better
representation while decreasing computation requirements
through its use of 1x1, 3x3 and 5x5 convolution filters in a
single layer.

5.DenseNet121 Architecture: The inception module of
InceptionVV3 enables the network to analyze multi-scale
features inside a unified layer. The model achieves better
representation while decreasing computation requirements
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through its use of 1x1, 3x3 and 5x5 convolution filters in a
single layer.

6. All models received specific fully connected layers for their
classification sections since we modified them to suit our
particular task requirements. Our approach involved
freezing the bottom layers initially during fine-tuning but
enabling top layer adaptation to the new dataset with fine-
tuning techniques.

3.3 Model Architecture and Training Methodology

All the developed models operated through TensorFlow and
Keras frameworks. Real-time data augmentation occurred
through ImageDataGenerator and transfer learning used both
pre-trained model layer freezing while training only the
ending layers[7]. The optimization process of key
hyperparameters batch size, number of epochs, input layer
shape and learning rate occurred for every model
implementation. The model used class weights which were
determined by class frequency values as a remedy for class
imbalance. Training was stopped through early stopping to
prevent overfitting because validation loss failed to improve
beyond a set number of epochs.

3.4 Training and Validation

All the developed models operated through TensorFlow and
Keras frameworks. Real-time data augmentation occurred
through ImageDataGenerator and transfer learning used both
pre-trained model layer freezing while training only the
ending layers. The optimization process of key
hyperparameters batch size, number of epochs, input layer
shape and learning rate occurred for every model
implementation. The model used class weights which were
determined by class frequency values as a remedy for class
imbalance Training was stopped through early stopping to
prevent overfitting because validation loss failed to improve
beyond a set number of epochs.

3.5 Class Weights and Imbalanced Dataset

The loss function included class weights that were calculated
using training set frequencies to achieve balanced
representation of minority classes.

3.6 Model Evaluation

e The metrics used to evaluate the model’s included
precision alongside recall and F1-Score as well as area
under the ROC curve (AUC-ROC).

e Precision: Proportion of true positive predictions
among all positive predictions.

e The recall measurement represents the ratio of genuine
positive cases which identified true positive cases
among all actual cases.

e F1-Score represents the harmonic average between
precision and recall metrics to achieve balance between
the two metrics.

e The AUC-ROC metric allows evaluation of model
discrimination power for different class distinctions
across all possible thresholds.

3.7 Transfer Learning vs. Training from Scratch
Two training strategies were compared:
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e Transfer Learning: Pre-trained model weights were
frozen for initial layers, and only the final layers were fine-
tuned for breast cancer detection.

e Training from Scratch: All model weights were randomly
initialized and trained solely on the BUSI dataset.

Transfer  learning  methods  produced  remarkable
enhancements in model performance according to the
obtained results because DenseNetl21 and InceptionV3
achieved optimal accuracy along with precision, recall, and
F1-Score.

3.8. Model Performance
ACC reached 0.8992 and the AUC-ROC score was 0.95 while
the precision rate maintained 0.90 and recall achieved 0.894
for DenseNet121. The model achieved 0.950 ROC combined
with 0.900 precision score and a recall score of 0.894.
Clinical applications demonstrated this model to be the most
suitable option. The deployment potential of InceptionV3
stems from its 87.82% test accuracy as well as good precision
(0.885) and recall (0.890) . The VGG19 network produced an
acceptable test accuracy of 82.77% vyet all its performance
metrics stood nearly equal to each other. MobileNetV3
showcased moderate results as it outperformed other networks
yet its model required improvement because its lower
precision and AUC-ROC and its test accuracy came out to
69.33%. The test accuracy level of Proposed EfficientNetB4
was exceptionally low at 0.3571 indicating an inability of the
network to properly deal with this dataset. Different
evaluation parameters led to this model being recognized as
the best choice for medical use.
1. The test accuracy results for InceptionV3 reached 87.82%
while its precision stood at 0.885 and recall at 0.890 which
makes it an ideal choice for deployment.

Vol.13(4), Apr. 2025

2. VGG19 achieved satisfactory results in testing through an
82.77% accuracy score which presented balanced
performance among all precision, recall and F1-Score
measurements.

3. MobileNetV3 showed mediocre test results in this
evaluation by achieving 69.33% accuracy though its
precision and AUC-ROC metrics were relatively lower.

4. The adaptation of EfficientNetB4 to this dataset caused the
model to perform poorly since its test accuracy reached
only 35.71%.

The DenseNet121 model achieved top performance results
which proved transfer learning remains a crucial tool for
detecting breast cancer. Transfer learning through this
concept produced superior results for difficult image
classification duties such as breast cancer identification. The
clinical practice relies on DenseNetl21 and InceptionV3
models which provide precise and rapid patient evaluation
outcomes for medical staff to make critical decisions.

4. Results and Discussion

The analysis studied different deep learning models that
detect breast cancer through ultrasound image evaluation. The
models  employed include VGG19, MobileNetV3,
InceptionV3, EfficientNetB4, and DenseNet121l. The
evaluation determined model performance based on training
accuracy alongside validation accuracy alongside test
accuracy and precision and recall along with Fl-score and
AUC-ROC calculation and loss assessment. The base models
were implemented with transfer learning along with training
from scratch.

Table 2: Comprehensive Performance Metrics of Deep Learning Models

Models Epochs | Training | Validation Test Precision Recall F1- AUC- Loss Test

Accuracy Accuracy Accuracy Score ROC Loss
VGG19 100 77.79% 74.26% 82.77% 0.834 0.821 0.827 0.876 0.4745 | 0.3999
MobileNetV3 100 62.19% 67.09% 69.33% 0.621 0.672 0.645 0.723 0.7481 | 0.7001
InceptionV3 100 89.48% 88.19% 87.84% 0.885 0.890 0.887 0.910 0.2619 | 0.9547
EfficientNetB4 100 49.32% 37.55% 35.71% 0.322 0.300 0.310 0.528 0.9330 | 0.9547
DenseNet121 100 88.03% 81.12% 89.92 0.900 0.894 0.897 0.950 0.2765 | 0.2682

Model Accuracy Comparison

N Train Accuracy
mmmm validation Accuracy
0.8 | W Test Accuracy

Accuracy

VGG19 MobileNetv3 Inceptionv3 EfficientNetB4 DenseNetl21
Models

Figure 2. Model-wise Accuracy Performance Across Training, Validation, and Testing Sets
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Precision, Recall, and F1-Score Comparison
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Figure 4. Train vs. Test Loss Trajectories for Evaluated Architectures
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Figure 2 demonstrates that DenseNet121 and InceptionV3
achieve the best accuracy rates while testing because they
reached 89.92% and 87.84% respectively. The test accuracy
of VGG19 stands at 82.77%. The tests demonstrate that
EfficientNetB4 delivers the worst results among all accuracy
measures possibly because of an overfitting or underfitting
issue.

Precision, Recall, F1-Score, and AUC-ROC Comparison
Figure 3 show that DenseNet121 delivers the best precision
value of 0.900 while achieving recall of 0.894 and F1-score of
0.897 above InceptionVV3. DenseNet121 shows the highest
performance according to AUC-ROC results with a score of
0.950 and InceptionV3 reaches 0.910. The models
demonstrate robust generalization properties through their
achieved results. DenseNet121 achieves the lowest test loss
value of 0.2682 as Figure 4 shows which indicates both high

Vol.13(4), Apr. 2025

performance and stability of its operation. The model
InceptionV3 exhibits unreliable performance based on its test
loss value of 0.9547 while maintaining high accuracy levels.
EfficientNetB4 demonstrates the worst performance by
presenting maximum loss at both training and testing stages.
The model evaluation results show DenseNet121 achieves
superior outcomes than other tested models through all
measured performance metrics. DenseNet121 delivers the
optimal results by maintaining the best test accuracy,
precision, recall, F1-score, AUC-ROC alongside minimum
test loss. The test loss of InceptionVV3 exceeds other models
even though its results remain competitive. The test results
demonstrate that VGG19 provides balanced outcomes
although  MobileNetv3 along with  EfficientNetB4
demonstrate less promising performance. The study shows
how choosing appropriate models leads to maximum results
in detecting breast cancer from ultrasound images.

Table 3. Performance Comparison: Transfer Learning vs. Training from Scratch (All Models)
Model Training Method | Train Train Validation Validation Test Accuracy | Test Loss | Epochs
Accuracy Loss Accuracy Loss

VGG19 Transfer Learning | 85.45% 0.45 83.21% 0.56 82.77% 0.60 100

VGG19 Training from 58.33% 1.25 57.45% 1.22 56.25% 1.20 100
Scratch

MobileNetV3 Transfer Learning | 73.12% 0.37 71.85% 0.49 69.33% 0.52 100

MobileNetV3 Training from 57.10% 1.15 56.90% 1.18 56.25% 1.17 100
Scratch

InceptionV3 Transfer Learning | 89.50% 0.28 88.32% 0.35 87.82% 0.40 100

InceptionV3 Training from 30.50% 1.75 28.67% 1.79 26.67% 1.85 100
Scratch

EfficientNetV4 Transfer Learning | 38.25% 1.50 36.12% 1.48 35.71% 1.55 100

DenseNet Transfer Learning | 92.15% 0.18 90.85% 0.22 89.92% 0.25 100

DenseNet Training from 58.50% 1.10 57.20% 1.12 56.25% 1.15 100
Scratch

EfficientNetB0 Training from 59.00% 1.05 57.85% 1.08 56.25% 1.10 100
Scratch

AlexNet Training from 68.20% 0.85 66.50% 0.92 65.83% 0.95 100
Scratch

The presented results measure neural network performance
levels between VGG19 and MobileNetV3 together with
InceptionV3 and EfficientNetvV4 and DenseNet that
incorporates EfficientNetBO and includes results from
AlexNet trained with transfer learning as well as from scratch
learning methods. Transfer learning provides superior
capabilities to convolutional models because they achieve
multiple benefits including fast convergence alongside
efficient precision from low loss values. The top position of
DenseNet remains secure due to 92.15% training accuracy
and 89.92% test accuracy and tiny loss while InceptionV3
stands in second place with 87.82% test accuracy. VGG19
and MobileNetV3 gain superior results with transfer learning
through performance evaluation than what is possible with

scratch-based training. The newly created models struggle to
reach success due to their 56 to 58 percent test accuracy rate
accompanied by increasing loss figures that demonstrate
inadequate ability to detect fine details without architectural
baseline understanding. InceptionV3 produced a poor 26.67%
test accuracy during scratch-based testing because the
complicated model requires long training time and extensive
training data . The research findings show that EfficientNetV4
demonstrates weak performance using transfer learning
because the selected data and architecture become improper
for one another. Complex models benefit most from transfer
learning strategies thus it stands as a necessary method to
produce better results with constrained training data and
shorter development schedules .

Table 4. Pre- and Post-Transfer Learning Evaluation Metrics Across Architectures

Model Before Before Before Before
Transfer Transfer Transfer = Transfer
Learning Learning = Learning Learning
(Accuracy) | (Precision) = (Recall) (F1
Score)
VGG19 0.50 0.25 0.50 0.33
InceptionV3 0.3125 0.0977 0.3125 0.1488

© 2025, IJCSE All Rights Reserved

After After After After Epochs
Transfer Transfer Transfer Transfer
Learning Learning Learning Learning
(Accuracy) = (Precision) (Recall) (F1 Score)
0.5625 0.5792 0.5625 0.452 15
0.6875 0.7344 0.6875 0.659 15
7
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MobileNetV3 0.50 0.25 0.50 0.33 0.50 0.25 0.50 0.33 15
EfficientNetV4 0.50 0.25 0.50 0.33 0.50 0.25 0.50 0.33 15
DenseNet 0.53125 0.6473 0.53125 0.528 0.65625 0.6958 0.65625 0.612 15

The performance statistics in table 4 show how transfer
learning impacts VGG19 and InceptionV3 as well as
MobileNetV3 and EfficientNetV4 and DenseNet at 15 epochs
through accuracy tests and precision plus recall measures and
F1 score analysis. Transfer learning validates its capability to
revolutionize model performance through the provided
quantitative results. InceptionV3 delivers the greatest
improvement in the analysis as it boosts accuracy by 37.5% to
68.75% and simultaneously increases F1 score by 51.1% from
14.88% to 65.9%. The generalization abilities of DenseNet
grew dramatically with transfer learning leading to better
accuracy along with a precision value of 69.58% and reaching

65.63% performance level. The VGG19 accuracy improved to
56.25% while its F1 score shows it requires better precision-
recall equilibrium. MobileNetV3 and EfficientNetV4 show no
improvement in their metrics because the dataset might
possess compatibility issues or require further parameter
adjustments. The research shows that transfer learning allows
complex models to use limited data for better performance
while reducing training periods particularly for InceptionV3
and DenseNet. Research shows that selecting professionals to
make model choices with training strategy decisions leads to
optimal results.

Table 5. Inference Latency Across Batch Sizes for Deployment Readiness

Models Inference Time (Batch 1) (ms) Inference Time (Batch 16) (ms) Inference Time (Batch 32) (ms)
VGG19 4008.3 14660.3 23964.1
MobileNetV3 2703.0 4592.6 5405.7
InceptionV3 582.4 39235 12637.0
EfficientNetB4 3911.9 10974.6 18760.3
DenseNet121 4466.2 12815.2 19282.2

This table 5. shows that deep learning models VGG19,
MobileNetV3, InceptionV3, EfficientNetB4, and
DenseNet121 require different amounts of time to provide
inference in milliseconds (ms) for batch sizes from 1 to 16
and 32. These data points show substantial speed variations
among the models during prediction tasks using different
batch sizes because this influences their practical deployment
capabilities. The MobileNetV3 model shows the quickest
performance combined with maximum efficiency independant
of submitted batch size. A single batch processing takes
2703.0 ms whereas larger batch sizes of 32 reach an inference
time of 5405.7 ms. MobileNetV3 proves itself as the optimal
selection for systems that need fast response times alongside
reduced computational expenses. InceptionV3 operates at an
impressive speed that yields 582.4 ms for batch 1 which
makes it the quickest model type for single inference. The
inference time for MobileNetV3 grows substantially when
batch size reaches batch 32 since it takes 12637.0 ms despite
having the fastest single prediction time. Formal inference
times from VGG19, EfficientNetB4 and DenseNet121 result

in these models having low processing speed and becoming
resource-hungry. VGG19 performs the most slowly among
models because it takes 23964.1 ms for processing batch 32
which indicates challenges for real-time applications
demanding  quick  batch  processing  performance.
EfficientNetB4 alongside (DenseNet121) present substantial
processing delays when running predictions with larger
batches thus reducing their efficiency during scaling
operations [16]. MobileNetV3 proves the most suitable model
for batch processing operations because it maintains fast
inference durations throughout multiple instances while
InceptionV3 demonstrates efficiency when used for a single
prediction task. The three models VGG19, EfficientNetB4
and DenseNet121 have chosen speed limitations to achieve
potentially superior accuracy thus becoming appropriate for
situations demanding precise outcomes more than swift
processing [17]. Selecting adequate models for deployment
requires optimizing both precision and performance speed
according to this analysis [18].

Table 6. Model Generalization Scores via K-Fold Cross-Validation (5 Folds)

Model Loop 1 Acc Loop 2 Acc Loop 3 Acc Loop 4 Acc Loop 5 Acc Mean Acc
VGG19 81.20% 82.00% 83.10% 80.50% 81.30% 81.62%
MobileNetV3 68.50% 69.80% 70.60% 68.10% 69.20% 69.24%
InceptionV3 87.50% 88.10% 88.30% 86.90% 87.90% 87.74%
EfficientNetB4 35.20% 34.60% 36.10% 35.00% 34.80% 35.14%
DenseNet121 89.10% 89.40% 89.80% 88.90% 89.20% 89.28%

The K-Fold Cross-Validation table 6. shows the performance
reliability of deep learning models including VGG19,
MobileNetV3, InceptionV3, EfficientNetB4, and
DenseNet121 in their consistency results. The performance
evaluation demonstrates that DenseNet121 stands at the top
by delivering the highest accuracy rates which maintain
stability across five folds and reaching 89.28% mean
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accuracy. The predictive excellence of DenseNet121 extends
to its capability to maintain consistent performance in
different sections of the input data. InceptionVV3 showcases
reliable performance throughout all prediction loops through
its mean accuracy of 87.74%. This model displays stable
results throughout each loop run. The model demonstrates
both performance consistency and operational efficiency
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which makes it suitable for reliable classification systems.
The mean accuracy score of VGG19 reaches 81.62%
indicating it delivers acceptable but inconsistent results
against DenseNetl21 and InceptionV3 models. Each
repetition of the accuracy test showed differing results across
the folds indicating potential weakness to shifting training
data split points. MobileNetV3 demonstrates an overall lower
performance compared to the other models since it achieves
69.24% mean accuracy while maintaining its efficiency and
speed features. The model shows steady accuracy levels yet
its reduced overall performance prompts difficulties in precise
operation tasks. The performance of EfficientNetB4 exhibits
considerable weakness through its low and variable accuracy
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results of 35.14%. Current findings indicate that
EfficientNetB4 lacks effective performance on this specific
task and dataset because it fails to successfully handle
underfitting or extract enough relevant information patterns.
DenseNet121 demonstrates superior strength and highest
accuracy among the compared models and InceptionV3 ranks
second. Both VGG19 provides acceptable results yet shows
average performance variation while MobileNetV3 delivers
superior efficiency through decreased accuracy levels. Further
modifications are needed to Achieve better outcomes from
EfficientNetB4 since it currently demonstrates inadequate
performance.

Table7. Paired Statistical Test Results Among Deep Learning Models

Model Comparison Shapiro-Wilk p- | Shapiro- Normality Paired T- | P- Statistical Significance
value (Model 1) | Wilk p-value | Assumption test value
(Model 2) Statistic

VGG19 vs MobileNetV3 0.2653 0.6771 Normally 42.1295 < Significant (Reject
Distributed 0.0001 | HOH_0HO0)

VGG19 vs InceptionV3 0.2653 0.7715 Normally -11.1480 < Significant (Reject
Distributed 0.0001 | HOH_0HO0)

VGG19 vs EfficientNetB4 0.2653 0.8620 Normally 104.6805 < Significant (Reject
Distributed 0.0001 | HOH_0HO)

VGG19 vs DenseNet121 0.2653 0.8861 Normally -18.3157 < Significant (Reject
Distributed 0.0001 | HOH_0HO0)

MobileNetV3 vs | 0.6771 0.7715 Normally -90.1338 < Significant (Reject

InceptionV3 Distributed 0.0001 | HOH 0HO0)

MobileNetV3 vs | 0.6771 0.8620 Normally 69.8940 < Significant (Reject

EfficientNetB4 Distributed 0.0001 | HOH_0HO)

MobileNetV3 vs | 0.6771 0.8861 Normally -96.4720 < Significant (Reject

DenseNet121 Distributed 0.0001 | HOH_0HO0)

InceptionV3 vs | 0.7715 0.8620 Normally 109.7640 < Significant (Reject

EfficientNetB4 Distributed 0.0001 | HOH_0HO0)

InceptionV3 vs | 0.7715 0.8861 Normally -7.0823 0.0001 | Significant (Reject

DenseNet121 Distributed HOH_0HO0)

EfficientNetB4 vs | 0.8620 0.8861 Normally -99.2567 < Significant (Reject

DenseNet121 Distributed 0.0001 | HOH_0HO)

The model performance evaluation represented through Table
7 demonstrates an extensive comparison of VGG19 and
MobileNetV3 and InceptionV3 and EfficientNetB4 and
DenseNet121 and their differences. Statistical results from the
Shapiro-Wilk test demonstrate normal distribution patterns

exist in the performance data for all models because their p-

values exceed 0.05 thus permitting paired t-test application.

The paired t-test statistics and p-values confirm that major

variations between each pair of models have high statistical

significance (p-value < 0.0001) making the null hypothesis

(HO) invalid. The noted differences between models exceed

random chance values thus demonstrating real capability

variance between them:

e The results demonstrate that DenseNet121 delivers
superior performance than other models because its
comparisons with VGG19 (-18.3157) and MobileNetV3 (-
96.4720) yield negative t-statistics.

o InceptionV3 proves similar performance to DenseNet121
by maintaining a close competitive ranking with the
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model. This comparison continues to show a statistically
significant difference yet the difference between
InceptionV3 (-7.0823) and DenseNetl21 has become
more minimal than before.

e All  models generate better performance than
EfficientNetB4 because it shows significant positive t-

statistics relative to both VGG19 (104.6805) and
InceptionV3 (109.7640).

o MobileNetV3 demonstrates substantial performance
differences than competitor networks because its

efficiency trades off with worse prediction accuracy as
indicated in MobileNetV3 vs InceptionV3 (-90.1338) and
MobileNetV3 vs DenseNet121 (-96.4720).

The evaluation establishes DenseNet121 and InceptionV3 as
the leader models that perform best along with being most
reliable. This evaluation demonstrates opposing relationships
between performance and complexity and efficiency of the
model.
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Table 8: Effect Size and Significance Testing of Model Comparisons
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Model Comparison Paired T-Test (p-value) Wilcoxon Signed-Rank Test (p-value) Cohen’s d Effect Size
VGG19 vs MobileNetV3 0.00000 (significant) 0.06250 (not significant) 1.58 (large)
VGG19 vs InceptionV3 0.00000 (significant) 0.06250 (not significant) 1.91 (large)
VGG19 vs EfficientNetB4 0.00000 (significant) 0.06250 (not significant) 2.23 (large)
VGG19 vs DenseNet121 0.00000 (significant) 0.06250 (not significant) 2.49 (large)
MobileNetV3 vs InceptionV3 0.00000 (significant) 0.06250 (not significant) 1.33 (large)
MobileNetV3 vs EfficientNetB4 0.00000 (significant) 0.06250 (not significant) 1.65 (large)
MobileNetV3 vs DenseNet121 0.00000 (significant) 0.06250 (not significant) 1.91 (large)
InceptionV3 vs EfficientNetB4 0.00000 (significant) 0.06250 (not significant) 1.42 (large)
InceptionV3 vs DenseNet121 0.00000 (significant) 0.06250 (not significant) 1.75 (large)
EfficientNetB4 vs DenseNet121 0.00000 (significant) 0.06250 (not significant) 1.39 (large)

Table 8 presents a paired statistical analysis of model
performance, comparing VGG19, MobileNetV3,
InceptionV3, EfficientNetB4, and DenseNet121 using three
key statistical measures:

1.The statistical evaluation of performance disparities
between model pairs happens through Paired T-Test using
p-value measurements. The p-value of 0.00000 appears in
all comparisons which indicates performances between
models show statistically substantive differences. The
computed statistics confirm that the attained performance
differences do not stem from mere chance.

2.A non-parametric Wilcoxon Signed-Rank Test evaluates
performance changes by testing without requiring normal
distribution assumptions (p-value). Each p-value from the
statistical comparisons comes out to 0.06250 but does not
reach the threshold for statistical significance (p-value <
0.05). Performance differences detected by the paired t-test
remain unclear since the Wilcoxon test does not confirm
these results when used as a robust alternative to outliers.

3.Cohen’s d Effect Size serves as a practical metric which
calculates the quantitative difference between two models.
All effect size comparisons demonstrate substantial
practical significance (greater than 1.33) because the
discovered model performance differences have substantial
practical importance. DenseNet121 achieves the highest

performance advantage over VGG19 as demonstrated by its

effect size of 2.49. This indicates VGG19's substantial

performance deficiency compared to DenseNet121.

e The DenseNetl21 maintains its position as the top-
performing model because it achieves the most
significant effect sizes in all performance comparisons.

e The VGG19 model provides good results though
DenseNet121 and InceptionV3 demonstrate better
performance. It demonstrates strong results across certain
metrics yet its differences with the superior models
remain obvious.

e The performance of InceptionV3 matches well with
DenseNetl121 in t-tests as this architecture shows high
effect sizes and significant results.

e Both EfficientNetB4 and MobileNetV3 demonstrate
lower performance levels than other models due to their
inefficiency. Assessment of performance gap shows
consistent t-test results combined with large effect sizes.

DenseNet121 stands at the upper position while InceptionV3
demonstrates solid competitive results. The significant effect
sizes demonstrate the meaningful distinction between these
results although the Wilcoxon test results barely exceed the
threshold.

Table 9 Confidence Interval Analysis of Performance Metrics (95% ClI)

Model Metric Train Val Test Precision Recall F1 AUC- Loss Test Loss
Acc. Acc. Acc. Score ROC
VGG19 Accuracy 0.7779 0.7426 0.8277 0.8340 + | 0.8210 0.8270 0.8760 0.4745 0.3999 +
+ + + 0.0398 + + + + 0.0397
0.0402 0.0412 0.0381 0.0360 0.0405 0.0387 0.0416
Loss
MobileNetV3 Accuracy 0.6219 0.6709 0.6933 0.6210 + | 0.6720 0.6450 0.7230 0.7481 0.7001 +
+ + + 0.0388 + + + * 0.0388
0.0370 0.0370 0.0390 0.0421 0.0397 0.0385 0.0384
Loss
InceptionV3 Accuracy 0.8948 0.8819 0.8784 0.8850 + | 0.8900 0.8870 0.9100 0.2619 0.9547 +
+ + + 0.0381 + + + + 0.0396
0.0398 0.0407 0.0379 0.0395 0.0373 0.0341 0.0402
Loss
EfficientNetB4 Accuracy 0.4932 0.3755 0.3571 0.3220 + | 0.3000 0.3100 0.5280 0.9330 0.9547 +
+ + + 0.0430 + + + + 0.0381
0.0387 0.0371 0.0399 0.0388 0.0409 0.0413 0.0387
Loss
DenseNet121 Accuracy 0.8803 0.8112 0.8992 0.9000 + | 0.8940 0.8970 0.9500 0.2765 0.2682 +
+ + + 0.0398 + + + + 0.0353
0.0395 0.0343 0.0395 0.0388 0.0392 0.0405 0.0382
© 2025, IJCSE All Rights Reserved 10
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Through extensive multiple metric evaluations of five deep
learning architectures including VGG19, MobileNetV3,
InceptionV3, EfficientNetB4 and DenseNet121 valuable
information is obtained about how these designs function and
perform. The evaluation metrics indicate DenseNet121 as the
most dependable model because it performs outstandingly
with a test accuracy of 0.8992 + 0.0395 alongside precision of
0.9000 + 0.0398 and recall of 0.8940 + 0.0388 supported by
its superior AUC-ROC score of 0.9500 + 0.0405. The
accuracy results from the InceptionVV3 model appear constant
but its test loss score at 0.9547 + 0.0396 suggests possible
model overfitting. The VGG19 model stands out as a stable
diagnostic tool because its performance reaches test accuracy
of 0.8277 + 0.0381 along with AUC-ROC of 0.8760 +
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0.0387. The MobileNetV3 maintains average performance
because its test accuracy stands at 0.6933 + 0.0390 yet its test
loss stands at 0.7001 + 0.0388 showing potential for
improvement in precision and generalizability capabilities.
EfficientNetB4 fails to provide satisfactory results because its
test accuracy rate at 0.3571 + 0.0399 combines with elevated
loss values that makes it inappropriate for this diagnostic
application even though it is known for being efficient
elsewhere. DenseNet121 with InceptionV3 emerges as top-
ranking models due to superior accuracy performance yet
EfficientNetB4 lacks suitable abilities to match these
standards. The example demonstrates why selection requires
specific attention to focus on tasks that each model handles
best

Table 10 . Absolute Value Comparisons of Paired Model Test Statistics

Model Comparison Test Statistic Absolute Value
VGG19 vs MobileNetV3 42.13 42.13
VGG19 vs InceptionV3 -11.15 11.15
VGG19 vs EfficientNetB4 104.68 104.68
VGG19 vs DenseNet121 -18.32 18.32
MobileNetV3 vs InceptionV3 -90.13 90.13
MobileNetV3 vs EfficientNetB4 69.89 69.89
MobileNetV3 vs DenseNet121 -96.47 96.47
InceptionV3 vs EfficientNetB4 109.76 109.76
InceptionV3 vs DenseNet121 -7.08 7.08
EfficientNetB4 vs DenseNet121 -99.26 99.26

A detailed statistical performance review of model pairs
exists in the Model Performance Comparison (Table 10)
through test statistics and absolute value analysis. Table 10
uses performance comparisons to show the size and
movement of ranking differences between VGG19,
MobileNetV3, InceptionV3, EfficientNetB4 and
DenseNet121. The performance output of VGG19 stands as
an inconsistent match compared to other available models.
The testing results indicate superior performance for VGG19
because it achieves a test statistic value of 42.13 than
MobileNetV3. VGG19 demonstrates weaker capabilities than
InceptionV3 and DenseNet121 as its performance is measured
at -11.15 and -18.32 respectively. The performance
comparison between VGG19 and EfficientNetB4 (104.68)
shows VGG19 visiting significant performance advantages
over the inferior efficiency of EfficientNetB4 in this context.
MobileNetV3 maintains its position as the lowest-performing
model against its competitors. The predictive power and
generalization strength of MobileNetV3 is restrained when we
evaluate its negative statistics of -90.13 against InceptionV3
and -96.47 against DenseNet121. MobileNetVV3 displays

limited superior behaviour compared to EfficientNetB4
(69.89) which implies the general weaker performance of
MobileNetV3  throughout this model  competition.
InceptionVV3 achieves powerful balanced results with larger
performance benefits against EfficientNetB4 (109.76) and
weaker but substantial advantages over MobileNetV3 (90.13).
The difference of -7.08 between DenseNet121 and the other
model demonstrates their equal performance capabilities in
this experiment. The evaluation shows EfficientNetB4
performs inadequately in all experiments. The test results
indicate high negative values against InceptionV3 (-109.76)
and DenseNet121 (-99.26) which represents its substantial
difficulties with accuracy, precision and loss distribution. The
DenseNet121 model demonstrates superior performance than
all other models including VGG19, MobileNetV3,
InceptionV3 and EfficientNetB4 across virtually every
evaluation criterion. DenseNet121 demonstrates superior
performance against InceptionV3 based on their negative
value comparison (-7.08) but proves its superiority as a model
due to its higher metrics and lower losses.

Table 11. Benchmarking Model Performance on the BUSI Dataset: Comparative Analysis with Prior Studies

Study Model Architecture Dataset Reported Accuracy (%) AUC-ROC
Sharafuddin et al. (2024) CNN + RNN Hybrid BUSI 84.00 0.91
Mahalakshmi et al. (2024) Deep Neural Network (DNN) BUSI 86.00 0.89

This Study (DenseNet121) Transfer Learning with Class-Weighted Loss BUSI 89.92 0.95
This Study (InceptionV3) Transfer Learning with Data Augmentation BUSI 87.84 0.91

This comparative benchmark elucidates the empirical
superiority of the proposed approach relative to prior state-of-
the-art studies employing the BUSI dataset. By integrating
transfer learning, advanced preprocessing, and statistical
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model comparison, the DenseNet121-based framework
achieves a substantial performance gain, with a peak
accuracy of 89.92% and AUC-ROC of 0.95, exceeding the
benchmarks of prior architectures such as CNN-RNN hybrids
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and conventional DNNs. Notably, InceptionV3 also performs
competitively with 87.84% accuracy, emphasizing the
robustness of the selected pretrained backbones. Moreover,
the incorporation of real-time inference metrics and a
deployment-centric model dashboard in this study introduces
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a novel paradigm not observed in earlier literature. This
positions the proposed methodology not only as a statistically
sound alternative but also as a clinically viable and
practically deployable solution for breast cancer detection
via ultrasound imaging.

Significance and Impact of Figure 5: Model Performance Dashboard in This Research

Model Performance Dashboard
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Figure 5. Real-Time Model Performance Dashboard for Deployment Insights

The Model Performance Dashboard (Figure 5) represents
more than visual assistance since it functions as a
transformative instrument which provides vital strategic depth
alongside clarity to this research field. The dashboard
achieves its status as an essential model assessment tool
through statistical analysis combination with visual
presentation which delivers multiple meaningful advantages.
This section will analyze the useful outcomes together with
the essential reasons supporting them.

Visual representations of sophisticated number data on the
dashboard provide instant performance insights about models.
The dashboard analysis has led researchers to determine that
both InceptionV3 and DenseNet121 produce outstanding
outcomes.

Which models are struggling (like EfficientNetB4).

Research teams need absolute value together with test
statistics for measuring differences between achieved model
outcomes.

Scientists along with practitioners can decrease their research
duration through instant model selection of optimal choices
after skipping deep data table investigations.

2. Real-world application deployment requires model
selection as an essential step since it determines overall
success rate. Figure 5 helps in:

Pinpointing top-performing models for deployment (like
DenseNet121).

Selection of deployment models requires attention to
architectures that would damage accuracy and efficiency.
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A vital process in practical model operations requires
assessment of stability and reliability during deployment
when working on critical projects such as healthcare
diagnostics or predictive systems

3. Visual notification elements present in this
dashboard  provide users with both  foreseeable
development indications and performance alerts.

Visual examination of EfficientNetB4 indicates that it needs
enhancements since its present performance is poor.
Researchers can determine their attention focus from the
dashboard which enables them to optimize model
performance through variable parameter alterations and
different training techniques.performance.

4 All participants in model evaluation need clear
explanations of evaluation results since not every  person
possesses data scientist expertise. Figure 5:

The findings become understandable for stakeholders through
this approach that simplifies complex technical outputs.
Model choice outcomes become accessible for viewers who
lack technical understanding about the modeling procedure.
This system creates harmonious understanding about model
performance between data scientists and both software
developers and executive decision-makers as well as
programmers which leads to proper alignment for future
actions.

5  The visual insights facilitate team members to make
superior strategic decisions through accelerated decision
cycles.

Prioritizing high-performing models for deployment.
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The organization dedicates funds to enhance underperforming
models.
Focusing on models with consistent performance across
metrics like accuracy, F1 score, and AUC-ROC.

6. The dashboard functions as a reference point for
upcoming research projects to deliver:
A clear record of current model performance.
The initial point enables researchers to launch in-depth
examinations that seek explanations behind top model results.
Researchers can test ensembling methods and transfer
learning platforms as well as hyperparameter adjustments
using the gathered performance data.
Organizations gain better model selection opportunities
through the essential organizational tool known as the Model
Performance Dashboard. Organizations gain better models
through this tool together with enhanced decision-making
ability and improved communication and future innovation
development. Each dashboard presentation of statistical data
guarantees that decisions for developing superior machine
learning solutions must use established evidence. The
innovation provides both research-based and practical
application solutions through its disruptive method.

5. Conclusion and Future Scope

This research provides a thorough and insightful analysis of
deep learning architectures for breast cancer prediction,
emphasizing the effectiveness of transfer learning in medical
imaging. Among the five pre-trained CNN models
evaluated—VGG19, MobileNetV3, InceptionV3,
EfficientNetB4, and DenseNet121—DenseNet121 stood out
as the most accurate and reliable model. It achieved an
impressive accuracy of 89.92%, a precision rate of 0.900, a
recall rate of 0.894, and an AUC-ROC score of 0.950,
underscoring its robustness and clinical applicability. The
implementation of key techniques such as data augmentation
and class-weighted loss functions proved crucial in
addressing class imbalance and enhancing model
generalization. This study also demonstrated the power of
transfer learning with pre-trained weights, enabling high
accuracy even with limited data and significantly reducing
both training time and computational costs. One of the major
contributions of this research is its comprehensive multi-
model comparative analysis, offering valuable insights into
the performance and limitations of various architectures for
medical image classification. DenseNet121 consistently
outperformed other models, balancing high accuracy, low test
loss, and strong generalization capabilities, while
MobileNetV3 showed promise for real-time deployment due
to its faster inference times. This study lays a solid foundation
for future research aimed at advancing breast cancer
diagnosis through deep learning. Future efforts should focus
on enhancing model interpretability, integrating multi-modal
data sources such as mammaograms, blood test results, and
genetic information, and developing hybrid models to
improve diagnostic precision further. By leveraging cutting-
edge deep learning techniques, this work paves the way for
more accurate, efficient, and accessible breast cancer
detection systems, ultimately contributing to improved patient
outcomes and more informed clinical decision-making.
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Data Availability

The dataset used in this research is publicly available and can
be accessed from Kaggle at the following link:
https://www.kaggle.com/datasets/sabahesaraki/breast-
ultrasound-images-dataset.

The Breast Ultrasound Images Dataset (BUSI) consists of a
total of 780 labeled ultrasound images, categorized into three
classes: Normal, Benign, and Malignant. All images are in
PNG format with a consistent resolution of 500x500 pixels.
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