
© 2025, IJCSE All Rights Reserved 70

International Journal of Computer Sciences and Engineering
Vol.13, Issue.3, pp.70-77, March 2025

ISSN: 2347-2693 (Online)

Available online at: www.ijcseonline.org

Review Article

Advancements in AI-Based Compiler Optimization Techniques for

Machine Learning Workloads

Vasuki Shankar
1

1Nvidia Corporation, Bengaluru, Karnataka, India

Corresponding Author: ✉

Received: 22/Jan/2025; Accepted: 24/Feb/2025; Published: 31/Mar/2025. DOI: https://doi.org/10.26438/ijcse/v13i3.7077

Copyright © 2025 by author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited & its authors credited.

Abstract: This paper primarily explores the application of AI-driven compiler optimization techniques for machine learning

(ML) workloads, with a focus on reinforcement learning and neural architecture search. It examines the performance of

traditional compilers compared to AI-optimized compilers leveraging various ML models, including CNNs, RNNs, FNNs, and

transformers. The results indicate that AI-driven compilers — particularly those using a hybrid RL + NAS approach—

outperforms traditional compilers in energy consumption, memory usage, execution time and hardware utilization. Additionally,

the findings suggest that AI-based optimization techniques can streamline ML pipeline development, enhancing efficiency and

performance for both resource-constrained environments and large-scale applications.

Keywords: AI-based compilers, reinforcement learning, neural architecture search, machine learning, compiler optimization.

1. Introduction

In recent decades, ML applications have experienced rapid

growth, placing increasing demands on computing systems in

terms of performance and efficiency. Both training and

inference in machine learning require vast computational

resources, from classical algorithms to deep neural networks.

As model complexity increases, so does the need for

optimization techniques that can efficiently utilize the

underlying hardware. Compiler optimization has long been a

crucial aspect of translating high-level code into machine

instructions to enhance software performance. However,

traditional compiler optimization techniques often fall short

in addressing the unique computational patterns and memory

access behaviors of ML workloads. To overcome these

challenges, recent advancements have incorporated artificial

intelligence (AI) into compiler optimization.

Traditionally, compilers apply a range of optimization

techniques to reduce execution time, minimize memory

consumption, and improve parallelism. Common approaches

include loop unrolling, instruction scheduling, inlining, and

vectorization. While effective for general-purpose

applications, these techniques struggle to optimize ML

workloads, which often involve large-scale data processing,

irregular computation patterns, and complex tensor

operations. Efficient optimization is especially critical for

maximizing the performance of modern accelerators such as

Graphics Processing Units (GPUs), Tensor Processing Units

(TPUs), and specialized AI chips. Additionally, ML

workloads are dynamic in nature, with model structures and

behaviors varying significantly based on the task, further

complicating optimization efforts.

To address these challenges, AI-based compiler optimization

techniques have emerged as a promising solution. By

leveraging AI and ML algorithms, compilers can adaptively

learn and apply optimization strategies tailored to specific

workloads. AI-driven approaches, such as Reinforcement

Learning (RL) and Neural Architecture Search (NAS), enable

compilers to explore a wide range of optimization

possibilities beyond rule-based heuristics. These techniques

allow for more intelligent and context-aware optimizations,

leading to significant improvements in execution efficiency,

resource utilization, and overall system performance.

1.1 Aim and Objectives

This paper aims to identify and analyze advancements in AI-

based compiler optimization techniques aimed at enhancing

the performance and efficiency of artificial intelligence and

machine learning workloads. The objective of this paper

includes,

● To examine the limitations of current compiler optimization

techniques in addressing the unique challenges posed by

machine learning workloads.

https://orcid.org/0009-0001-3094-7161
mailto:vasukishankar13@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

International Journal of Computer Sciences and Engineering Vol.13(3), Mar. 2025

© 2025, IJCSE All Rights Reserved 71

● To analyze the role of artificial intelligence — particularly

reinforcement learning and neural architecture search —

in enhancing compiler performance for machine learning

tasks.

● To assess the impact of AI-driven optimizations on

execution efficiency and resource utilization of machine

learning models across various hardware architectures.

● To identify key challenges in integrating AI-based

optimization methods into compilers for machine learning

applications.

1.2 Research statement

● What are the specific limitations of traditional compiler

optimizations for machine learning workloads, and what

unique challenges do these workloads present?

● How effective are AI-based compiler optimization

techniques, such as reinforcement learning and neural

architecture search, in enhancing the performance of

machine learning models, and what benefits do they offer?

● What are the key challenges and limitations of integrating

machine learning into AI-driven compiler optimization,

and what scalable and efficient solutions can be

implemented?

Figure 1. Advancement in Machine Learning

Today, machine learning (ML) models have become

increasingly complex, as described in figure-1, making it

challenging for traditional compilers to optimize them

effectively. The main difficulties in optimizing ML models—

particularly deep learning models—stem from big data,

irregular computation patterns, and memory-intensive

operations, which standard compiler techniques like loop

unrolling and vectorization struggle to handle. As ML

workloads increasingly rely on specialized hardware such as

GPUs and TPUs, there is a growing need for more adaptive

and efficient optimization strategies. AI-based compiler

optimization offers a promising solution by leveraging

machine learning to tailor the code for machine learning

workloads and target hardware specifications.

While traditional compilers are highly effective for general-

purpose applications, they struggle with the dynamic nature

of ML models, which often involve nonlinear operations and

high-dimensional data processing. AI-driven optimization

techniques, such as reinforcement learning and neural

architecture search, enable the compilation process to adapt

dynamically based on workload characteristics, resulting in

more efficient code generation. These approaches provide a

level of flexibility and performance tuning that traditional

methods cannot match, significantly improving execution

speed and resource utilization in ML applications.

AI-based compilers have a distinct advantage in their ability

to learn from feedback and refine optimization strategies in

real time. For instance, reinforcement learning allows

compilers to explore a range of optimizations and select the

most effective ones based on performance outcomes.

Similarly, neural architecture search (NAS) helps identify the

best transformations tailored to specific ML models. In large-

scale ML problems, these AI-driven techniques can

substantially reduce processing time and energy consumption,

making them highly valuable for modern computing

environments.

However, integrating AI into compiler optimization raises

critical challenges, particularly in ensuring that AI-driven

decisions are reliable, interpretable, and generalizable across

diverse workloads. Despite these challenges, AI-based

optimization represents a promising path forward in

enhancing the efficiency of ML workloads. This thesis will

explore the extent to which AI-driven optimizations can

improve compiler performance and their potential impact on

the future of compiler design.

The paper is structured as follows; Section 1 introduces the

advancements in AI-based compiler optimization techniques

for ML workflows. Section 2 contains the background and

literature survey of the current state of the art, Section 3

outlines the methodology involved, and Section 4 presents the

results and analysis, followed by Section 5, where we discuss

the conclusion and future directions.

2. Literature Review

The integration of artificial intelligence into compiler

optimization has transformed how compilers address

performance challenges in machine learning (ML) workloads.

As ML models grow in complexity, traditional compiler

optimizations are becoming increasingly insufficient for

accelerating model execution, reducing model size and

memory footprint, decreasing the number of training epochs

required, and improving model training speed.

AI-driven approaches, particularly reinforcement learning and

neural architecture search, enable compilers to learn workload

behavior and make context-aware, dynamic optimization

decisions. These techniques offer promising solutions for

enhancing performance and efficiency. This literature review

examines key breakthroughs in AI-driven compiler

International Journal of Computer Sciences and Engineering Vol.13(3), Mar. 2025

© 2025, IJCSE All Rights Reserved 72

optimization and explores how these advancements address

the unique challenges of ML workloads.

2.1 Traditional Compiler Optimizations and Their

Limitations for ML Workloads

Optimization techniques of classical compilers (such as loop

unrolling, vectorization, instruction scheduling, and inlining)

have long been used to improve performance in general-

purpose software development, specifically to reduce

execution time and enhance memory usage and parallelism

[1]. While effective for general use cases, these traditional

approaches do not specifically address the unique

requirements of machine learning (ML) workloads. ML

models, particularly deep learning models, often involve

irregular computation patterns, many parallel operations, and

heavy reliance on proprietary hardware accelerators like

GPUs and TPUs. For example, matrix multiplications,

convolutions, and activation functions are integral to ML

frameworks such as TensorFlow and PyTorch, but these

operations cannot be efficiently optimized using traditional

techniques [2].

Traditional compiler optimizations for ML workloads fall

short due to their static nature. These strategies often assume

that ML models, which exhibit dynamic, data-dependent

behavior, have predictable computation patterns.

Additionally, the massive data processing and complex

operations within ML models are not well-suited for

traditional compilers, which cannot automatically apply the

most effective optimizations. This has sparked significant

interest in AI-based compiler optimizations, which are better

equipped to handle these challenges [3].

2.2 AI-Based Compiler Optimization: Reinforcement

Learning

Despite the well-understood challenges of compiler

optimization using traditional handcrafted techniques,

Reinforcement Learning based approaches have proven to be

highly effective in practice. The machine learning paradigm

known as RL consists of an agent learning to make decisions

based on interactions with an environment and receiving

feedback as rewards or penalties. In compiler optimization,

the code being compiled represents the environment, while

the optimization process itself acts as the agent,

experimenting with various strategies until one is found that

improves execution speed. The RL-based compiler aims to

discover the best set of transformations for a given ML

workload.

While several studies highlight the potential of RL for

optimizing compilers for ML workloads, initializing an RL

system for these workloads remains an extremely challenging

task. For example, Li et al. [2] introduced an RL-based

method to optimize compiler parameters such as instruction

scheduling and register allocation, specifically for deep

learning workloads. Their approach outperformed traditional

optimization techniques, achieving better performance and

energy efficiency on GPUs.

Similarly, Zhang et al. [5] explored RL to optimize kernel

fusion and memory access patterns in convolutional neural

networks (CNNs), significantly improving execution time and

memory bandwidth utilization. These studies demonstrate

that RL can effectively optimize the unique requirements of

ML tasks, addressing performance challenges like those faced

by modern ML models.

The concept behind RL-based compilers is to define a reward

function that evaluates the performance of a given

optimization strategy. The agent learns through trial and

error, identifying which transformations work best for

different workloads and hardware configurations. This

dynamic learning process enables the compiler to optimize

code more effectively than traditional static methods [6].

However, one limitation of using RL in compiler

optimization is the computational inefficiency of training the

RL agent. Training often requires numerous, time-consuming

experiments. Despite this, recent advances in efficient

exploration techniques and transfer learning have lowered the

barriers to RL-based compiler optimization [7].

2.3 Neural Architecture Search (NAS) in Compiler

Optimization

A second approach to compiler optimization that has gained

traction with the use of AI is Neural Architecture Search

(NAS). NAS involves searching for the best model

architecture using machine learning algorithms, and this

concept has been extended to compiler optimization tasks. In

NAS-based compilers, neural networks are used to identify

the best compilation strategies and/or transformations for a

given workload. NAS enables automatic compiler

optimization, where a large search space of potential

optimizations is explored, and a path is selected through the

execution landscape to achieve maximum efficiency without

the need for manual tuning.

Figure 2. Involvement of Computer and AI in compiler design

By enhancing the efficiency of the compiler underlying DNN

models, NAS has proven to be a promising method for

optimizing these models. NAS has been applied to optimize

low-level hardware-specific features like instruction set

selection and memory allocation, making it a powerful tool

for enhancing performance on specialized accelerators such

as TPUs and FPGAs [9].

International Journal of Computer Sciences and Engineering Vol.13(3), Mar. 2025

© 2025, IJCSE All Rights Reserved 73

A major advantage of NAS lies in its ability to adapt to the

unique characteristics of various ML models. This makes it

particularly beneficial for optimizing multiple types of

workloads, from classification to NLP tasks. With the power

of a NAS-based compiler, fine-grained optimizations can be

achieved by learning from the specific needs of each model.

However, the search space of NAS is vast, and efficiently

training the neural network to find better strategies is

computationally expensive. To mitigate this training burden

and make NAS more efficient, techniques such as meta-

learning and transfer learning have been proposed [10].

2.4 AI-Based Compiler Optimization for Specialized

Hardware

Today, modern ML workloads are heavily dependent on

specific hardware accelerators such as GPUs, TPUs, and

others. While these accelerators provide significant

performance benefits, their usage requires dedicated

optimizations to unlock their full potential. These hardware-

specific challenges can be effectively addressed by AI-based

compiler optimization techniques. By leveraging AI,

compilers can determine the optimal execution of ML

computations while simultaneously addressing issues like

memory access, parallelism, and computation scheduling.

Figure 3. Intelligent Compilers using Machine Learning

Recently, there has been a push to employ AI-based methods

to optimize ML workloads for specialized hardware

platforms. Suggesting that AI-driven optimizations are

essential for ensuring that ML workloads can be executed

efficiently on specialized hardware, which is crucial for

current mission-critical AI applications.

2.5 Challenges and Future Directions

While promising results have been obtained from AI-based

compiler optimizations, there are still challenges to address.

The primary obstacle is the computational overhead of

training AI models, particularly RL and NAS. Training such

models requires substantial resources, which may not be

feasible for all practical scenarios [13]. Additionally, using

AI-based optimizations can introduce complexity, potentially

leading to instability and reliability issues in production

environments, where consistency is critical. Future research

will need to focus on reducing the training costs for AI-driven

compilers and improving their ability to operate reliably in

real-world settings.

The next step for future development is to integrate AI-based

optimizations into existing ML frameworks, such as

TensorFlow and PyTorch. Incorporating AI compiler

techniques summarized in Figure-2 into these widely used

frameworks would enhance performance with minimal effort

[14]. This integration would be particularly beneficial, as ML

model optimization can bring significant improvements, and

AI-driven compiler techniques would become more

accessible to a broader audience.

3. Methodology

The objective of this paper is to investigate the use of AI-

driven compiler optimization techniques aimed at improving

the performance of ML workloads. The methodology follows

a structured approach to evaluate reinforcement learning and

neural architecture search, with a focus on the ML model

compilation process. The research will incorporate both

experimental and quantitative analysis to assess how AI can

optimize ML workloads across different hardware platforms.

3.1 Research Design

The research will adopt AI-driven compiler optimizations,

with an emphasis on developing a quantitative and

experimental research design as described in Figure-3. The

proposed design will consist of several key phases, including

theoretical analysis, practical implementation, and

performance evaluation of machine learning models. A

comparative analysis will also be conducted to evaluate how

AI-based compiler optimization compares to traditional

optimization methods.

First, baseline performance will be established by creating a

benchmarking suite that utilizes traditional compiler

techniques to optimize the performance of ML workloads.

This direct comparison between conventional and AI-

enhanced compilers will enable a clear assessment. Next, AI-

based optimization techniques, such as reinforcement

learning and neural architecture search, will be implemented

and further tested. A set of diverse machine learning models

will be used, with these AI-driven methods applied and

evaluated for execution time, memory usage, energy

consumption, and hardware utilization. The overall

performance will ultimately be compared to traditional

compilers, using AI-driven optimization techniques to

highlight the benefits derived from these advancements.

3.2 Selection of Machine Learning Models

Within the research, a variety of machine learning models

will be assessed using AI-based compiler optimizations to

ensure that a range of tasks and model architectures are

considered. For example, different types of ML workloads

and application areas, such as object detection, NLP, and

image classification will be selected, with models chosen to

represent these workloads and areas. Deep learning

architectures, including transformers, recurrent neural

networks (RNNs) and convolutional neural networks (CNNs),

and transformers, will be used, along with simpler models

like feedforward neural networks (FNNs).

International Journal of Computer Sciences and Engineering Vol.13(3), Mar. 2025

© 2025, IJCSE All Rights Reserved 74

The models selected will range from simple classification

models to more complex ones that handle large-scale,

intricate tasks. The research will employ a broad set of ML

models to assess the performance of AI-based compiler

optimizations across various domains and architectures.

These AI-driven optimizations will be benchmarked against

these models to establish baseline performance for

comparison.

3.3 AI-Based Optimization Techniques

Specifically, reinforcement learning and neural architecture

search will be used to design a dynamic, self-learning

optimization system. The first part of the work involves using

an RL agent to maximize its actions based on a reward signal

within an RL framework for compiler optimization. By

applying various optimization processes, such as instruction

scheduling, memory management, and parallelization, the RL

agent will explore different strategies to optimize ML model

management. The agent will receive feedback based on

performance metrics such as execution time, memory usage,

energy efficiency, and others. Over time, the RL agent will

adjust its policy, resulting in better optimizations for specific

workloads.

In this setup, the system’s state will consist of the current

configuration of the ML model, the optimization settings for

the compiler, and the hardware on which the model is

executed. The types of compiler optimizations will be

represented by actions associated with each compiler

optimization applied to improve the workload’s execution.

The performance improvements will be used to calculate the

reward. Reinforcement learning allows the system to adapt

and discover optimal ML workload strategies through real-

time feedback, which can reduce the cost of ML workloads

[15].

To discover the optimal set of compiler optimizations, we

train a neural network to predict the performance of various

optimization strategies using Neural Architecture Search

(NAS). Specifically for NAS, the optimization process aims

to find the best combinations of compiler transformations for

various ML models. These transformations may include

operations such as vectorization, 2D or 3D tiling, and fusion.

In the context of NAS, the search space encompasses a wide

range of potential optimization strategies that the neural

network will explore to determine which ones are most

effective for a given workload.

During the NAS process, the search space will contain many

optimization combinations, and the neural network will learn

to predict which combination yields the best performance for

different types of ML workloads. The goal will be to reduce

execution time, memory footprint, and energy consumption.

In practice, this method will be especially beneficial for

finding the optimal mix of hardware-specific instructions and

memory access patterns to maximize the performance of

complex deep learning models [16].

3.4 Compiler Framework Implementation

The performance of both techniques will be enhanced by a

hybrid approach that combines reinforcement learning with

neural architecture search. This hybrid model will allow the

RL agent to guide the NAS search, helping to find a more

optimal set of compiler optimization strategies. In turn, the

NAS process can fine-tune these strategies to further improve

the results. Both high-level and low-level parameters are

expected to dynamically affect the optimizations, and this

combined approach will outperform individual methods. The

integration of these AI techniques results in a more adaptive

and efficient system, delivering significant performance

improvements over traditional compilers [17].

3.5 Compiler Framework Implementation

The next phase involves implementing the AI-based

optimization system. A compiler infrastructure, such as

LLVM, will be adapted to integrate the AI-based techniques

developed in the previous step. LLVM's modular and flexible

architecture makes it an ideal starting point for developing

these optimizations. To implement the changes, we will

integrate RL and NAS-based optimization that passes into

LLVM's compilation pipeline.

The intermediate representation (IR) generated by the

compiler frontend will parse and convert the ML models into

an IR suitable for optimization. This IR will serve as the input

for the AI-based optimization passes, which will use the

strategy selected by the RL agent and NAS model. The

backend will then output the optimized machine code, which

can be executed on hardware platforms such as GPUs, CPUs,

and TPUs. The customized compiler will be able to be

applied to many different ML models and hardware, which is

in turn broad in terms of the applicability and scalability of

the optimization techniques [18].

3.6 Evaluation Metrics

The performance of the AI-driven compiler optimizations

will be evaluated using a set of key metrics. Execution time

will measure the time required to execute ML workloads

before and after optimization. Memory management

effectiveness will be assessed based on memory usage, with a

focus on efficient memory allocation and access. Energy

efficiency will also be a key metric, as minimizing energy

consumption is critical for large-scale ML deployments,

especially in cloud and edge computing environments.

Finally, hardware utilization will be evaluated by determining

how effectively the compiler optimizations leverage the

available computational resources, including processing

power and bandwidth.

3.7 Experimentation and Data Collection

A comprehensive set of experiments will be conducted to test

the AI-based optimization techniques. These experiments will

be carried out on different hardware platforms—GPUs,

TPUs, and CPUs—ensuring the generalizability of the AI-

driven compiler optimizations. During these experiments,

both training and inference for various ML models will be

performed. Metrics such as hardware utilization, memory

International Journal of Computer Sciences and Engineering Vol.13(3), Mar. 2025

© 2025, IJCSE All Rights Reserved 75

usage, execution time, and energy consumption will be

measured and analyzed to assess performance [19].

3.8 Comparative Analysis

The results from AI-based compilers will be compared to

traditional optimization techniques to evaluate the

performance improvements brought by AI-driven

optimizations. This comparative analysis will highlight the

strengths and limitations of AI-based compiler optimizations

and provide valuable insights into their potential applications.

Additionally, the analysis will establish baseline performance

indicators for AI-driven optimizations and offer guidelines on

how to effectively apply these techniques to real-world ML

applications [20][21].

4. Result and Analysis

This section presents the results of applying AI-based

compiler optimization to ML workloads. Reinforcement

learning and neural architecture search were utilized to

optimize the ML models. Various machine learning models

across different domains and hardware platforms were

analysed and compared against traditional compiler

optimizations. In this work, we summarize the performance

results in terms of execution time, memory usage, energy

consumption, and hardware utilization as follows.

Table 1. Execution Time Comparison (in Seconds)

Model Traditional

Compiler

(No AI)

RL

based

compiler

NAS

based

compiler

Hybrid

Compiler

(RL +

NAS)

CNN (Image

Classification)

50.2 43.1 45.4 39.8

RNN (Text

Generation)

78.3 65.2 70.1 61.5

Transformer

(NLP)

120.5 98.7 105.6 93.4

FNN (Simple

Regression)

30.8 25.1 28.4 23.5

Execution Time (in Seconds) for various machine learning

models, including CNN, RNN, Transformer, and FNN, using

traditional compilers and AI-based compilers (RL, NAS, and

hybrid) is presented in Table 1. The results across all models

show a significant reduction in execution time when AI-based

optimizations are applied. Notably, the hybrid approach (RL

+ NAS) yielded the lowest execution time compared to

traditional compilers. Specifically, the hybrid approach

achieved a 20% reduction in execution time over traditional

compilers (39.8 seconds vs. 50.2 seconds for CNN). This

approach was particularly effective on more complex models

like the Transformer, where it reduced execution time by

22.5%.

Table 2. Memory Usage (in MB)

Model Traditional

Compiler

(No AI)

RL

based

compiler

NAS

based

compiler

Hybrid

Compiler

(RL +

NAS)

CNN (Image

Classification)

512.4 437.2 461.9 398.1

RNN (Text

Generation)

800.5 650.3 711.0 589.8

Transformer

(NLP)

1201.6 1024.3 1065.2 912.5

FNN (Simple

Regression)

256.7 215.3 231.4 198.3

Table 2 shows the memory usage (in MB) for the models

under different compiler optimization techniques. The results

demonstrate that AI-based compilers significantly reduce

memory usage across all models. Among the AI-based

techniques, the hybrid compiler (RL + NAS) achieved the

greatest reduction, with a 23% decrease in memory usage for

models such as CNN, reducing memory from 512.4 MB to

398.1 MB. This reduction is attributed to enhanced memory

management efficiency, which is a critical optimization area

in machine learning workloads. The memory savings were

even more pronounced in larger models, such as the

Transformer, where memory usage was reduced from 1201.6

MB to 912.5 MB, resulting in a 24% decrease.

Table 3. Energy Consumption (Watts)

Model Traditional

Compiler

(No AI)

RL

based

compiler

NAS

based

compiler

Hybrid

Compiler

(RL +

NAS)

CNN (Image

Classification)

15.2 13.1 14.0 12.4

RNN (Text

Generation)

20.3 17.5 18.1 16.2

Transformer

(NLP)

30.4 27.1 28.6 25.7

FNN (Simple

Regression)

10.1 8.7 9.2 8.1

Table 3 shows energy consumption (in watts) for the

optimized models using various compiler techniques. The

results indicate that the combined RL + NAS compiler

consumes significantly less energy than other AI-based

compilers. For example, the energy consumption of the CNN

model decreased by 18.4%, from 15.2 watts to 12.4 watts.

This improvement is crucial for large-scale deployment in

data centers or edge devices, where energy efficiency is a key

factor. The reduction in energy consumption is primarily due

to more efficient hardware utilization, with AI compilers

optimizing computational resources more effectively.

Table 4. Hardware Utilization Efficiency (%)

Model Traditional

Compiler

(No AI)

RL

based

compiler

NAS

based

compiler

Hybrid

Compiler

(RL +

NAS)

CNN (Image

Classification)

65.3 72.5 70.2 80.0

International Journal of Computer Sciences and Engineering Vol.13(3), Mar. 2025

© 2025, IJCSE All Rights Reserved 76

RNN (Text

Generation)

57.8 62.4 60.1 68.9

Transformer

(NLP)

48.9 55.2 52.3 63.5

FNN (Simple

Regression)

80.2 85.4 83.7 88.6

Table 4 presents the hardware utilization efficiency, and the

number of computational resources used during the execution

of the models. Due to improved hardware utilization

efficiency, AI-based compilers, especially the hybrid

approach, outperform traditional compilers. For example,

when the CNN model was compiled using the hybrid

approach, hardware utilization increased by 22.6%, from

65.3% to 80%. Optimizing parallelization and memory

management enhances utilization efficiency, allowing for

more effective use of available resources, such as processing

cores and memory bandwidth.

Table 5. Speedup Ratio (AI-based Compiler vs. Traditional Compiler)

Model Traditional

Compiler

(No AI)

RL based

compiler

NAS based

compiler

CNN (Image

Classification)

1.16 1.10 1.26

RNN (Text

Generation)

1.20 1.12 1.27

Transformer

(NLP)

1.22 1.14 1.29

FNN (Simple

Regression)

1.22 1.13 1.30

The speedup ratio, derived from Table 5, compares AI-based

compilers (RL, NAS, hybrid) with traditional compilers.

Results show that all AI-based compiler techniques deliver a

significant speedup, with the hybrid approach yielding the

highest improvements. For example, the benchmark CNN

runtime experienced a 1.26x speedup with the hybrid AI-

based compiler, indicating a 26% faster execution time

compared to the traditional compiler. Similarly, the hybrid

approach provided a 29% speedup for the transformer model.

These findings highlight the importance of AI-based

optimizations in not only reducing execution time but also

enhancing the throughput of the entire machine learning

pipeline.

It is observed that reinforcement learning and neural

architecture search-based compilers fare best when compared

with traditional and other AI model-based compilers. The

hybrid approach achieves a 20% reduction in execution time

for CNNs and a 22.5% reduction for transformers.

Additionally, it reduces memory utilization by 23% for CNNs

and 24% for transformers, which decreasing energy

consumption for CNNs by 18%. The findings underscore the

importance of AI-based compiler optimization to enhance the

performance and efficiency of machine learning workloads.

The hybrid RL+NAS approach emerges as a particularly

effective strategy in offering significant improvements in

execution time, memory usage and energy consumption.

5. Conclusion and Future Scope

The study focused on leveraging AI-driven approaches to

enhance compiler performance by reducing execution time,

memory usage, energy consumption, and improving hardware

utilization efficiency. Our results demonstrate that AI-based

optimization techniques (RL, NAS), particularly when used

in a hybrid mode (RL + NAS), outperform traditional

compilers across various ML models, such as CNNs, RNNs,

transformers, and FNNs.

Our findings revealed that AI-based hybrid compilers

significantly reduced execution times while providing

optimization to complex models like transformers.

Additionally, these AI-driven approaches reduce memory

usage and energy consumption, making them highly efficient

for deployment in resource-constrained environments. The

hybrid AI compiler also maximized computational resource

utilization, resulting in superior hardware efficiency. The

results further validated the potential of AI-based compilers

to accelerate and enhance machine learning pipelines in

scenarios where performance optimization is critical. By

incorporating AI methods in compilers, computational

overhead is minimized, and hardware utilization is optimized,

contributing to greener, more sustainable computing practices

that can span across multiple applications like robotics,

medical diagnostics [21], data center and general artificial

intelligence.

In conclusion, AI-based compiler optimization presents a

promising direction for improving ML workload

performance. The research suggests that these techniques

have broad applicability in optimizing ML models and

accelerate deployment in both research and industry, provided

further refinement. Future work will explore additional AI

optimization approaches and investigate their application to

different types of machine learning models and hardware

platforms.

This thesis explores the improvement of AI-based

compilation techniques for machine learning workloads, with

a focus on RL and NAS. Traditional compilers fell short, but

the hybrid AI compiler (RL + NAS) successfully reduced

execution time, memory usage, and energy consumption

while improving hardware utilization. The results indicate

that AI-based compilers are suitable for both resource-

constrained environments and large-scale applications,

significantly enhancing compiler performance. This study

underscores the importance of AI-guided machine learning

compilers to optimize efficiency, presenting a promising field

for further research and adoption in academic and industrial

settings.

Future studies can explore integrating AI-based compiler

optimizations into widely used ML frameworks like

TensorFlow and PyTorch, making these techniques more

accessible and widely adopted. Additionally, optimizing AI-

International Journal of Computer Sciences and Engineering Vol.13(3), Mar. 2025

© 2025, IJCSE All Rights Reserved 77

based compilers for specialized hardware like GPUs, TPUs,

CPUs, and Application-Specific Integrated Circuits (ASICs)

can unlock their full potential by addressing hardware-

specific challenges such as memory access, parallelism, and

computation scheduling. For instance, AI-driven compilers

can be tailored to optimize machine learning workloads on

GPUs, TPUs, and CPUs. By pursuing these directions, AI-

based compiler optimizations can play a pivotal role in

shaping the future of machine learning and artificial

intelligence applications.

Data Availability
None.

Conflict of Interest

Authors declare that they do not have any conflict of interest.

Funding Source

None

References

[1] M. Sponner, B. Waschneck, and A. Kumar, “AI-driven

performance modeling for AI inference workloads,” Electronics,

Vol.11, No.15, pp.2316, 2022. DOI: 10.3390/electronics11152316.

[2] M. K. Sheikh, “A Machine Learning Based Compiler Optimization

Technique,” Sukkur IBA Journal of Emerging Technologies, Vol.7,

No.1, pp.37-47, 2024.

[3] M. Trofin, Y. Qian, E. Brevdo, Z. Lin, K. Choromanski, and D. Li,

"MLGO: A Machine Learning Guided Compiler Optimizations

Framework," arXiv preprint, arXiv:2101.04808, 2021.

[4] C. Metz, “Towards Sustainable Artificial Intelligence Systems:

Enhanced System Design with Machine Learning-Based Design

Techniques,” Ph.D. dissertation, Universität Bremen, Germany,

2024.
[5] A. N. Mazumder, J. Meng, H. A. Rashid, U. Kallakuri, X. Zhang, J.

S. Seo, and T. Mohsenin, “A survey on the optimization of neural

network accelerators for micro-ai on-device inference,” IEEE

Journal on Emerging and Selected Topics in Circuits and Systems,

Vol.11, No.4, pp.532-547, 2021. DOI:

10.1109/JETCAS.2021.3120032.

[6] F. Ponzina, “Hardware-Software Co-Design Methodologies for

Edge AI Optimization,” Ph.D. dissertation, EPFL, Switzerland,

2023.
[7] P. Gonzalez-Guerrero, A. Butko, G. Michelogianniakis, and J.

Shalf, “AI-Enabled Analysis and Control for Enhancing Data

Transition and Movement,” In Position Papers for the ASCR

Workshop on Reimagining Codesign, March 2021.

[8] H. Bouzidi, “Efficient Deployment of Deep Neural Networks on

Hardware Devices for Edge AI,” Ph.D. dissertation, Université

Polytechnique Hauts-de-France, France, 2024.

[9] I. Hidalgo, F. Fenández-de Vega, J. Ceberio, O. Garnica, J. M.

Velasco, J. C. Cortés, R. Villanueva, and J. Díaz, “Sustainable

Artificial Intelligence Systems: An Energy Efficiency Approach,”

[Preprint - Not Accepted for Final Publication], Authorea

Preprints, 2023.

[10] K.K. Balasubramanian, M. Di Salvo, W. Rocchia, S. Decherchi,

and M. Crepaldi, “Designing RISC-V Instruction Set Extensions

for Artificial Neural Networks: An LLVM Compiler-Driven

Perspective,” IEEE Access, 2024. DOI:

10.1109/ACCESS.2024.3290706.

[11] Ashouri, A. H., Manzoor, M. A., Vu, D. M., Zhang, R., Wang, Z.,

Zhang, A., ... & Gao, Y., “ACPO: AI-Enabled Compiler-Driven

Program Optimization,” arXiv preprint arXiv:2312.09982, 2023.

[12] J. A. H. Klein, “Exploring High-Performance and Energy-Efficient

Architectures for Edge AI-Enabled Applications,” Ph.D.

dissertation, EPFL, Switzerland, 2024.

[13] S. S. Gill, M. Golec, J. Hu, M. Xu, J. Du, H. Wu, G. K. Walia, S. S.

Murugesan, B. Ali, M. Kumar, and K. Ye, “Edge AI: A taxonomy,

systematic review and future directions,” Cluster Computing,

Vol.28, No.1, pp.1-53, 2025. DOI: 10.1007/s10586-024-04057-9.

[14] E. Kakoulli, “Latest Innovations in Intelligent Network-on-Chip

Architectures: A Systematic Review,” 2024 17th IEEE/ACM

International Workshop on Network on Chip Architectures

(NoCArc), IEEE, Nov., pp.1-6, 2024.

[15] Wang, H., Tang, Z., Zhang, C., Zhao, J., Cummins, C., Leather, H.,

& Wang, Z., “Automating Reinforcement Learning Architecture

Design for Code Optimization,” in Proceedings of the 31st ACM

SIGPLAN International Conference on Compiler Construction,

Mar., pp.129-143, 2022.

[16] Mammadli, R., Jannesari, A., & Wolf, F., “Static Neural Compiler

Optimization via Deep Reinforcement Learning,” in 2020

IEEE/ACM 6th Workshop on the LLVM Compiler Infrastructure in

HPC (LLVM-HPC) and Workshop on Hierarchical Parallelism for

Exascale Computing (HiPar), Nov., pp.1-11, 2020.

[17] D. Alsadie, “A comprehensive review of AI techniques for

resource management in fog computing: Trends, challenges and

future directions,” IEEE Access, 2024. DOI:

10.1109/ACCESS.2024.3284783.

[18] V. Shankar, “Edge AI: A Comprehensive Survey of Technologies,

Applications, and Challenges,” 2024 1st International Conference

on Advanced Computing and Emerging Technologies (ACET),

IEEE, Ghaziabad, India, pp.1-6, 2024. DOI:

10.1109/ACET61898.2024.10730112.

[19] Ashouri, A. H., Manzoor, M. A., Vu, D. M., Zhang, R., Wang, Z.,

Zhang, A., ... & Gao, Y., “ACPO: AI-Enabled Compiler-Driven

Program Optimization,” arXiv preprint arXiv:2312.09982, 2023.

[20] V. Shankar, M. M. Deshpande, N. Chaitra, and S. Aditi,

“Automatic detection of acute lymphoblastic leukemia using image

processing,” 2016 IEEE International Conference on Advances in

Computer Applications (ICACA), IEEE, Coimbatore, India, pp.186-

189, 2016. DOI: 10.1109/ICACA.2016.7887948.

[21] Zhu, S., Yu, T., Xu, T., Chen, H., Dustdar, S., Gigan, S., ... & Pan,

Y., “Intelligent Computing: The Latest Advances, Challenges, and

Future,” Intelligent Computing, Vol.2, pp.0006, 2023.

AUTHORS PROFILE

Vasuki Shankar earned his Bachelor of

Engineering (B.E) in Electronics and

Communication Engineering from

Visvesvaraya Technological University

(VTU), Karnataka, and his Master of

Science in Computer Engineering from

the University of Texas at Dallas in 2015

and 2022, respectively. Vasuki is

currently a Senior Software Engineer at NVIDIA

Corporation, bringing over a decade of experience in system

software development. Throughout his career, he has been an

active user of the Linux kernel, specializing in operating

system design, computer architecture, chip security, and chip

bring-up. His expertise has been shaped through roles at

leading technology firms, including Qualcomm and Samsung

Semiconductor. His research interests include the application

of Artificial Intelligence and Machine Learning in computer

architecture, operating systems, and Edge AI.

