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Abstract: This paper primarily explores the application of AI-driven compiler optimization techniques for machine learning 

(ML) workloads, with a focus on reinforcement learning and neural architecture search. It examines the performance of 

traditional compilers compared to AI-optimized compilers leveraging various ML models, including CNNs, RNNs, FNNs, and 

transformers. The results indicate that AI-driven compilers — particularly those using a hybrid RL + NAS approach—

outperforms traditional compilers in energy consumption, memory usage, execution time and hardware utilization. Additionally, 

the findings suggest that AI-based optimization techniques can streamline ML pipeline development, enhancing efficiency and 

performance for both resource-constrained environments and large-scale applications. 
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1. Introduction 
 

In recent decades, ML applications have experienced rapid 

growth, placing increasing demands on computing systems in 

terms of performance and efficiency. Both training and 

inference in machine learning require vast computational 

resources, from classical algorithms to deep neural networks. 

As model complexity increases, so does the need for 

optimization techniques that can efficiently utilize the 

underlying hardware. Compiler optimization has long been a 

crucial aspect of translating high-level code into machine 

instructions to enhance software performance. However, 

traditional compiler optimization techniques often fall short 

in addressing the unique computational patterns and memory 

access behaviors of ML workloads. To overcome these 

challenges, recent advancements have incorporated artificial 

intelligence (AI) into compiler optimization. 

 

Traditionally, compilers apply a range of optimization 

techniques to reduce execution time, minimize memory 

consumption, and improve parallelism. Common approaches 

include loop unrolling, instruction scheduling, inlining, and 

vectorization. While effective for general-purpose 

applications, these techniques struggle to optimize ML 

workloads, which often involve large-scale data processing, 

irregular computation patterns, and complex tensor 

operations. Efficient optimization is especially critical for 

maximizing the performance of modern accelerators such as 

Graphics Processing Units (GPUs), Tensor Processing Units 

(TPUs), and specialized AI chips. Additionally, ML 

workloads are dynamic in nature, with model structures and 

behaviors varying significantly based on the task, further 

complicating optimization efforts. 

 

To address these challenges, AI-based compiler optimization 

techniques have emerged as a promising solution. By 

leveraging AI and ML algorithms, compilers can adaptively 

learn and apply optimization strategies tailored to specific 

workloads. AI-driven approaches, such as Reinforcement 

Learning (RL) and Neural Architecture Search (NAS), enable 

compilers to explore a wide range of optimization 

possibilities beyond rule-based heuristics. These techniques 

allow for more intelligent and context-aware optimizations, 

leading to significant improvements in execution efficiency, 

resource utilization, and overall system performance. 

 

1.1 Aim and Objectives 

This paper aims to identify and analyze advancements in AI-

based compiler optimization techniques aimed at enhancing 

the performance and efficiency of artificial intelligence and 

machine learning workloads. The objective of this paper 

includes, 

● To examine the limitations of current compiler optimization 

techniques in addressing the unique challenges posed by 

machine learning workloads. 
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● To analyze the role of artificial intelligence — particularly 

reinforcement learning and neural architecture search — 

in enhancing compiler performance for machine learning 

tasks. 

● To assess the impact of AI-driven optimizations on 

execution efficiency and resource utilization of machine 

learning models across various hardware architectures. 

● To identify key challenges in integrating AI-based 

optimization methods into compilers for machine learning 

applications. 

 

1.2 Research statement 

● What are the specific limitations of traditional compiler 

optimizations for machine learning workloads, and what 

unique challenges do these workloads present? 

● How effective are AI-based compiler optimization 

techniques, such as reinforcement learning and neural 

architecture search, in enhancing the performance of 

machine learning models, and what benefits do they offer? 

● What are the key challenges and limitations of integrating 

machine learning into AI-driven compiler optimization, 

and what scalable and efficient solutions can be 

implemented? 

 

 
Figure 1. Advancement in Machine Learning 

 

Today, machine learning (ML) models have become 

increasingly complex, as described in figure-1, making it 

challenging for traditional compilers to optimize them 

effectively. The main difficulties in optimizing ML models—

particularly deep learning models—stem from big data, 

irregular computation patterns, and memory-intensive 

operations, which standard compiler techniques like loop 

unrolling and vectorization struggle to handle. As ML 

workloads increasingly rely on specialized hardware such as 

GPUs and TPUs, there is a growing need for more adaptive 

and efficient optimization strategies. AI-based compiler 

optimization offers a promising solution by leveraging 

machine learning to tailor the code for machine learning 

workloads and target hardware specifications. 

While traditional compilers are highly effective for general-

purpose applications, they struggle with the dynamic nature 

of ML models, which often involve nonlinear operations and 

high-dimensional data processing. AI-driven optimization 

techniques, such as reinforcement learning and neural 

architecture search, enable the compilation process to adapt 

dynamically based on workload characteristics, resulting in 

more efficient code generation. These approaches provide a 

level of flexibility and performance tuning that traditional 

methods cannot match, significantly improving execution 

speed and resource utilization in ML applications. 

 

AI-based compilers have a distinct advantage in their ability 

to learn from feedback and refine optimization strategies in 

real time. For instance, reinforcement learning allows 

compilers to explore a range of optimizations and select the 

most effective ones based on performance outcomes. 

Similarly, neural architecture search (NAS) helps identify the 

best transformations tailored to specific ML models. In large-

scale ML problems, these AI-driven techniques can 

substantially reduce processing time and energy consumption, 

making them highly valuable for modern computing 

environments. 

 

However, integrating AI into compiler optimization raises 

critical challenges, particularly in ensuring that AI-driven 

decisions are reliable, interpretable, and generalizable across 

diverse workloads. Despite these challenges, AI-based 

optimization represents a promising path forward in 

enhancing the efficiency of ML workloads. This thesis will 

explore the extent to which AI-driven optimizations can 

improve compiler performance and their potential impact on 

the future of compiler design. 

 

The paper is structured as follows; Section 1 introduces the 

advancements in AI-based compiler optimization techniques 

for ML workflows. Section 2 contains the background and 

literature survey of the current state of the art, Section 3 

outlines the methodology involved, and Section 4 presents the 

results and analysis, followed by Section 5, where we discuss 

the conclusion and future directions. 

 

2. Literature Review 
 

The integration of artificial intelligence into compiler 

optimization has transformed how compilers address 

performance challenges in machine learning (ML) workloads. 

As ML models grow in complexity, traditional compiler 

optimizations are becoming increasingly insufficient for 

accelerating model execution, reducing model size and 

memory footprint, decreasing the number of training epochs 

required, and improving model training speed. 

 
AI-driven approaches, particularly reinforcement learning and 

neural architecture search, enable compilers to learn workload 

behavior and make context-aware, dynamic optimization 

decisions. These techniques offer promising solutions for 

enhancing performance and efficiency. This literature review 

examines key breakthroughs in AI-driven compiler 
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optimization and explores how these advancements address 

the unique challenges of ML workloads. 

 

2.1 Traditional Compiler Optimizations and Their 

Limitations for ML Workloads 

Optimization techniques of classical compilers (such as loop 

unrolling, vectorization, instruction scheduling, and inlining) 

have long been used to improve performance in general-

purpose software development, specifically to reduce 

execution time and enhance memory usage and parallelism 

[1]. While effective for general use cases, these traditional 

approaches do not specifically address the unique 

requirements of machine learning (ML) workloads. ML 

models, particularly deep learning models, often involve 

irregular computation patterns, many parallel operations, and 

heavy reliance on proprietary hardware accelerators like 

GPUs and TPUs. For example, matrix multiplications, 

convolutions, and activation functions are integral to ML 

frameworks such as TensorFlow and PyTorch, but these 

operations cannot be efficiently optimized using traditional 

techniques [2]. 

 

Traditional compiler optimizations for ML workloads fall 

short due to their static nature. These strategies often assume 

that ML models, which exhibit dynamic, data-dependent 

behavior, have predictable computation patterns. 

Additionally, the massive data processing and complex 

operations within ML models are not well-suited for 

traditional compilers, which cannot automatically apply the 

most effective optimizations. This has sparked significant 

interest in AI-based compiler optimizations, which are better 

equipped to handle these challenges [3]. 

 

2.2 AI-Based Compiler Optimization: Reinforcement 

Learning 

Despite the well-understood challenges of compiler 

optimization using traditional handcrafted techniques, 

Reinforcement Learning based approaches have proven to be 

highly effective in practice. The machine learning paradigm 

known as RL consists of an agent learning to make decisions 

based on interactions with an environment and receiving 

feedback as rewards or penalties. In compiler optimization, 

the code being compiled represents the environment, while 

the optimization process itself acts as the agent, 

experimenting with various strategies until one is found that 

improves execution speed. The RL-based compiler aims to 

discover the best set of transformations for a given ML 

workload. 

 

While several studies highlight the potential of RL for 

optimizing compilers for ML workloads, initializing an RL 

system for these workloads remains an extremely challenging 

task. For example, Li et al. [2] introduced an RL-based 

method to optimize compiler parameters such as instruction 

scheduling and register allocation, specifically for deep 

learning workloads. Their approach outperformed traditional 

optimization techniques, achieving better performance and 

energy efficiency on GPUs.  

 

Similarly, Zhang et al. [5] explored RL to optimize kernel 

fusion and memory access patterns in convolutional neural 

networks (CNNs), significantly improving execution time and 

memory bandwidth utilization. These studies demonstrate 

that RL can effectively optimize the unique requirements of 

ML tasks, addressing performance challenges like those faced 

by modern ML models. 

 

The concept behind RL-based compilers is to define a reward 

function that evaluates the performance of a given 

optimization strategy. The agent learns through trial and 

error, identifying which transformations work best for 

different workloads and hardware configurations. This 

dynamic learning process enables the compiler to optimize 

code more effectively than traditional static methods [6]. 

However, one limitation of using RL in compiler 

optimization is the computational inefficiency of training the 

RL agent. Training often requires numerous, time-consuming 

experiments. Despite this, recent advances in efficient 

exploration techniques and transfer learning have lowered the 

barriers to RL-based compiler optimization [7]. 

 

2.3 Neural Architecture Search (NAS) in Compiler 

Optimization 

A second approach to compiler optimization that has gained 

traction with the use of AI is Neural Architecture Search 

(NAS). NAS involves searching for the best model 

architecture using machine learning algorithms, and this 

concept has been extended to compiler optimization tasks. In 

NAS-based compilers, neural networks are used to identify 

the best compilation strategies and/or transformations for a 

given workload. NAS enables automatic compiler 

optimization, where a large search space of potential 

optimizations is explored, and a path is selected through the 

execution landscape to achieve maximum efficiency without 

the need for manual tuning. 

 

 
Figure 2. Involvement of Computer and AI in compiler design 

 

By enhancing the efficiency of the compiler underlying DNN 

models, NAS has proven to be a promising method for 

optimizing these models. NAS has been applied to optimize 

low-level hardware-specific features like instruction set 

selection and memory allocation, making it a powerful tool 

for enhancing performance on specialized accelerators such 

as TPUs and FPGAs [9]. 
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A major advantage of NAS lies in its ability to adapt to the 

unique characteristics of various ML models. This makes it 

particularly beneficial for optimizing multiple types of 

workloads, from classification to NLP tasks. With the power 

of a NAS-based compiler, fine-grained optimizations can be 

achieved by learning from the specific needs of each model. 

However, the search space of NAS is vast, and efficiently 

training the neural network to find better strategies is 

computationally expensive. To mitigate this training burden 

and make NAS more efficient, techniques such as meta-

learning and transfer learning have been proposed [10]. 

 

2.4 AI-Based Compiler Optimization for Specialized 

Hardware 

Today, modern ML workloads are heavily dependent on 

specific hardware accelerators such as GPUs, TPUs, and 

others. While these accelerators provide significant 

performance benefits, their usage requires dedicated 

optimizations to unlock their full potential. These hardware-

specific challenges can be effectively addressed by AI-based 

compiler optimization techniques. By leveraging AI, 

compilers can determine the optimal execution of ML 

computations while simultaneously addressing issues like 

memory access, parallelism, and computation scheduling. 

 

 
Figure 3. Intelligent Compilers using Machine Learning 

 

Recently, there has been a push to employ AI-based methods 

to optimize ML workloads for specialized hardware 

platforms. Suggesting that AI-driven optimizations are 

essential for ensuring that ML workloads can be executed 

efficiently on specialized hardware, which is crucial for 

current mission-critical AI applications. 

 

2.5 Challenges and Future Directions 

While promising results have been obtained from AI-based 

compiler optimizations, there are still challenges to address. 

The primary obstacle is the computational overhead of 

training AI models, particularly RL and NAS. Training such 

models requires substantial resources, which may not be 

feasible for all practical scenarios [13]. Additionally, using 

AI-based optimizations can introduce complexity, potentially 

leading to instability and reliability issues in production 

environments, where consistency is critical. Future research 

will need to focus on reducing the training costs for AI-driven 

compilers and improving their ability to operate reliably in 

real-world settings. 

The next step for future development is to integrate AI-based 

optimizations into existing ML frameworks, such as 

TensorFlow and PyTorch. Incorporating AI compiler 

techniques summarized in Figure-2 into these widely used 

frameworks would enhance performance with minimal effort 

[14]. This integration would be particularly beneficial, as ML 

model optimization can bring significant improvements, and 

AI-driven compiler techniques would become more 

accessible to a broader audience. 

 

3. Methodology 
 

The objective of this paper is to investigate the use of AI-

driven compiler optimization techniques aimed at improving 

the performance of ML workloads. The methodology follows 

a structured approach to evaluate reinforcement learning and 

neural architecture search, with a focus on the ML model 

compilation process. The research will incorporate both 

experimental and quantitative analysis to assess how AI can 

optimize ML workloads across different hardware platforms. 

 

3.1 Research Design 

The research will adopt AI-driven compiler optimizations, 

with an emphasis on developing a quantitative and 

experimental research design as described in Figure-3. The 

proposed design will consist of several key phases, including 

theoretical analysis, practical implementation, and 

performance evaluation of machine learning models. A 

comparative analysis will also be conducted to evaluate how 

AI-based compiler optimization compares to traditional 

optimization methods. 

 

First, baseline performance will be established by creating a 

benchmarking suite that utilizes traditional compiler 

techniques to optimize the performance of ML workloads. 

This direct comparison between conventional and AI-

enhanced compilers will enable a clear assessment. Next, AI-

based optimization techniques, such as reinforcement 

learning and neural architecture search, will be implemented 

and further tested. A set of diverse machine learning models 

will be used, with these AI-driven methods applied and 

evaluated for execution time, memory usage, energy 

consumption, and hardware utilization. The overall 

performance will ultimately be compared to traditional 

compilers, using AI-driven optimization techniques to 

highlight the benefits derived from these advancements. 

 

3.2 Selection of Machine Learning Models 

Within the research, a variety of machine learning models 

will be assessed using AI-based compiler optimizations to 

ensure that a range of tasks and model architectures are 

considered. For example, different types of ML workloads 

and application areas, such as object detection, NLP, and 

image classification will be selected, with models chosen to 

represent these workloads and areas. Deep learning 

architectures, including transformers, recurrent neural 

networks (RNNs) and convolutional neural networks (CNNs), 

and transformers, will be used, along with simpler models 

like feedforward neural networks (FNNs). 
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The models selected will range from simple classification 

models to more complex ones that handle large-scale, 

intricate tasks. The research will employ a broad set of ML 

models to assess the performance of AI-based compiler 

optimizations across various domains and architectures. 

These AI-driven optimizations will be benchmarked against 

these models to establish baseline performance for 

comparison. 

 

3.3 AI-Based Optimization Techniques 

Specifically, reinforcement learning and neural architecture 

search will be used to design a dynamic, self-learning 

optimization system. The first part of the work involves using 

an RL agent to maximize its actions based on a reward signal 

within an RL framework for compiler optimization. By 

applying various optimization processes, such as instruction 

scheduling, memory management, and parallelization, the RL 

agent will explore different strategies to optimize ML model 

management. The agent will receive feedback based on 

performance metrics such as execution time, memory usage, 

energy efficiency, and others. Over time, the RL agent will 

adjust its policy, resulting in better optimizations for specific 

workloads. 

 

In this setup, the system’s state will consist of the current 

configuration of the ML model, the optimization settings for 

the compiler, and the hardware on which the model is 

executed. The types of compiler optimizations will be 

represented by actions associated with each compiler 

optimization applied to improve the workload’s execution. 

The performance improvements will be used to calculate the 

reward. Reinforcement learning allows the system to adapt 

and discover optimal ML workload strategies through real-

time feedback, which can reduce the cost of ML workloads 

[15]. 

 

To discover the optimal set of compiler optimizations, we 

train a neural network to predict the performance of various 

optimization strategies using Neural Architecture Search 

(NAS). Specifically for NAS, the optimization process aims 

to find the best combinations of compiler transformations for 

various ML models. These transformations may include 

operations such as vectorization, 2D or 3D tiling, and fusion. 

In the context of NAS, the search space encompasses a wide 

range of potential optimization strategies that the neural 

network will explore to determine which ones are most 

effective for a given workload. 

 

During the NAS process, the search space will contain many 

optimization combinations, and the neural network will learn 

to predict which combination yields the best performance for 

different types of ML workloads. The goal will be to reduce 

execution time, memory footprint, and energy consumption. 

In practice, this method will be especially beneficial for 

finding the optimal mix of hardware-specific instructions and 

memory access patterns to maximize the performance of 

complex deep learning models [16]. 

 

3.4 Compiler Framework Implementation 

The performance of both techniques will be enhanced by a 

hybrid approach that combines reinforcement learning with 

neural architecture search. This hybrid model will allow the 

RL agent to guide the NAS search, helping to find a more 

optimal set of compiler optimization strategies. In turn, the 

NAS process can fine-tune these strategies to further improve 

the results. Both high-level and low-level parameters are 

expected to dynamically affect the optimizations, and this 

combined approach will outperform individual methods. The 

integration of these AI techniques results in a more adaptive 

and efficient system, delivering significant performance 

improvements over traditional compilers [17]. 

 

3.5 Compiler Framework Implementation 

The next phase involves implementing the AI-based 

optimization system. A compiler infrastructure, such as 

LLVM, will be adapted to integrate the AI-based techniques 

developed in the previous step. LLVM's modular and flexible 

architecture makes it an ideal starting point for developing 

these optimizations. To implement the changes, we will 

integrate RL and NAS-based optimization that passes into 

LLVM's compilation pipeline. 

 

The intermediate representation (IR) generated by the 

compiler frontend will parse and convert the ML models into 

an IR suitable for optimization. This IR will serve as the input 

for the AI-based optimization passes, which will use the 

strategy selected by the RL agent and NAS model. The 

backend will then output the optimized machine code, which 

can be executed on hardware platforms such as GPUs, CPUs, 

and TPUs. The customized compiler will be able to be 

applied to many different ML models and hardware, which is 

in turn broad in terms of the applicability and scalability of 

the optimization techniques [18]. 

 

3.6 Evaluation Metrics 

The performance of the AI-driven compiler optimizations 

will be evaluated using a set of key metrics. Execution time 

will measure the time required to execute ML workloads 

before and after optimization. Memory management 

effectiveness will be assessed based on memory usage, with a 

focus on efficient memory allocation and access. Energy 

efficiency will also be a key metric, as minimizing energy 

consumption is critical for large-scale ML deployments, 

especially in cloud and edge computing environments. 

Finally, hardware utilization will be evaluated by determining 

how effectively the compiler optimizations leverage the 

available computational resources, including processing 

power and bandwidth. 

 

3.7 Experimentation and Data Collection 

A comprehensive set of experiments will be conducted to test 

the AI-based optimization techniques. These experiments will 

be carried out on different hardware platforms—GPUs, 

TPUs, and CPUs—ensuring the generalizability of the AI-

driven compiler optimizations. During these experiments, 

both training and inference for various ML models will be 

performed. Metrics such as hardware utilization, memory 
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usage, execution time, and energy consumption will be 

measured and analyzed to assess performance [19]. 

 

3.8 Comparative Analysis 

The results from AI-based compilers will be compared to 

traditional optimization techniques to evaluate the 

performance improvements brought by AI-driven 

optimizations. This comparative analysis will highlight the 

strengths and limitations of AI-based compiler optimizations 

and provide valuable insights into their potential applications. 

Additionally, the analysis will establish baseline performance 

indicators for AI-driven optimizations and offer guidelines on 

how to effectively apply these techniques to real-world ML 

applications [20][21]. 

 

4. Result and Analysis 
 

This section presents the results of applying AI-based 

compiler optimization to ML workloads. Reinforcement 

learning and neural architecture search were utilized to 

optimize the ML models. Various machine learning models 

across different domains and hardware platforms were 

analysed and compared against traditional compiler 

optimizations. In this work, we summarize the performance 

results in terms of execution time, memory usage, energy 

consumption, and hardware utilization as follows. 

 
Table 1. Execution Time Comparison (in Seconds) 

Model Traditional 

Compiler 

(No AI) 

RL 

based 

compiler 

NAS 

based 

compiler 

Hybrid 

Compiler 

(RL + 

NAS) 

CNN (Image 

Classification) 

50.2 43.1 45.4 39.8 

RNN (Text 

Generation) 

78.3 65.2 70.1 61.5 

Transformer 

(NLP) 

120.5 98.7 105.6 93.4 

FNN (Simple 

Regression) 

30.8 25.1 28.4 23.5 

 
Execution Time (in Seconds) for various machine learning 

models, including CNN, RNN, Transformer, and FNN, using 

traditional compilers and AI-based compilers (RL, NAS, and 

hybrid) is presented in Table 1. The results across all models 

show a significant reduction in execution time when AI-based 

optimizations are applied. Notably, the hybrid approach (RL 

+ NAS) yielded the lowest execution time compared to 

traditional compilers. Specifically, the hybrid approach 

achieved a 20% reduction in execution time over traditional 

compilers (39.8 seconds vs. 50.2 seconds for CNN). This 

approach was particularly effective on more complex models 

like the Transformer, where it reduced execution time by 

22.5%. 

 

 

 

 

 

 

Table 2. Memory Usage (in MB) 

Model Traditional 

Compiler 

(No AI) 

RL 

based 

compiler 

NAS 

based 

compiler 

Hybrid 

Compiler 

(RL + 

NAS) 

CNN (Image 

Classification) 

512.4 437.2 461.9 398.1 

RNN (Text 

Generation) 

800.5 650.3 711.0 589.8 

Transformer 

(NLP) 

1201.6 1024.3 1065.2 912.5 

FNN (Simple 

Regression) 

256.7 215.3 231.4 198.3 

 

Table 2 shows the memory usage (in MB) for the models 

under different compiler optimization techniques. The results 

demonstrate that AI-based compilers significantly reduce 

memory usage across all models. Among the AI-based 

techniques, the hybrid compiler (RL + NAS) achieved the 

greatest reduction, with a 23% decrease in memory usage for 

models such as CNN, reducing memory from 512.4 MB to 

398.1 MB. This reduction is attributed to enhanced memory 

management efficiency, which is a critical optimization area 

in machine learning workloads. The memory savings were 

even more pronounced in larger models, such as the 

Transformer, where memory usage was reduced from 1201.6 

MB to 912.5 MB, resulting in a 24% decrease. 

 
Table 3. Energy Consumption (Watts) 

Model Traditional 

Compiler 

(No AI) 

RL 

based 

compiler 

NAS 

based 

compiler 

Hybrid 

Compiler 

(RL + 

NAS) 

CNN (Image 

Classification) 

15.2 13.1 14.0 12.4 

RNN (Text 

Generation) 

20.3 17.5 18.1 16.2 

Transformer 

(NLP) 

30.4 27.1 28.6 25.7 

FNN (Simple 

Regression) 

10.1 8.7 9.2 8.1 

 

Table 3 shows energy consumption (in watts) for the 

optimized models using various compiler techniques. The 

results indicate that the combined RL + NAS compiler 

consumes significantly less energy than other AI-based 

compilers. For example, the energy consumption of the CNN 

model decreased by 18.4%, from 15.2 watts to 12.4 watts. 

This improvement is crucial for large-scale deployment in 

data centers or edge devices, where energy efficiency is a key 

factor. The reduction in energy consumption is primarily due 

to more efficient hardware utilization, with AI compilers 

optimizing computational resources more effectively. 

 
Table 4. Hardware Utilization Efficiency (%) 

Model Traditional 

Compiler 

(No AI) 

RL 

based 

compiler 

NAS 

based 

compiler 

Hybrid 

Compiler 

(RL + 

NAS) 

CNN (Image 

Classification) 

65.3 72.5 70.2 80.0 
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RNN (Text 

Generation) 

57.8 62.4 60.1 68.9 

Transformer 

(NLP) 

48.9 55.2 52.3 63.5 

FNN (Simple 

Regression) 

80.2 85.4 83.7 88.6 

 
Table 4 presents the hardware utilization efficiency, and the 

number of computational resources used during the execution 

of the models. Due to improved hardware utilization 

efficiency, AI-based compilers, especially the hybrid 

approach, outperform traditional compilers. For example, 

when the CNN model was compiled using the hybrid 

approach, hardware utilization increased by 22.6%, from 

65.3% to 80%. Optimizing parallelization and memory 

management enhances utilization efficiency, allowing for 

more effective use of available resources, such as processing 

cores and memory bandwidth. 

 
Table 5. Speedup Ratio (AI-based Compiler vs. Traditional Compiler) 

Model Traditional 

Compiler 

(No AI) 

RL based 

compiler 

NAS based 

compiler 

CNN (Image 

Classification) 

1.16 1.10 1.26 

RNN (Text 

Generation) 

1.20 1.12 1.27 

Transformer 

(NLP) 

1.22 1.14 1.29 

FNN (Simple 

Regression) 

1.22 1.13 1.30 

 

The speedup ratio, derived from Table 5, compares AI-based 

compilers (RL, NAS, hybrid) with traditional compilers. 

Results show that all AI-based compiler techniques deliver a 

significant speedup, with the hybrid approach yielding the 

highest improvements. For example, the benchmark CNN 

runtime experienced a 1.26x speedup with the hybrid AI-

based compiler, indicating a 26% faster execution time 

compared to the traditional compiler. Similarly, the hybrid 

approach provided a 29% speedup for the transformer model. 

These findings highlight the importance of AI-based 

optimizations in not only reducing execution time but also 

enhancing the throughput of the entire machine learning 

pipeline. 

 

It is observed that reinforcement learning and neural 

architecture search-based compilers fare best when compared 

with traditional and other AI model-based compilers. The 

hybrid approach achieves a 20% reduction in execution time 

for CNNs and a 22.5% reduction for transformers. 

Additionally, it reduces memory utilization by 23% for CNNs 

and 24% for transformers, which decreasing energy 

consumption for CNNs by 18%. The findings underscore the 

importance of AI-based compiler optimization to enhance the 

performance and efficiency of machine learning workloads. 

The hybrid RL+NAS approach emerges as a particularly 

effective strategy in offering significant improvements in 

execution time, memory usage and energy consumption.  

 

5. Conclusion and Future Scope 
 

The study focused on leveraging AI-driven approaches to 

enhance compiler performance by reducing execution time, 

memory usage, energy consumption, and improving hardware 

utilization efficiency. Our results demonstrate that AI-based 

optimization techniques (RL, NAS), particularly when used 

in a hybrid mode (RL + NAS), outperform traditional 

compilers across various ML models, such as CNNs, RNNs, 

transformers, and FNNs. 

 

Our findings revealed that AI-based hybrid compilers 

significantly reduced execution times while providing 

optimization to complex models like transformers.  

Additionally, these AI-driven approaches reduce memory 

usage and energy consumption, making them highly efficient 

for deployment in resource-constrained environments. The 

hybrid AI compiler also maximized computational resource 

utilization, resulting in superior hardware efficiency. The 

results further validated the potential of AI-based compilers 

to accelerate and enhance machine learning pipelines in 

scenarios where performance optimization is critical. By 

incorporating AI methods in compilers, computational 

overhead is minimized, and hardware utilization is optimized, 

contributing to greener, more sustainable computing practices 

that can span across multiple applications like robotics, 

medical diagnostics [21], data center and general artificial 

intelligence. 

 

In conclusion, AI-based compiler optimization presents a 

promising direction for improving ML workload 

performance. The research suggests that these techniques 

have broad applicability in optimizing ML models and 

accelerate deployment in both research and industry, provided 

further refinement. Future work will explore additional AI 

optimization approaches and investigate their application to 

different types of machine learning models and hardware 

platforms. 

 

This thesis explores the improvement of AI-based 

compilation techniques for machine learning workloads, with 

a focus on RL and NAS. Traditional compilers fell short, but 

the hybrid AI compiler (RL + NAS) successfully reduced 

execution time, memory usage, and energy consumption 

while improving hardware utilization. The results indicate 

that AI-based compilers are suitable for both resource-

constrained environments and large-scale applications, 

significantly enhancing compiler performance. This study 

underscores the importance of AI-guided machine learning 

compilers to optimize efficiency, presenting a promising field 

for further research and adoption in academic and industrial 

settings. 

 

Future studies can explore integrating AI-based compiler 

optimizations into widely used ML frameworks like 

TensorFlow and PyTorch, making these techniques more 

accessible and widely adopted. Additionally, optimizing AI-
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based compilers for specialized hardware like GPUs, TPUs, 

CPUs, and Application-Specific Integrated Circuits (ASICs) 

can unlock their full potential by addressing hardware-

specific challenges such as memory access, parallelism, and 

computation scheduling. For instance, AI-driven compilers 

can be tailored to optimize machine learning workloads on 

GPUs, TPUs, and CPUs. By pursuing these directions, AI-

based compiler optimizations can play a pivotal role in 

shaping the future of machine learning and artificial 

intelligence applications. 
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