International Journal of Computer Sciences and Engineering

Vol.13, Issue.3, pp.70-77, March 2025
ISSN: 2347-2693 (Online)
Available online at: www.ijcseonline.org

_
A|CSE

ISSN: 2347-2693 (E)

Review Article

Advancements in Al-Based
Machine Learning Workloads

Compiler Optimization Techniques for

Vasuki Shankar*

'Nvidia Corporation, Bengaluru, Karnataka, India
Corresponding Author: =

Received: 22/Jan/2025; Accepted: 24/Feb/2025; Published: 31/Mar/2025. DOI: https://doi.org/10.26438/ijcse/v13i3.7077

Copyright © 2025 by author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International
ra |_icense which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited & its authors credited.

Abstract: This paper primarily explores the application of Al-driven compiler optimization techniques for machine learning
(ML) workloads, with a focus on reinforcement learning and neural architecture search. It examines the performance of
traditional compilers compared to Al-optimized compilers leveraging various ML models, including CNNs, RNNs, FNNs, and
transformers. The results indicate that Al-driven compilers — particularly those using a hybrid RL + NAS approach—
outperforms traditional compilers in energy consumption, memory usage, execution time and hardware utilization. Additionally,
the findings suggest that Al-based optimization techniques can streamline ML pipeline development, enhancing efficiency and
performance for both resource-constrained environments and large-scale applications.

Keywords: Al-based compilers, reinforcement learning, neural architecture search, machine learning, compiler optimization.

1. Introduction Graphics Processing Units (GPUs), Tensor Processing Units

In recent decades, ML applications have experienced rapid
growth, placing increasing demands on computing systems in
terms of performance and efficiency. Both training and
inference in machine learning require vast computational
resources, from classical algorithms to deep neural networks.
As model complexity increases, so does the need for
optimization techniques that can efficiently utilize the
underlying hardware. Compiler optimization has long been a
crucial aspect of translating high-level code into machine
instructions to enhance software performance. However,
traditional compiler optimization techniques often fall short
in addressing the unique computational patterns and memory
access behaviors of ML workloads. To overcome these
challenges, recent advancements have incorporated artificial
intelligence (Al) into compiler optimization.

Traditionally, compilers apply a range of optimization
techniques to reduce execution time, minimize memory
consumption, and improve parallelism. Common approaches
include loop unrolling, instruction scheduling, inlining, and
vectorization. While effective for general-purpose
applications, these techniques struggle to optimize ML
workloads, which often involve large-scale data processing,
irregular computation patterns, and complex tensor
operations. Efficient optimization is especially critical for
maximizing the performance of modern accelerators such as

© 2025, 1JCSE All Rights Reserved

(TPUs), and specialized Al chips. Additionally, ML
workloads are dynamic in nature, with model structures and
behaviors varying significantly based on the task, further
complicating optimization efforts.

To address these challenges, Al-based compiler optimization
techniques have emerged as a promising solution. By
leveraging Al and ML algorithms, compilers can adaptively
learn and apply optimization strategies tailored to specific
workloads. Al-driven approaches, such as Reinforcement
Learning (RL) and Neural Architecture Search (NAS), enable
compilers to explore a wide range of optimization
possibilities beyond rule-based heuristics. These techniques
allow for more intelligent and context-aware optimizations,
leading to significant improvements in execution efficiency,
resource utilization, and overall system performance.

1.1 Aim and Objectives

This paper aims to identify and analyze advancements in Al-

based compiler optimization techniques aimed at enhancing

the performance and efficiency of artificial intelligence and

machine learning workloads. The objective of this paper

includes,

e To examine the limitations of current compiler optimization
techniques in addressing the unique challenges posed by
machine learning workloads.

70

https://orcid.org/0009-0001-3094-7161
mailto:vasukishankar13@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

International Journal of Computer Sciences and Engineering

e To analyze the role of artificial intelligence — particularly
reinforcement learning and neural architecture search —
in enhancing compiler performance for machine learning
tasks.

e To assess the impact of Al-driven optimizations on
execution efficiency and resource utilization of machine
learning models across various hardware architectures.

e To identify key challenges in integrating Al-based
optimization methods into compilers for machine learning
applications.

1.2Research statement

e What are the specific limitations of traditional compiler
optimizations for machine learning workloads, and what
unique challenges do these workloads present?

e How effective are Al-based compiler optimization
techniques, such as reinforcement learning and neural
architecture search, in enhancing the performance of
machine learning models, and what benefits do they offer?

e What are the key challenges and limitations of integrating
machine learning into Al-driven compiler optimization,
and what scalable and efficient solutions can be
implemented?

opcode opcode
ids embeddings = GNN —
embed no'de)
opcode \ embeddings adjacency
@ matrix
node feats - I
Il
i reduction }
] '
per-node graph
config fgr_;us embedding graph
(early-join) Il config feats
(/ate-join)
feedforward ——~ "M
prediction
Figure 1. Advancement in Machine Learning
Today, machine learning (ML) models have become

increasingly complex, as described in figure-1, making it
challenging for traditional compilers to optimize them
effectively. The main difficulties in optimizing ML models—
particularly deep learning models—stem from big data,
irreqular computation patterns, and memory-intensive
operations, which standard compiler techniques like loop
unrolling and vectorization struggle to handle. As ML
workloads increasingly rely on specialized hardware such as
GPUs and TPUs, there is a growing need for more adaptive
and efficient optimization strategies. Al-based compiler
optimization offers a promising solution by leveraging
machine learning to tailor the code for machine learning
workloads and target hardware specifications.

© 2025, 1JCSE All Rights Reserved

Vol.13(3), Mar. 2025

While traditional compilers are highly effective for general-
purpose applications, they struggle with the dynamic nature
of ML models, which often involve nonlinear operations and
high-dimensional data processing. Al-driven optimization
techniques, such as reinforcement learning and neural
architecture search, enable the compilation process to adapt
dynamically based on workload characteristics, resulting in
more efficient code generation. These approaches provide a
level of flexibility and performance tuning that traditional
methods cannot match, significantly improving execution
speed and resource utilization in ML applications.

Al-based compilers have a distinct advantage in their ability
to learn from feedback and refine optimization strategies in
real time. For instance, reinforcement learning allows
compilers to explore a range of optimizations and select the
most effective ones based on performance outcomes.
Similarly, neural architecture search (NAS) helps identify the
best transformations tailored to specific ML models. In large-
scale ML problems, these Al-driven techniques can
substantially reduce processing time and energy consumption,
making them highly valuable for modern computing
environments.

However, integrating Al into compiler optimization raises
critical challenges, particularly in ensuring that Al-driven
decisions are reliable, interpretable, and generalizable across
diverse workloads. Despite these challenges, Al-based
optimization represents a promising path forward in
enhancing the efficiency of ML workloads. This thesis will
explore the extent to which Al-driven optimizations can
improve compiler performance and their potential impact on
the future of compiler design.

The paper is structured as follows; Section 1 introduces the
advancements in Al-based compiler optimization techniques
for ML workflows. Section 2 contains the background and
literature survey of the current state of the art, Section 3
outlines the methodology involved, and Section 4 presents the
results and analysis, followed by Section 5, where we discuss
the conclusion and future directions.

2. Literature Review

The integration of artificial intelligence into compiler
optimization has transformed how compilers address
performance challenges in machine learning (ML) workloads.
As ML models grow in complexity, traditional compiler
optimizations are becoming increasingly insufficient for
accelerating model execution, reducing model size and
memory footprint, decreasing the number of training epochs
required, and improving model training speed.

Al-driven approaches, particularly reinforcement learning and
neural architecture search, enable compilers to learn workload
behavior and make context-aware, dynamic optimization
decisions. These techniques offer promising solutions for
enhancing performance and efficiency. This literature review
examines key breakthroughs in Al-driven compiler

71

International Journal of Computer Sciences and Engineering

optimization and explores how these advancements address
the unique challenges of ML workloads.

2.1 Traditional Compiler Optimizations and Their

Limitations for ML Workloads

Optimization techniques of classical compilers (such as loop
unrolling, vectorization, instruction scheduling, and inlining)
have long been used to improve performance in general-
purpose software development, specifically to reduce
execution time and enhance memory usage and parallelism
[1]. While effective for general use cases, these traditional
approaches do not specifically address the unique
requirements of machine learning (ML) workloads. ML
models, particularly deep learning models, often involve
irregular computation patterns, many parallel operations, and
heavy reliance on proprietary hardware accelerators like
GPUs and TPUs. For example, matrix multiplications,
convolutions, and activation functions are integral to ML
frameworks such as TensorFlow and PyTorch, but these
operations cannot be efficiently optimized using traditional
techniques [2].

Traditional compiler optimizations for ML workloads fall
short due to their static nature. These strategies often assume
that ML models, which exhibit dynamic, data-dependent
behavior, have predictable = computation patterns.
Additionally, the massive data processing and complex
operations within ML models are not well-suited for
traditional compilers, which cannot automatically apply the
most effective optimizations. This has sparked significant
interest in Al-based compiler optimizations, which are better
equipped to handle these challenges [3].

2.2 Al-Based Compiler Optimization: Reinforcement

Learning
Despite the well-understood challenges of compiler
optimization using traditional handcrafted techniques,

Reinforcement Learning based approaches have proven to be
highly effective in practice. The machine learning paradigm
known as RL consists of an agent learning to make decisions
based on interactions with an environment and receiving
feedback as rewards or penalties. In compiler optimization,
the code being compiled represents the environment, while
the optimization process itself acts as the agent,
experimenting with various strategies until one is found that
improves execution speed. The RL-based compiler aims to
discover the best set of transformations for a given ML
workload.

While several studies highlight the potential of RL for
optimizing compilers for ML workloads, initializing an RL
system for these workloads remains an extremely challenging
task. For example, Li et al. [2] introduced an RL-based
method to optimize compiler parameters such as instruction
scheduling and register allocation, specifically for deep
learning workloads. Their approach outperformed traditional
optimization techniques, achieving better performance and
energy efficiency on GPUs.

© 2025, 1JCSE All Rights Reserved

Vol.13(3), Mar. 2025

Similarly, Zhang et al. [5] explored RL to optimize kernel
fusion and memory access patterns in convolutional neural
networks (CNNs), significantly improving execution time and
memory bandwidth utilization. These studies demonstrate
that RL can effectively optimize the unique requirements of
ML tasks, addressing performance challenges like those faced
by modern ML models.

The concept behind RL-based compilers is to define a reward
function that evaluates the performance of a given
optimization strategy. The agent learns through trial and
error, identifying which transformations work best for
different workloads and hardware configurations. This
dynamic learning process enables the compiler to optimize
code more effectively than traditional static methods [6].
However, one limitation of wusing RL in compiler
optimization is the computational inefficiency of training the
RL agent. Training often requires numerous, time-consuming
experiments. Despite this, recent advances in efficient
exploration techniques and transfer learning have lowered the
barriers to RL-based compiler optimization [7].

2.3 Neural Architecture Search (NAS)
Optimization

A second approach to compiler optimization that has gained
traction with the use of Al is Neural Architecture Search
(NAS). NAS involves searching for the best model
architecture using machine learning algorithms, and this
concept has been extended to compiler optimization tasks. In
NAS-based compilers, neural networks are used to identify
the best compilation strategies and/or transformations for a
given workload. NAS enables automatic compiler
optimization, where a large search space of potential
optimizations is explored, and a path is selected through the
execution landscape to achieve maximum efficiency without
the need for manual tuning.

in Compiler

Frontends ‘Compiler framework Compiler as a service
=) ' S (buddy-mlir) (buddy-caas)
(Comigagmetc] (Lost o] ! [smimes) npsidisesca

()i (o i

] Backends / toolchains

[MR tols]

s, ([oty i | 2| (s iosewn)

opeeaton
([nviom oot]

Mided | | |0

Benchmark framework
(buddy-benchmark)

wap pase import

=)

Utils / tools

Operation level benchmark

i Dislects inother frameworks | [fowering tools] 'Domain-specific benchmark

Google benchmark

End-to-end Evaluation
application report

Co-design framework Domain-specific architecture framework
(bud (buddy-dsa)

Components in buddy compiler

Submodules and dependencies

221717 Work in progress components

Figure 2. Involvement of Computer and Al in compiler design

By enhancing the efficiency of the compiler underlying DNN
models, NAS has proven to be a promising method for
optimizing these models. NAS has been applied to optimize
low-level hardware-specific features like instruction set
selection and memory allocation, making it a powerful tool
for enhancing performance on specialized accelerators such
as TPUs and FPGAs [9].

N

7

International Journal of Computer Sciences and Engineering

A major advantage of NAS lies in its ability to adapt to the
unique characteristics of various ML models. This makes it
particularly beneficial for optimizing multiple types of
workloads, from classification to NLP tasks. With the power
of a NAS-based compiler, fine-grained optimizations can be
achieved by learning from the specific needs of each model.
However, the search space of NAS is vast, and efficiently
training the neural network to find better strategies is
computationally expensive. To mitigate this training burden
and make NAS more efficient, techniques such as meta-
learning and transfer learning have been proposed [10].

2.4 Al-Based Compiler Optimization for Specialized
Hardware

Today, modern ML workloads are heavily dependent on
specific hardware accelerators such as GPUs, TPUs, and
others. While these accelerators provide significant
performance benefits, their usage requires dedicated
optimizations to unlock their full potential. These hardware-
specific challenges can be effectively addressed by Al-based
compiler optimization techniques. By leveraging Al,
compilers can determine the optimal execution of ML
computations while simultaneously addressing issues like
memory access, parallelism, and computation scheduling.

Dead Code Constant
Elimination Folding

Code
Movement

Code Optimization
3 e
Techniques
Strength
Reduction

Figure 3. Intelligent Compilers using Machine Learning

Compile Time

Evaluation

Common Sub
Expression Constar}t
Elimination Propagation

Recently, there has been a push to employ Al-based methods
to optimize ML workloads for specialized hardware
platforms. Suggesting that Al-driven optimizations are
essential for ensuring that ML workloads can be executed
efficiently on specialized hardware, which is crucial for
current mission-critical Al applications.

2.5 Challenges and Future Directions

While promising results have been obtained from Al-based
compiler optimizations, there are still challenges to address.
The primary obstacle is the computational overhead of
training Al models, particularly RL and NAS. Training such
models requires substantial resources, which may not be
feasible for all practical scenarios [13]. Additionally, using
Al-based optimizations can introduce complexity, potentially
leading to instability and reliability issues in production
environments, where consistency is critical. Future research
will need to focus on reducing the training costs for Al-driven
compilers and improving their ability to operate reliably in
real-world settings.

© 2025, 1JCSE All Rights Reserved

Vol.13(3), Mar. 2025

The next step for future development is to integrate Al-based
optimizations into existing ML frameworks, such as
TensorFlow and PyTorch. Incorporating Al compiler
techniques summarized in Figure-2 into these widely used
frameworks would enhance performance with minimal effort
[14]. This integration would be particularly beneficial, as ML
model optimization can bring significant improvements, and
Al-driven compiler techniques would become more
accessible to a broader audience.

3. Methodology

The objective of this paper is to investigate the use of Al-
driven compiler optimization techniques aimed at improving
the performance of ML workloads. The methodology follows
a structured approach to evaluate reinforcement learning and
neural architecture search, with a focus on the ML model
compilation process. The research will incorporate both
experimental and quantitative analysis to assess how Al can
optimize ML workloads across different hardware platforms.

3.1 Research Design

The research will adopt Al-driven compiler optimizations,
with an emphasis on developing a quantitative and
experimental research design as described in Figure-3. The
proposed design will consist of several key phases, including
theoretical ~ analysis, practical implementation, and
performance evaluation of machine learning models. A
comparative analysis will also be conducted to evaluate how
Al-based compiler optimization compares to traditional
optimization methods.

First, baseline performance will be established by creating a
benchmarking suite that utilizes traditional compiler
techniques to optimize the performance of ML workloads.
This direct comparison between conventional and Al-
enhanced compilers will enable a clear assessment. Next, Al-
based optimization techniques, such as reinforcement
learning and neural architecture search, will be implemented
and further tested. A set of diverse machine learning models
will be used, with these Al-driven methods applied and
evaluated for execution time, memory usage, energy
consumption, and hardware utilization. The overall
performance will ultimately be compared to traditional
compilers, using Al-driven optimization techniques to
highlight the benefits derived from these advancements.

3.2 Selection of Machine Learning Models

Within the research, a variety of machine learning models
will be assessed using Al-based compiler optimizations to
ensure that a range of tasks and model architectures are
considered. For example, different types of ML workloads
and application areas, such as object detection, NLP, and
image classification will be selected, with models chosen to
represent these workloads and areas. Deep learning
architectures, including transformers, recurrent neural
networks (RNNs) and convolutional neural networks (CNNs),
and transformers, will be used, along with simpler models
like feedforward neural networks (FNNs).

73

International Journal of Computer Sciences and Engineering

The models selected will range from simple classification
models to more complex ones that handle large-scale,
intricate tasks. The research will employ a broad set of ML
models to assess the performance of Al-based compiler
optimizations across various domains and architectures.
These Al-driven optimizations will be benchmarked against
these models to establish baseline performance for
comparison.

3.3 Al-Based Optimization Techniques

Specifically, reinforcement learning and neural architecture
search will be used to design a dynamic, self-learning
optimization system. The first part of the work involves using
an RL agent to maximize its actions based on a reward signal
within an RL framework for compiler optimization. By
applying various optimization processes, such as instruction
scheduling, memory management, and parallelization, the RL
agent will explore different strategies to optimize ML model
management. The agent will receive feedback based on
performance metrics such as execution time, memory usage,
energy efficiency, and others. Over time, the RL agent will
adjust its policy, resulting in better optimizations for specific
workloads.

In this setup, the system’s state will consist of the current
configuration of the ML model, the optimization settings for
the compiler, and the hardware on which the model is
executed. The types of compiler optimizations will be
represented by actions associated with each compiler
optimization applied to improve the workload’s execution.
The performance improvements will be used to calculate the
reward. Reinforcement learning allows the system to adapt
and discover optimal ML workload strategies through real-
time feedback, which can reduce the cost of ML workloads
[15].

To discover the optimal set of compiler optimizations, we
train a neural network to predict the performance of various
optimization strategies using Neural Architecture Search
(NAS). Specifically for NAS, the optimization process aims
to find the best combinations of compiler transformations for
various ML models. These transformations may include
operations such as vectorization, 2D or 3D tiling, and fusion.
In the context of NAS, the search space encompasses a wide
range of potential optimization strategies that the neural
network will explore to determine which ones are most
effective for a given workload.

During the NAS process, the search space will contain many
optimization combinations, and the neural network will learn
to predict which combination yields the best performance for
different types of ML workloads. The goal will be to reduce
execution time, memory footprint, and energy consumption.
In practice, this method will be especially beneficial for
finding the optimal mix of hardware-specific instructions and
memory access patterns to maximize the performance of
complex deep learning models [16].

© 2025, 1JCSE All Rights Reserved

Vol.13(3), Mar. 2025

3.4 Compiler Framework Implementation

The performance of both techniques will be enhanced by a
hybrid approach that combines reinforcement learning with
neural architecture search. This hybrid model will allow the
RL agent to guide the NAS search, helping to find a more
optimal set of compiler optimization strategies. In turn, the
NAS process can fine-tune these strategies to further improve
the results. Both high-level and low-level parameters are
expected to dynamically affect the optimizations, and this
combined approach will outperform individual methods. The
integration of these Al techniques results in a more adaptive
and efficient system, delivering significant performance
improvements over traditional compilers [17].

3.5 Compiler Framework Implementation

The next phase involves implementing the Al-based
optimization system. A compiler infrastructure, such as
LLVM, will be adapted to integrate the Al-based techniques
developed in the previous step. LLVM's modular and flexible
architecture makes it an ideal starting point for developing
these optimizations. To implement the changes, we will
integrate RL and NAS-based optimization that passes into
LLVM's compilation pipeline.

The intermediate representation (IR) generated by the
compiler frontend will parse and convert the ML models into
an IR suitable for optimization. This IR will serve as the input
for the Al-based optimization passes, which will use the
strategy selected by the RL agent and NAS model. The
backend will then output the optimized machine code, which
can be executed on hardware platforms such as GPUs, CPUs,
and TPUs. The customized compiler will be able to be
applied to many different ML models and hardware, which is
in turn broad in terms of the applicability and scalability of
the optimization techniques [18].

3.6 Evaluation Metrics

The performance of the Al-driven compiler optimizations
will be evaluated using a set of key metrics. Execution time
will measure the time required to execute ML workloads
before and after optimization. Memory management
effectiveness will be assessed based on memory usage, with a
focus on efficient memory allocation and access. Energy
efficiency will also be a key metric, as minimizing energy
consumption is critical for large-scale ML deployments,
especially in cloud and edge computing environments.
Finally, hardware utilization will be evaluated by determining
how effectively the compiler optimizations leverage the
available computational resources, including processing
power and bandwidth.

3.7 Experimentation and Data Collection

A comprehensive set of experiments will be conducted to test
the Al-based optimization techniques. These experiments will
be carried out on different hardware platforms—GPUs,
TPUs, and CPUs—ensuring the generalizability of the Al-
driven compiler optimizations. During these experiments,
both training and inference for various ML models will be
performed. Metrics such as hardware utilization, memory

74

International Journal of Computer Sciences and Engineering

usage, execution time, and energy consumption will be
measured and analyzed to assess performance [19].

3.8 Comparative Analysis

The results from Al-based compilers will be compared to
traditional ~optimization techniques to evaluate the
performance improvements brought by Al-driven
optimizations. This comparative analysis will highlight the
strengths and limitations of Al-based compiler optimizations
and provide valuable insights into their potential applications.
Additionally, the analysis will establish baseline performance
indicators for Al-driven optimizations and offer guidelines on
how to effectively apply these techniques to real-world ML
applications [20][21].

4. Result and Analysis

This section presents the results of applying Al-based
compiler optimization to ML workloads. Reinforcement
learning and neural architecture search were utilized to
optimize the ML models. Various machine learning models
across different domains and hardware platforms were
analysed and compared against traditional compiler
optimizations. In this work, we summarize the performance
results in terms of execution time, memory usage, energy
consumption, and hardware utilization as follows.

Table 1. Execution Time Comparison (in Seconds)

Vol.13(3), Mar. 2025

Table 2. Memory Usage (in MB)

Model Traditional RL NAS Hybrid
Compiler based based Compiler
(No Al) compiler | compiler (RL +
NAS)
CNN (Image 512.4 437.2 461.9 398.1
Classification)
RNN (Text 800.5 650.3 711.0 589.8
Generation)
Transformer 1201.6 1024.3 1065.2 912.5
(NLP)
FNN (Simple | 256.7 215.3 231.4 198.3
Regression)

Table 2 shows the memory usage (in MB) for the models
under different compiler optimization techniques. The results
demonstrate that Al-based compilers significantly reduce
memory usage across all models. Among the Al-based
techniques, the hybrid compiler (RL + NAS) achieved the
greatest reduction, with a 23% decrease in memory usage for
models such as CNN, reducing memory from 512.4 MB to
398.1 MB. This reduction is attributed to enhanced memory
management efficiency, which is a critical optimization area
in machine learning workloads. The memory savings were
even more pronounced in larger models, such as the
Transformer, where memory usage was reduced from 1201.6
MB to 912.5 MB, resulting in a 24% decrease.

Table 3. Energy Consumption (Watts)

Model Traditional RL NAS Hybrid
Compiler based based Compiler
(No Al) compiler | compiler (RL +
NAS)
CNN (Image 50.2 43.1 454 39.8
Classification)
RNN (Text 78.3 65.2 70.1 61.5
Generation)
Transformer 120.5 98.7 105.6 934
(NLP)
FNN (Simple | 30.8 25.1 28.4 235
Regression)

Model Traditional RL NAS Hybrid
Compiler based based Compiler
(No Al) compiler | compiler (RL +
NAS)
CNN (Image 15.2 13.1 14.0 12.4
Classification)
RNN (Text 20.3 175 18.1 16.2
Generation)
Transformer 304 27.1 28.6 25.7
(NLP)
FNN (Simple | 10.1 8.7 9.2 8.1
Regression)

Execution Time (in Seconds) for various machine learning
models, including CNN, RNN, Transformer, and FNN, using
traditional compilers and Al-based compilers (RL, NAS, and
hybrid) is presented in Table 1. The results across all models
show a significant reduction in execution time when Al-based
optimizations are applied. Notably, the hybrid approach (RL
+ NAS) vyielded the lowest execution time compared to
traditional compilers. Specifically, the hybrid approach
achieved a 20% reduction in execution time over traditional
compilers (39.8 seconds vs. 50.2 seconds for CNN). This
approach was particularly effective on more complex models
like the Transformer, where it reduced execution time by
22.5%.

© 2025, 1JCSE All Rights Reserved

Table 3 shows energy consumption (in watts) for the
optimized models using various compiler techniques. The
results indicate that the combined RL + NAS compiler
consumes significantly less energy than other Al-based
compilers. For example, the energy consumption of the CNN
model decreased by 18.4%, from 15.2 watts to 12.4 watts.
This improvement is crucial for large-scale deployment in
data centers or edge devices, where energy efficiency is a key
factor. The reduction in energy consumption is primarily due
to more efficient hardware utilization, with Al compilers
optimizing computational resources more effectively.

Table 4. Hardware Utilization Efficiency (%)

Model Traditional RL NAS Hybrid
Compiler based based Compiler
(No Al) compiler | compiler (RL +
NAS)
CNN (Image 65.3 725 70.2 80.0
Classification)
75

International Journal of Computer Sciences and Engineering

RNN (Text 57.8 62.4 60.1 68.9
Generation)

Transformer 48.9 55.2 52.3 63.5
(NLP)

FNN (Simple | 80.2 85.4 83.7 88.6
Regression)

Table 4 presents the hardware utilization efficiency, and the
number of computational resources used during the execution
of the models. Due to improved hardware utilization
efficiency, Al-based compilers, especially the hybrid
approach, outperform traditional compilers. For example,
when the CNN model was compiled using the hybrid
approach, hardware utilization increased by 22.6%, from
65.3% to 80%. Optimizing parallelization and memory
management enhances utilization efficiency, allowing for
more effective use of available resources, such as processing
cores and memory bandwidth.

Table 5. Speedup Ratio (Al-based Compiler vs. Traditional Compiler)
Model Traditional RL based NAS based
Compiler compiler compiler
(No Al)

CNN (Image 1.16 1.10 1.26
Classification)
RNN (Text 1.20 1.12 1.27
Generation)
Transformer 1.22 1.14 1.29
(NLP)
FNN (Simple 1.22 1.13 1.30
Regression)

The speedup ratio, derived from Table 5, compares Al-based
compilers (RL, NAS, hybrid) with traditional compilers.
Results show that all Al-based compiler techniques deliver a
significant speedup, with the hybrid approach yielding the
highest improvements. For example, the benchmark CNN
runtime experienced a 1.26x speedup with the hybrid Al-
based compiler, indicating a 26% faster execution time
compared to the traditional compiler. Similarly, the hybrid
approach provided a 29% speedup for the transformer model.
These findings highlight the importance of Al-based
optimizations in not only reducing execution time but also
enhancing the throughput of the entire machine learning
pipeline.

It is observed that reinforcement learning and neural
architecture search-based compilers fare best when compared
with traditional and other Al model-based compilers. The
hybrid approach achieves a 20% reduction in execution time
for CNNs and a 225% reduction for transformers.
Additionally, it reduces memory utilization by 23% for CNNs
and 24% for transformers, which decreasing energy
consumption for CNNs by 18%. The findings underscore the
importance of Al-based compiler optimization to enhance the
performance and efficiency of machine learning workloads.
The hybrid RL+NAS approach emerges as a particularly

© 2025, 1JCSE All Rights Reserved

Vol.13(3), Mar. 2025

effective strategy in offering significant improvements in
execution time, memory usage and energy consumption.

5. Conclusion and Future Scope

The study focused on leveraging Al-driven approaches to
enhance compiler performance by reducing execution time,
memory usage, energy consumption, and improving hardware
utilization efficiency. Our results demonstrate that Al-based
optimization techniques (RL, NAS), particularly when used
in a hybrid mode (RL + NAS), outperform traditional
compilers across various ML models, such as CNNs, RNNs,
transformers, and FNNs.

Our findings revealed that Al-based hybrid compilers
significantly reduced execution times while providing
optimization to complex models like transformers.
Additionally, these Al-driven approaches reduce memory
usage and energy consumption, making them highly efficient
for deployment in resource-constrained environments. The
hybrid Al compiler also maximized computational resource
utilization, resulting in superior hardware efficiency. The
results further validated the potential of Al-based compilers
to accelerate and enhance machine learning pipelines in
scenarios where performance optimization is critical. By
incorporating Al methods in compilers, computational
overhead is minimized, and hardware utilization is optimized,
contributing to greener, more sustainable computing practices
that can span across multiple applications like robotics,
medical diagnostics [21], data center and general artificial
intelligence.

In conclusion, Al-based compiler optimization presents a
promising direction for improving ML workload
performance. The research suggests that these techniques
have broad applicability in optimizing ML models and
accelerate deployment in both research and industry, provided
further refinement. Future work will explore additional Al
optimization approaches and investigate their application to
different types of machine learning models and hardware
platforms.

This thesis explores the improvement of Al-based
compilation techniques for machine learning workloads, with
a focus on RL and NAS. Traditional compilers fell short, but
the hybrid Al compiler (RL + NAS) successfully reduced
execution time, memory usage, and energy consumption
while improving hardware utilization. The results indicate
that Al-based compilers are suitable for both resource-
constrained environments and large-scale applications,
significantly enhancing compiler performance. This study
underscores the importance of Al-guided machine learning
compilers to optimize efficiency, presenting a promising field
for further research and adoption in academic and industrial
settings.

Future studies can explore integrating Al-based compiler
optimizations into widely used ML frameworks like
TensorFlow and PyTorch, making these techniques more
accessible and widely adopted. Additionally, optimizing Al-

76

International Journal of Computer Sciences and Engineering

based compilers for specialized hardware like GPUs, TPUs,
CPUs, and Application-Specific Integrated Circuits (ASICs)
can unlock their full potential by addressing hardware-
specific challenges such as memory access, parallelism, and
computation scheduling. For instance, Al-driven compilers
can be tailored to optimize machine learning workloads on
GPUs, TPUs, and CPUs. By pursuing these directions, Al-
based compiler optimizations can play a pivotal role in
shaping the future of machine learning and artificial
intelligence applications.

Data Availability
None.

Conflict of Interest
Authors declare that they do not have any conflict of interest.

Funding Source
None

References

[1] M. Sponner, B. Waschneck, and A. Kumar, “Al-driven
performance modeling for Al inference workloads,” Electronics,
Vol.11, No.15, pp.2316, 2022. DOI: 10.3390/electronics11152316.

[2] M. K. Sheikh, “A Machine Learning Based Compiler Optimization
Technique,” Sukkur IBA Journal of Emerging Technologies, VVol.7,
No.1, pp.37-47, 2024.

[31 M. Trofin, Y. Qian, E. Brevdo, Z. Lin, K. Choromanski, and D. Li,
"MLGO: A Machine Learning Guided Compiler Optimizations
Framework," arXiv preprint, arXiv:2101.04808, 2021.

[4] C. Metz, “Towards Sustainable Artificial Intelligence Systems:
Enhanced System Design with Machine Learning-Based Design
Techniques,” Ph.D. dissertation, Universitdt Bremen, Germany,
2024.

[5] A.N.Mazumder, J. Meng, H. A. Rashid, U. Kallakuri, X. Zhang, J.
S. Seo, and T. Mohsenin, “A survey on the optimization of neural
network accelerators for micro-ai on-device inference,” |IEEE
Journal on Emerging and Selected Topics in Circuits and Systems,
Vol.11, No.4, pp.532-547, 2021. DOI:
10.1109/JETCAS.2021.3120032.

[6] F. Ponzina, “Hardware-Software Co-Design Methodologies for
Edge AI Optimization,” Ph.D. dissertation, EPFL, Switzerland,
2023.

[71 P. Gonzalez-Guerrero, A. Butko, G. Michelogianniakis, and J.
Shalf, “Al-Enabled Analysis and Control for Enhancing Data
Transition and Movement,” In Position Papers for the ASCR
Workshop on Reimagining Codesign, March 2021.

[8] H. Bouzidi, “Efficient Deployment of Deep Neural Networks on
Hardware Devices for Edge AL” Ph.D. dissertation, Université
Polytechnique Hauts-de-France, France, 2024.

[9] |I. Hidalgo, F. Fenandez-de Vega, J. Ceberio, O. Garnica, J. M.
Velasco, J. C. Cortés, R. Villanueva, and J. Diaz, “Sustainable
Artificial Intelligence Systems: An Energy Efficiency Approach,”
[Preprint - Not Accepted for Final Publication], Authorea
Preprints, 2023.

[10] K.K. Balasubramanian, M. Di Salvo, W. Rocchia, S. Decherchi,
and M. Crepaldi, “Designing RISC-V Instruction Set Extensions
for Artificial Neural Networks: An LLVM Compiler-Driven
Perspective,” IEEE Access, 2024. DOI:
10.1109/ACCESS.2024.3290706.

[11] Ashouri, A. H., Manzoor, M. A., Vu, D. M., Zhang, R., Wang, Z.,
Zhang, A., ... & Gao, Y., “ACPO: Al-Enabled Compiler-Driven
Program Optimization,” arXiv preprint arXiv:2312.09982, 2023.

[12] J. A. H. Klein, “Exploring High-Performance and Energy-Efficient
Architectures for Edge Al-Enabled Applications,” Ph.D.
dissertation, EPFL, Switzerland, 2024.

© 2025, 1JCSE All Rights Reserved

Vol.13(3), Mar. 2025

[13] S.S. Gill, M. Golec, J. Hu, M. Xu, J. Du, H. Wu, G. K. Walia, S. S.
Murugesan, B. Ali, M. Kumar, and K. Ye, “Edge Al: A taxonomy,
systematic review and future directions,” Cluster Computing,
Vol.28, No.1, pp.1-53, 2025. DOI: 10.1007/s10586-024-04057-9.

[14] E. Kakoulli, “Latest Innovations in Intelligent Network-on-Chip
Architectures: A Systematic Review,” 2024 17th IEEE/ACM
International Workshop on Network on Chip Architectures
(NoCArc), IEEE, Nov., pp.1-6, 2024.

[15] Wang, H., Tang, Z., Zhang, C., Zhao, J., Cummins, C., Leather, H.,
& Wang, Z., “Automating Reinforcement Learning Architecture
Design for Code Optimization,” in Proceedings of the 31st ACM
SIGPLAN International Conference on Compiler Construction,
Mar., pp.129-143, 2022.

[16] Mammadli, R., Jannesari, A., & Wolf, F., “Static Neural Compiler
Optimization via Deep Reinforcement Learning,” in 2020
IEEE/ACM 6th Workshop on the LLVM Compiler Infrastructure in
HPC (LLVM-HPC) and Workshop on Hierarchical Parallelism for
Exascale Computing (HiPar), Nov., pp.1-11, 2020.

[17] D. Alsadie, “A comprehensive review of Al techniques for
resource management in fog computing: Trends, challenges and
future directions,” IEEE Access, 2024. DOI:
10.1109/ACCESS.2024.3284783.

[18] V. Shankar, “Edge Al: A Comprehensive Survey of Technologies,
Applications, and Challenges,” 2024 1st International Conference
on Advanced Computing and Emerging Technologies (ACET),
IEEE, Ghaziabad, India, pp.1-6, 2024. DOl
10.1109/ACET61898.2024.10730112.

[19] Ashouri, A. H., Manzoor, M. A., Vu, D. M., Zhang, R., Wang, Z.,
Zhang, A., ... & Gao, Y., “ACPO: Al-Enabled Compiler-Driven
Program Optimization,” arXiv preprint arXiv:2312.09982, 2023.

[20] V. Shankar, M. M. Deshpande, N. Chaitra, and S. Aditi,
“Automatic detection of acute lymphoblastic leukemia using image
processing,” 2016 IEEE International Conference on Advances in
Computer Applications (ICACA), IEEE, Coimbatore, India, pp.186-
189, 2016. DOI: 10.1109/ICACA.2016.7887948.

[21] Zhu, S., Yu, T., Xu, T., Chen, H., Dustdar, S., Gigan, S., ... & Pan,
Y., “Intelligent Computing: The Latest Advances, Challenges, and
Future,” Intelligent Computing, Vol.2, pp.0006, 2023.

AUTHORS PROFILE

Vasuki Shankar earned his Bachelor of
Engineering (B.E) in Electronics and
Communication Engineering from
Visvesvaraya Technological University {
(VTU), Karnataka, and his Master of
Science in Computer Engineering from :
the University of Texas at Dallas in 2015 < #
and 2022, respectively. Vasuki is & & AV F
currently a Senior Software

5. .

Engineer at NVIDIA
Corporation, bringing over a decade of experience in system
software development. Throughout his career, he has been an
active user of the Linux kernel, specializing in operating
system design, computer architecture, chip security, and chip
bring-up. His expertise has been shaped through roles at
leading technology firms, including Qualcomm and Samsung
Semiconductor. His research interests include the application
of Atrtificial Intelligence and Machine Learning in computer
architecture, operating systems, and Edge Al.

77

