
© 2025, IJCSE All Rights Reserved 56

International Journal of Computer Sciences and Engineering
Vol.13, Issue.3, pp.56-64, March 2025

ISSN: 2347-2693 (Online)

Available online at: www.ijcseonline.org

Review Article

Machine Learning for Linux Kernel Optimization: Current Trends and

Future Directions

Vasuki Shankar
1

1Nvidia Corporation, Bengaluru, Karnataka, India

Corresponding Author: ✉

Received: 20/Jan/2025; Accepted: 22/Feb/2025; Published: 31/Mar/2025. DOI: https://doi.org/10.26438/ijcse/v13i3.5664

Copyright © 2025 by author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited & its authors credited.

Abstract: The integration of Machine Learning into Linux Kernel optimization has revolutionized system performance by

enabling dynamic resource allocation, adaptive scheduling, and intelligent power management. This paper explores current

trends and future directions in machine learning driven kernel optimization, highlighting key applications such as reinforcement

learning for CPU scheduling, predictive memory management, and ML-based congestion control in networking. We analyse the

advantages of ML over traditional rule-based methods, demonstrating how data-driven optimization enhances efficiency and

responsiveness. However, challenges such as interpretability, real-time constraints, and computational overhead pose significant

barriers to widespread adoption. To address these, we discuss emerging solutions, including Explainable AI (XAI), federated

learning for privacy-preserving model training, and AutoML for automated performance tuning. This study provides a

comprehensive review of machine learning’s role in optimizing the Linux Kernel and outlines future research directions to

maximize its potential in next-generation operating systems.

Keywords: Linux Kernel Optimization, Machine Learning in Operating Systems, Reinforcement Learning for CPU

Scheduling, Memory Management using ML, Predictive Congestion Control, Explainable AI (XAI) in Kernel Optimization.

1. Introduction

The Linux Kernel serves as the central part of the Linux

operating system, overseeing hardware resource management,

process scheduling, and memory handling, and ensuring

system security. It is an open-source, modular, and

monolithic kernel that provides flexibility and performance

across a range of computing environments, including servers,

embedded systems, and supercomputers. Continuous research

and development efforts focus on optimizing the kernel to

enhance system efficiency.

However, kernel optimization is a challenging problem due to

the complexity of modern computing workloads and the need

for efficient resource allocation. Traditional optimization

techniques, such as static tuning, heuristics, and rule-based

approaches, are effective only when the data remains static.

Kernel optimization presents several key challenges,

including process scheduling, memory management, power

efficiency, I/O performance, and maintaining security while

ensuring good system performance. Memory management

involves paging, swapping, and optimizing cache usage to

minimize overhead, while process scheduling focuses on

efficiently allocating CPU time to different tasks to reduce

latency. Power efficiency is another crucial factor,

particularly for mobile and edge computing, where energy

consumption must be minimized without compromising

performance. Additionally, disk and network transactions

should not become bottlenecks, necessitating optimized I/O

operations. Kernel optimization is further complicated by the

need to implement security and stability patches without

degrading overall system performance.

Since these challenges are too complex for manual

optimization, Machine Learning (ML) presents a promising

approach for automating decision-making, predicting

workload behavior, and dynamically adjusting system

parameters. Unlike traditional techniques, ML-based

approaches utilize live system telemetry data for continuous

and adaptive kernel tuning. Reinforcement learning can be

applied to CPU scheduling and power management to predict

optimal task allocation, while supervised learning aids in

performance monitoring and anomaly detection in system

operations. Unsupervised learning techniques help cluster

workload patterns, improving predictive memory

management.

mailto:vasukishankar13@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0001-3094-7161

International Journal of Computer Sciences and Engineering Vol.13(3), Mar. 2025

© 2025, IJCSE All Rights Reserved 57

Integrating ML into the Linux Kernel enhances efficiency,

reduces latency, and improves system adaptability. This

report explores current trends and future directions for ML-

driven Linux Kernel optimization. It provides an in-depth

review of existing ML applications in areas such as CPU

scheduling, memory management, power optimization, and

networking. Additionally, it discusses the challenges and

limitations of ML-based optimization techniques and

examines future research directions, including Explainable

AI, AutoML, and federated learning in distributed systems.

Figure 1. Architecture of Linux Kernel I/O Stack

The paper is structured as follows; Section 1 introduces the

use of machine learning in Linux kernel optimization. Section

2 contains the background and literature survey of the current

state of the art, while Section 3 outlines the methodology

involved, and Section 4 presents the challenges and

limitations, followed by Section 5, where we discuss the

future directions and emerging trends. Section 6 concludes

the paper with conclusion and future scope.

2. Background and Literature Review

2.1 Overview of Linux Kernel Optimization

The Linux Kernel is the fundamental component of the Linux

operating system, tasked with overseeing resources like CPU

scheduling, memory allocation, disk I/O, and networking, as

described in figure-1. Kernel optimization plays a crucial role

in enhancing system performance, reducing latency, and

improving power efficiency [1]. An optimized Linux Kernel

is characterized by several key performance metrics,

including boot time, scheduling efficiency, memory

management effectiveness, power consumption, and I/O

throughput. Reducing startup delay in boot time optimization

is particularly essential in embedded systems and cloud

environments, where rapid deployment is required.

Another critical aspect is scheduling efficiency, ensuring that

processes receive optimal CPU allocation to maintain fairness

and responsiveness. Memory management strategies focus on

minimizing page faults, optimizing cache usage, and handling

virtual memory effectively [2]. Since mobile and edge

computing systems must guarantee performance without

increasing energy consumption, power efficiency has become

increasingly important. Finally, among these metrics, I/O

performance significantly impacts data access speeds and

overall system responsiveness.

Improving the Linux kernel enhances latency, power

efficiency, and overall system performance. Boot time,

scheduling efficiency, memory management effectiveness,

power consumption, and I/O throughput are key performance

metrics. Slow boot time negatively impacts embedded system

performance and cloud environments [3]. Effective

scheduling ensures optimal CPU resource allocation, fairness,

and responsiveness. Robust memory management minimizes

page faults and optimizes cache usage. Mobile and edge

computing systems must be power-efficient to conserve

energy without sacrificing performance. Additionally, data

access speeds and overall system responsiveness are closely

tied to I/O performance.

In the past, Linux Kernel optimization relied on static tuning,

heuristics, and rule-based approaches. The Completely Fair

Scheduler (CFS) is a very widely used process scheduler,

balancing workloads based on predefined heuristics.

Similarly, in memory management, techniques such as Least

Recently Used (LRU) caching and swap space allocation are

commonly employed for RAM utilization [4]. Manual tuning

of kernel parameters (e.g., sysctl variables) is possible and

can enhance performance for specific workloads.

Traditionally, power optimization has been implemented

through Dynamic Voltage and Frequency Scaling (DVFS),

which dynamically modifies processor speed and voltage as a

response to workload requirements. While these traditional

techniques are effective, they lack adaptability to dynamic

environments.

However, manual tuning is impractical for large-scale,

heterogeneous systems with continuously changing

workloads [4]. This constraint has driven the adoption of

machine learning-based techniques, enabling adaptive and

automated kernel optimization. Table-1 compares the

traditional Linux kernel optimization approaches to machine

learning based optimization approaches.

2.2 Machine Learning for System Optimization

Machine learning-based system performance tuning has

become an adaptive and data-driven optimization technique

that enhances the efficiency of Linux Kernel operations. ML

models can leverage large-scale telemetry data to predict

system behavior, enabling dynamic adjustment of system

parameters and automating decision-making processes that

would otherwise require manual intervention. System

International Journal of Computer Sciences and Engineering Vol.13(3), Mar. 2025

© 2025, IJCSE All Rights Reserved 58

performance is significantly improved when ML is applied to

CPU scheduling, memory management, power efficiency,

network optimization, and other areas [5]. A key distinction

between ML-based techniques and traditional approaches lies

in their adaptability—while traditional solutions rely on

predetermined algorithms and static configurations, ML-

based techniques can adapt on the fly, leading to more

efficient resource utilization.

Table 1. Comparison of Traditional vs. ML-Based Optimization Approaches

Optimization

Area

Traditional

Approach

ML-Based Approach

CPU Scheduling Predefined heuristics

(CFS, FIFO, RR)

Reinforcement learning

for dynamic scheduling

Memory

Management

LRU, swap space

allocation

Predictive memory

management using ML

models

Power

Management

Static governor

settings, DVFS

ML-driven adaptive

power scaling

I/O Optimization Manual buffer

tuning, fixed

priorities

AI-driven dynamic disk

and network

optimizations

Linux Kernel optimization with Machine Learning (ML) is

described in figure-2. This is achieved by embedding the

models that run on the system telemetry data to derive a

workload behavior prediction and adapt parameters

dynamically. It provides better CPU scheduling, memory

management, power efficiency, as well as network

optimization [6]. As shown in the diagram that accompanies

this, the iterative process of training and evaluating an ML

model and refining the result for optimal kernel performance.

Figure 2. Machine Learning Model Optimization Process

Various examples of supervised, reinforcement, and

unsupervised learning have been applied in Linux Kernel

optimization techniques. Supervised learning is often used in

combination with unsupervised learning for these tasks.

Predictive models trained on historical performance data

detect patterns that may lead to resource contention, allowing

for proactive optimization. Decision trees and neural

networks are used to classify and predict system anomalies

[7]. Disk I/O optimization is also performed using supervised

learning, where regression models predict optimal prefetching

strategies to reduce data retrieval time.

Figure 3. Large-scale cluster management at Google with Borg

Reinforcement learning (RL) has gained significant attention

for dynamic resource allocation and CPU scheduling. Unlike

supervised learning, RL does not depend on a predefined

dataset; rather, it learns through trial and error by interacting

with the environment and receiving feedback. RL-based

schedulers enable dynamic CPU resource allocation by

continuously adjusting scheduling policies based on workload

feedback. RL-based optimization techniques, such as those

used in Google’s Borg Cluster Scheduler as described in

figure-3, optimize GPU utilization and job completion times.

Similarly, RL is applied in power management, where ML

models adjust processor frequency and power states to

balance performance with energy consumption.

The Google Borg Cluster Scheduler, which uses

reinforcement learning to dynamically allocate CPU

resources, is illustrated in the accompanying diagram. The

BorgMaster processes resource distribution across multiple

machines to allocate resources efficiently, maximizing CPU

utilization and job completion times by assessing tasks and

adjusting policies as needed.

Workload classification and predictive memory management

are key areas where unsupervised learning is applied [8].

Algorithms like K-means and DBSCAN cluster workloads

are based on resource usage patterns, enabling better memory

allocation and caching strategies. For example, ML models

can optimize page replacement policies to reduce cache

International Journal of Computer Sciences and Engineering Vol.13(3), Mar. 2025

© 2025, IJCSE All Rights Reserved 59

misses by identifying workloads with similar memory access

patterns. In security-focused kernel optimization,

autoencoders have also been employed to detect anomalous

activities that deviate from normal system behavior.

As an unsupervised learning approach, the accompanying

diagram illustrates workload classification and predictive

memory management. These clustering algorithms categorize

workloads by their resource usage patterns, enabling

optimization for memory allocation and reducing cache

misses. The performance benefits of integrating ML in Linux

Kernel optimization have been clearly demonstrated.

However, challenges persist. ML models incur computational

overhead, require real-time inference capabilities, and the

decisions made by ML processes, especially those outside the

kernel context, need to be interpretable [9]. Despite these

challenges, ML-based optimization techniques are still being

actively researched to explore ways to streamline the models,

enhancing their efficiency for kernel-level decision-making.

Future advancements, such as Explainable AI (XAI), and

AutoML, will continue to drive the adoption of ML-driven

optimization in the Linux Kernel.

Table 2. Key Machine Learning Techniques for Linux Kernel Optimization

ML

Techniques

Application in

Linux Kernel

Optimization

Advantages Challenges

Supervised

Learning

Performance

monitoring,

anomaly

detection, disk

I/O

optimization

High

accuracy in

detecting

patterns,

effective for

predictive

modelling

Requires large,

labelled

datasets,

potential

overfitting

Reinforcemen

t Learning

(RL)

Dynamic CPU

scheduling,

power

management,

resource

allocation

Adapts to

changing

workloads,

optimizes

system

performance

over time

High

computational

cost, slow

convergence in

complex

scenarios

Unsupervised

Learning

Workload

classification,

predictive

memory

management,

anomaly

detection

Does not

require

labelled

data, useful

for detecting

unknown

patterns

May produce

less

interpretable

results, requires

extensive

tuning

AutoML Automated

kernel

parameter

tuning,

hyperparamete

r optimization

Reduces

manual

intervention,

optimizes

ML models

efficiently

High resource

demand,

complex

implementation

Federated

Learning

Distributed

system

optimization,

cross-device

Improves

privacy,

allows

decentralize

Communicatio

n overhead,

requires secure

aggregation

learning d model

training

Explainable

AI (XAI)

Debugging

ML-based

kernel

optimization,

improving

transparency

Enhances

trust in ML

decisions,

aids in

debugging

Limited

adoption,

increased

complexity in

model design

3. Machine Learning applications in Linux

Kernel optimization

3.1 Machine Learning for CPU Scheduling

CPU scheduling is a crucial module of the Linux Kernel,

responsible for scheduling process execution and utilizing the

CPU efficiently [10]. Traditional scheduling methods, such as

the Completely Fair Scheduler (CFS), First-Come-First-Serve

(FCFS), and Round Robin (RR), rely on predetermined rules

of thumb, which may lack the flexibility needed to meet the

demands of dynamic systems. Machine learning has proven

to be valuable in enhancing conventional CPU scheduling by

enabling dynamic and workload-based scheduling, among

other improvements.

Machine learning-based CPU schedulers are described in

figure-4, leverage historical performance data and real-time

telemetry to predict workload behavior and dynamically

adjust scheduling policies. Supervised learning models, such

as neural networks and decision trees can be trained to

classify resource demands, enabling more efficient CPU

allocation [11]. Reinforcement learning (RL)-based

schedulers continuously modify scheduling decisions through

trial and error to optimize task prioritization based on system

performance. For instance, RL can be used to dynamically

allocate CPU resources to time-sensitive tasks, reducing

latency in real-time applications. A prominent example of

ML-based scheduling is the Google Borg Cluster Scheduler,

which uses reinforcement learning to maximize CPU

utilization for thousands of jobs. Similarly, Facebook has

explored deep learning-based scheduling to improve task

efficiency in large-scale data centers [12]. Furthermore,

gradient-boosted models and neural networks have shown

superior scheduling efficiency compared to traditional

heuristics, as demonstrated by various studies. Table-2

summaries key machine learning techniques employed for

Linux kernel optimization.

By incorporating ML techniques, CPU scheduling becomes

adaptive, predictive, and workload-aware, resulting in higher

efficiency, lower processing delays, and reduced power

consumption. Future advancements in explainable AI (XAI)

and AutoML will make ML-based CPU scheduling more

transparent and scalable within the Linux kernel environment.

International Journal of Computer Sciences and Engineering Vol.13(3), Mar. 2025

© 2025, IJCSE All Rights Reserved 60

Figure 4. Flowchart illustrating an ML-based CPU scheduler in action.

3.2 Machine Learning in Memory Management

One fundamental aspect of Linux Kernel optimization is

memory management, which ensures that system memory is

efficiently allocated to processes and that performance

bottlenecks are minimized. Traditional memory management

techniques, such as LRU page replacement, swap space

allocation, and fixed cache management policies, often rely

on predefined heuristics that may not work well across

diverse workloads [13]. Memory management using machine

learning (ML) addresses this challenge by dynamically

predicting memory usage and optimizing page replacement

policies tailored to the specific memory needs of a program.

While ML-based approaches may risk the loss of locality in

page replacement, they provide the flexibility to adapt and

optimize memory management based on real-time data,

offering improved efficiency for various workloads.

3.2.1 Predicting Memory Demand
Historical memory usage can be analyzed by ML models,

which can then predict future memory demand, enabling

proactive allocation and deallocation of memory resources.

To forecast memory consumption, an increasing number of

supervised learning algorithms, such as regression models

and neural networks, have been applied to system telemetry

data [13]. The Linux Kernel can use these predictions to pre-

allocate resources, allowing it to perform memory

management tasks preemptively, reducing latency and

avoiding memory exhaustion in high-demand scenarios.

3.2.2 Machine Learning Enhanced Page Replacement

Policies

Memory management, being memory-limited, aims to

prevent memory overflow. It is a crucial process that decides

which page to swap out from memory to make room for the

incoming page when physical memory is full. Traditional

methods such as LRU (Least Recently Used) and FIFO (First-

In-First-Out) operate based on predefined rules, which may

result in inefficient memory utilization. In contrast, ML-based

approaches, such as reinforcement learning and deep learning

models, can learn the most effective page replacement

strategies by analyzing access patterns and predicting which

pages are least likely to be accessed again [14]. While

eviction policies in computer cache traditionally follow the

least recently used policies, Google’s DeepRM and other

machine learning-based eviction algorithms have shown

greater improvements in cache hit rates and increased system

performance.

Table 3: ML-Based Memory Management vs. Traditional Methods

Aspect Traditional Methods

(LRU, FIFO, etc.)

ML-Based Methods

Page

Replacement

Static rules (LRU,

FIFO)

Adaptive learning-

based predictions

Memory

Demand

Prediction

Manual tuning,

heuristics

Regression models,

neural networks

Performance Limited adaptability Optimized based on

workload patterns

Scalability Requires manual

adjustments

Autonomous and self-

optimizing

Memory management based on machine learning offers

efficiency, flexibility, and predictive control, making it highly

useful for Linux kernel optimization. A subsequent step in

research is to integrate Explainable AI (XAI) into memory

optimization methods using federated learning.

3.3 Machine Learning for Power Management and

Energy Efficiency

In modern computing systems, power management is critical

for efficiency, as it directly impacts the performance and cost

of mobile devices, edge computing, and data centers.

Traditionally, the Linux Kernel has used static power

management techniques, such as CPU scaling based on

governors and predefined power states, which cannot adapt to

varying workloads. Machine learning (ML) introduces an

additional layer of adaptability, enabling real-time

adjustments to the system’s power management to maximize

energy efficiency without compromising system performance.

3.3.1 Adaptive Power Scaling

Dynamic analysis of ML models based on CPU usage,

workload demand, and environmental conditions can enable

adaptive power scaling strategies. Supervised learning

algorithms, such as neural networks and decision trees, can

predict workload intensity and control the system's power

state accordingly [15]. For example, Google’s ML-based

power management in data centers monitors power

consumption and forecasts peak usage times, allowing them

to scale down non-essential processes ahead of time.

Reinforcement learning (RL)-based approaches have also

been utilized for autonomously balancing power consumption

and performance in heterogeneous computing environments.

3.3.2 Machine Learning Based Dynamic Voltage and

Frequency Scaling (DVFS)

Dynamic Voltage and Frequency Scaling (DVFS) is a key

mechanism for real-time processor voltage and frequency

adjustment based on processing requirements. Traditional

DVFS implementations rely on predefined rules, such as on-

demand and performance governors, which may not achieve

the best balance of power and efficiency across varying

workloads [12]. The power of DVFS is enhanced through ML

models implemented using reinforcement learning and

International Journal of Computer Sciences and Engineering Vol.13(3), Mar. 2025

© 2025, IJCSE All Rights Reserved 61

regression techniques to determine optimal voltage and

frequency settings in real time. By learning from historical

data, these models adjust the system dynamically to reduce

energy consumption without compromising processing speed,

leading to significant improvements in battery life and system

sustainability.

ML-based power management ensures energy efficiency by

intelligently adjusting system power parameters to minimize

thermal output, resulting in longer battery life and reduced

operational costs. Future advancements, such as federated

learning and lightweight models, will further refine real-time

energy optimization for Linux-based systems.

3.3.3 Machine Learning in Network Stack Optimization

The network plays a crucial role in achieving the high-

bandwidth, low-latency requirements in modern computing

systems. The Linux Kernel uses TCP Cubic and BBR

congestion control algorithms, along with statically defined

packet scheduling. However, these approaches may not

optimize well in dynamic networks, potentially leading to

bottlenecks and inefficient bandwidth usage [14]. Machine

learning can be applied to areas such as congestion control

and packet scheduling, enabling predictive control and

allowing flexibility in real-time conditions.

3.3.4 Predictive Congestion Control

ML models can predict network congestion by forecasting

when congestion is likely to occur, allowing proactive

measures to be taken before packet loss and latency become

significant issues. Traditional learning techniques, like

regression and neural networks, use current network traffic

data to predict congestion levels and suggest appropriate

measures to mitigate it [15]. One example is Google’s QUIC

congestion control, which uses reinforcement learning (RL)

to adapt the congestion control window size, improving

network performance in fluctuating traffic conditions.

A machine learning-based congestion control model in

5G/6G networks is depicted by Fig.6. It presents how hybrid

deep learning techniques predict and control network

congestion and make proactive adjustments to lower packet

loss and latency.

3.3.5 Machine Learning based packet scheduling
Traditional packet scheduling algorithms, such as FIFO and

Weighted Fair Queueing (WFQ), implement fixed rules that

may not be optimal for efficient resource allocation. Machine

learning-driven packet schedulers, using reinforcement

learning and clustering algorithms, prioritize high-priority

packets, reduce queueing delays, and effectively balance

traffic flow [15]. These ML-based approaches provide

intelligent scheduling mechanisms that improve data flow,

reduce jitters, and enhance overall network performance.

By integrating ML for noise cancellation into network stack

optimization, Linux-based systems can support greater

adaptability, lower latency, and increased efficiency, making

them well-suited for today’s high-speed network

environments.

4. Challenges and Limitations

While Machine Learning (ML) offers significant advantages

for Linux kernel optimization—such as improved

performance, adaptive resource management, and energy

efficiency, there are several challenges and limitations that

hinder its wider adoption, as summarized in table-3. These

challenges primarily involve data collection and privacy

concerns, interpretability of ML models, real-time constraints

in kernel operations, and the computational overhead

associated with ML implementation [16]. To ensure the

effectiveness and viability of ML-driven Linux Kernel

optimization, these issues must be addressed.

4.1 Data Collection and Privacy Concerns
ML models need large amounts of data for training, tuning,

and continuous learning. On the Linux Kernel, telemetry data

such as CPU usage statistics, memory access patterns, I/O

operations, network traffic, and power consumption is

essential for training accurate models. However, this data

collection raises privacy and security concerns. External

entities could potentially access sensitive system data,

including user activity logs, which could lead to privacy and

security violations [16]. Additionally, the real-time collection

of telemetry data from a large number of systems increases

storage requirements, particularly for cloud-based

infrastructure. Since sensitive data cannot be centralized,

federated learning presents a potential solution for training

ML models across multiple devices. However, federated

learning introduces challenges of high communication costs

and synchronization issues when applied to Linux Kernel

optimization [17].

4.2 Interpretability of ML Models in Kernel Optimization
A major obstacle in applying ML to Linux Kernel

optimization is the "black-box" nature of many ML models,

especially deep learning-based approaches. Unlike rule-based

systems, ML models, particularly complex neural networks

and ensemble models, lack transparency in their decision-

making processes [17]. This lack of explainability can hinder

the debugging of performance issues, validation against

security protocols, and assurances of system reliability.

Explainable AI (XAI) techniques alleviate this by creating

human-interpretable explanations of ML decisions. While

XAI techniques are still in the early stages of development,

they do not yet fully address the need for real-time

interpretability in kernel-level decision-making. Future

research in interpretable ML for system-level optimization is

crucial to enhancing the credibility and transparency of ML-

driven enhancements in the Linux Kernel.

4.3 Real-Time Constraints in Kernel Operations

The Linux Kernel operates under strict real-time constraints,

meaning that even minor delays in process scheduling,

memory allocation, or network communication can

significantly affect system stability. Traditional ML models,

particularly deep learning-based approaches, often require

substantial computation and inference time, which can lead to

latency in critical kernel functions. For instance, an ML-based

CPU scheduler must make decisions within microseconds, as

International Journal of Computer Sciences and Engineering Vol.13(3), Mar. 2025

© 2025, IJCSE All Rights Reserved 62

delays can result in performance degradation for real-time

applications [18]. To address this challenge, lightweight ML

models, feature selection techniques, and quantized neural

networks are being explored to reduce inference latency.

Additionally, there is growing interest in integrating

specialized hardware accelerators, such as TPUs and FPGAs,

to handle kernel-level ML processing and achieve real-time

performance.

4.4 Computational Overhead

The continuous data collection, model inference, and

adjustment of parameters required for ML-driven kernel

optimization introduce significant computational overhead.

Traditional Linux Kernel components are designed to be

highly efficient, with minimal resource consumption. In

contrast, deep learning-based ML models often demand

substantial CPU and GPU resources, which can negatively

impact system performance, especially on resource-

constrained devices like IoT and embedded systems [20].

Moreover, the need for frequent retraining of ML models to

adapt to changing workloads further increases computational

complexity. To address this, solutions such as AutoML can

automate hyperparameter tuning and model selection,

minimizing the manual effort required. Additionally,

lightweight ML models, edge inference techniques, and ML

acceleration at the edge can help make ML-driven

optimization viable for low-power systems.

Table 4. Challenges of ML in Linux Kernel Optimization and Possible

Solutions

Challenge Description Possible Solution

Data Collection

and Privacy

Large-scale telemetry

data collection

introduces privacy

and security risks.

Federated learning,

decentralized ML

training, encryption of

kernel telemetry data.

Interpretability

of ML Models

ML models operate

as black boxes,

making debugging

and validation

difficult.

Explainable AI (XAI),

interpretable ML

techniques, transparent

decision-making

models.

Real-Time

Constraints

ML model inference

time may introduce

latency in time-

sensitive kernel

operations.

Lightweight ML

models, optimized

feature selection,

hardware accelerators

(TPUs, FPGAs).

Computational

Overhead

ML models require

extensive CPU/GPU

resources, increasing

system load.

AutoML, edge

inference, quantized

neural networks,

optimized ML

architectures.

Regardless of these challenges, research and development of

lightweight ML models, AutoML, federated learning, and

XAI anticipated to make Linux Kernel optimization using

ML more efficient and scalable.

5. Future Directions and Emerging Trends

There is ongoing research to address the challenges of

Machine Learning (ML)-driven Linux Kernel optimization,

particularly in areas such as model interpretability,

computational overhead, and real-time execution [16]. In

response, emerging trends like Explainable AI (XAI), Edge

Computing, Federated Learning, and AutoML are becoming

pivotal. These advancements aim to make ML-based

optimizations more transparent, scalable, and efficient for the

modern computing environment.

5.1 Explainable AI (XAI) for Kernel Optimization

One of the most significant challenges when applying ML to

Linux Kernel optimization is the lack of interpretability of the

models. Deep learning models, reinforcement learning

schedulers, and other ML-driven optimizations often function

as black-box systems, complicating debugging, or validating

its decision-making mechanisms. Explainable AI (XAI) seeks

to alleviate this by providing interpretable insights into how

ML models make decisions during system-level optimization

[18].

In real-time scenarios, XAI techniques such as Local

Interpretable Model Agnostic Explanations (LIME), Shapley

Additive Explanations (SHAP), and attention-based neural

networks can be used to explain model outputs. By

integrating XAI into Linux Kernel optimization, developers

gain greater transparency in areas such as scheduling,

memory management, and power efficiency models. This

ensures that ML-driven optimizations not only meet system

requirements but also comply with security constraints.

5.2 Edge Computing and ML-Driven Lightweight Kernel

Tuning

With the continuous growth of IoT devices, 5G networks, and

real-time edge applications, ML-based Linux Kernel

optimizations must be lightweight and efficient. Traditional

ML models, however, are resource-intensive, making them

impractical for low-power edge devices. The future focus will

be on optimizing ML models specifically for edge devices

[18]. On constrained hardware, ML-driven kernel tuning can

be performed with minimal overhead using techniques such

as TinyML, quantized neural networks, and model pruning.

Additionally, lightweight power-aware ML algorithms will

play a critical role in energy-efficient co-design for edge

servers and IoT devices/platforms, enhancing performance,

reducing latencies, and enabling real-time adaptability in

Linux-based edge computing environments [19].

5.3 Federated Learning for Distributed Kernel

Optimization

As Linux Kernel optimization extends to cloud and

distributed computing infrastructures, Federated Learning

(FL) is poised to be an attractive alternative for optimizing

systems without centralizing sensitive data. Federated

learning allows multiple devices or systems to collectively

train machine learning models without directly sharing their

raw data, while addressing security, and data sovereignty

concerns [20]. This approach is particularly well-suited for

International Journal of Computer Sciences and Engineering Vol.13(3), Mar. 2025

© 2025, IJCSE All Rights Reserved 63

kernel telemetry analysis, adaptive scheduling, and security

anomaly detection in distributed Linux systems. Future

advancements in FL will focus on reducing communication

overhead, improving model aggregation compression

efficiency, and ensuring the security of federated model

updates. This approach brings federated learning into Linux

Kernel optimization, enabling scalable and privacy-

preserving machine learning across diverse computing

environments.

Figure 5. Trend Analysis of ML Adoption in System/Kernel Optimization

Machine Learning (ML) deployment has become more

accessible, with the complexity of tasks like model selection,

hyperparameter tuning, and feature engineering being

simplified by Automated Machine Learning (AutoML).

AutoML can be particularly useful in automatically tuning

kernel parameters to enhance performance in Linux Kernel

optimization, based on the specific characteristics of the

workload, requiring minimal human intervention [21]. Future

Linux Kernel implementations could leverage AutoML

techniques such as neural architecture search (NAS),

Bayesian optimization, and reinforcement learning for self-

tuning system parameters. This means developers will be able

to define adaptive, self-optimizing kernels that adjust

scheduling policies, memory management rules, and power-

saving mechanisms according to real-time workload

demands.

The trends in Explainable AI, Edge Computing, Federated

Learning, and AutoML point towards a broader movement

towards intelligent, autonomous, and privacy-preserving

kernel optimization. The projected growth of these

technologies over the next decade will likely have a

significant impact on Linux Kernel development and system

performance. These innovations are set to pave the way for

next-generation computing architectures, which will

seamlessly integrate adaptive learning models into system-

level applications, making them more transparent, efficient,

and scalable.

6. Conclusion and Future Scope

Integrating Machine Learning (ML) into Linux Kernel

optimization holds great promise for enhancing system

performance, resource management, and energy efficiency.

ML-driven approaches have shown the ability to dynamically

adjust kernel parameters, leading to improvements in CPU

scheduling, memory management, and network throughput.

For instance, algorithms like Bayesian optimization have

outperformed traditional manual tuning methods, boosting

performance by over 74%.

However, these advances come with challenges. A key issue

is that many ML models are considered “black boxes,” which

makes it difficult for developers to trust and understand the

automated decisions being made. Additionally, real-time ML

inference often incurs high computational overhead. Another

concern is data privacy, as large amounts of telemetry data

must be collected and processed for model training.

To address these challenges, future work should focus on

developing Explainable AI (XAI) techniques for kernel

operations. Kernel functions are currently opaque and hard to

interpret, so making them more transparent will increase trust

in automated decisions. Additionally, leveraging lightweight

ML models, such as TinyML, could help mitigate

computational overhead. Federated learning frameworks can

also address data privacy concerns by enabling decentralized

model training instead of collecting sensitive data centrally.

Moreover, Automated Machine Learning (AutoML) can

streamline the ML integration process by automating

hyperparameter tuning and model selection, making it more

accessible to kernel developers. The adoption of ML-based

optimization by Linux developers requires a paradigm shift

from traditional data-driven decision-making to data-driven

optimization. To improve system behavior, ML frameworks

need to be integrated into the kernel development lifecycle.

However, it's crucial to maintain a balance between

automation and control. ML models should remain

interpretable, and their actions must align with system

requirements and security policies.

Collaboration with the ML research community will provide

valuable insights and tools for creating robust, ML-enhanced

kernel components. While ML offers significant potential for

optimizing the Linux Kernel, attention must be given to

issues like interpretability, computational efficiency, and data

privacy. Through targeted research and development, the

Linux community can harness the full potential of ML to

build more responsive, efficient, and intelligent operating

systems.

Data Availability

None.

Conflict of Interest

Authors declare that they do not have any conflict of interest.

Funding Source

None

Author’s Contributions

Mr. Vasuki Shankar is the main author of this paper.

Acknowledgements

None

International Journal of Computer Sciences and Engineering Vol.13(3), Mar. 2025

© 2025, IJCSE All Rights Reserved 64

References

[1] H. Fingler, I. Tarte, H. Yu, A. Szekely, B. Hu, A. Akella, and C. J.

Rossbach, "Towards a Machine Learning-Assisted Kernel with

LAKE," in Proc. 28th ACM Int. Conf. Architectural Support for

Programming Languages and Operating Systems, pp.846-861,

2023.
[2] H. Malallah, S. R. Zeebaree, R. R. Zebari, M. A. Sadeeq, Z. S.

Ageed, I. M. Ibrahim, H. M. Yasin, and K. J. Merceedi, "A

comprehensive study of kernel (issues and concepts) in different

operating systems," Asian Journal of Research in Computer

Science, Vol.8, No.3, pp.16-31, 2021.

[3] S. Krishnapriya and Y. Karuna, "A survey of deep learning for

MRI brain tumor segmentation methods: Trends, challenges, and

future directions," Health and Technology, Vol.13, No.2, pp.181-

201, 2023.
[4] H. Lee, S. Jung, and H. Jo, "STUN: reinforcement-learning-based

optimization of kernel scheduler parameters for static workload

performance," Applied Sciences, Vol.12, No.14, pp.7072, 2022.

[5] H. Martin, M. Acher, J. A. Pereira, L. Lesoil, J.-M. Jézéquel, and

D. E. Khelladi, "Transfer learning across variants and versions: The

case of linux kernel size," IEEE Trans. Software Eng., Vol.48,

No.11, pp.4274-4290, 2021.

[6] A. Hayat, "A Load-Balanced Task Scheduler for Heterogeneous

Systems based on Machine Learning," M.S. thesis, CAPITAL

UNIVERSITY, 2021.

[7] D. Singh, V. Bhalla, and N. Garg, "Load balancing algorithms with

the application of machine learning: a review," MR Int. J. Eng.

Technol., Vol.10, No.1, 2023.

[8] T. A. Rahmani, F. Daham, G. Belalem, and S. A. Mahmoudi,

"HBalancer: A machine learning based load balancer in real time

CPU-GPU heterogeneous systems," in Proc. 2022 Int. Conf.

Innovation and Intelligence for Informatics, Computing, and

Technologies (3ICT), IEEE, pp.674-679, 2022.

[9] Y. Qiu, H. Liu, T. Anderson, Y. Lin, and A. Chen, "Toward

reconfigurable kernel datapaths with learned optimizations," in

Proc. Workshop on Hot Topics in Operating Systems, pp.175-182,

2021.

[10] R. Mosaner, D. Leopoldseder, W. Kisling, L. Stadler, and H.

Mössenböck, "Machine-Learning-Based Self-Optimizing Compiler

Heuristics," in Proc. 19th Int. Conf. Managed Programming

Languages and Runtimes, pp.98-111, 2022.

[11] Y. Kojima, R. Kazama, H. Abe, and C. Lee, "RNN-based

Congestion Control in the Linux Kernel," in Proc. 2024 Twelfth

Int. Symp. Computing and Networking Workshops (CANDARW),

IEEE, pp.130-136, 2024.

[12] H. Qiu, W. Mao, C. W. H. Franke, Z. T. Kalbarczyk, T. Basar, and

R. K. Iyer, "On the promise and challenges of foundation models

for learning-based cloud systems management," in Workshop on

Machine Learning for Systems at NeurIPS, Dec. 2023.

[13] S. Bian, C. Li, Y. Fu, Y. Ren, T. Wu, G. P. Li, and B. Li, "Machine

learning-based real-time monitoring system for smart connected

worker to improve energy efficiency," J. Manuf. Syst., Vol.61,

pp.66-76, 2021.

[14] I. U. Akgun, A. S. Aydin, A. Shaikh, L. Velikov, and E. Zadok, "A

machine learning framework to improve storage system

performance," in Proc. 13th ACM Workshop on Hot Topics in

Storage and File Systems , pp.94-102, 2021.

[15] V. K. Rayi, S. P. Mishra, J. Naik, and P. K. Dash, "Adaptive VMD

based optimized deep learning mixed kernel ELM autoencoder for

single and multistep wind power forecasting," Energy, Vol.244,

pp.122585, 2022.

[16] V. Shankar, M. M. Deshpande, N. Chaitra, and S. Aditi,

"Automatic detection of acute lymphoblastic leukemia using image

processing," in Proc. 2016 IEEE Int. Conf. Advances in Computer

Applications (ICACA), Coimbatore, India, pp.186-189, 2016. doi:

10.1109/ICACA.2016.7887948

[17] B. Herzog, F. Hügel, S. Reif, T. Hönig, and W. Schröder-

Preikschat, "Automated selection of energy-efficient operating

system configurations," in Proc. 12th ACM Int. Conf. Future

Energy Systems, pp.309-315, 2021.

[18] V. Shankar, "Edge AI: A Comprehensive Survey of Technologies,

Applications, and Challenges," in Proc. 2024 1st Int. Conf.

Advanced Computing and Emerging Technologies (ACET),

Ghaziabad, India, pp.1-6, 2024. doi:

10.1109/ACET61898.2024.10730112.

[19] J. Chen, S. S. Banerjee, Z. T. Kalbarczyk, and R. K. Iyer, "Machine

Learning for Load Balancing in the Linux Kernel," in Proc. 11th

ACM SIGOPS Asia-Pacific Workshop on Systems (APSys '20),

pp.67-74, 2020. doi: 10.1145/3409963.3410492.

[20] C. Wang and J. Mou, "Linux Kernel Autotuning," in Proc. Linux

Plumbers Conf., 2023.

[21] H. Dong, J. Appavoo, and S. Arora, "Tuning Linux Kernel Policies

for Energy Efficiency with Machine Learning," Red Hat Research,

2023.

AUTHORS PROFILE

Vasuki Shankar earned his Bachelor of

Engineering (B.E) in Electronics and

Communication Engineering from

Visvesvaraya Technological University

(VTU), Karnataka, and his Master of

Science in Computer Engineering from

the University of Texas at Dallas in 2015

and 2022, respectively. Vasuki is

currently a Senior Software Engineer at NVIDIA

Corporation, bringing over a decade of experience in system

software development. Throughout his career, he has been an

active user of the Linux kernel, specializing in operating

system design, computer architecture, chip security, and chip

bring-up. His expertise has been shaped through roles at

leading technology firms, including Qualcomm and Samsung

Semiconductor. His research interests include the application

of Artificial Intelligence and Machine Learning in computer

architecture, operating systems, and Edge AI.

