
 © 2015, IJCSE All Rights Reserved 105

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Research Paper Volume-3, Issue-9 E-ISSN: 2347-2693

Priority Mechanism for ant Colony Optimization in Network Routing

Farhaan Jalia
1*

 and Aruna Gawde
2

1*,2
Department of Computer Engineering,

Dwarkadas J. Sanghvi College of Engineering, India

www.ijcseonline.org

Received: Sep /02/2015 Revised: Sep/10/2015 Accepted: Sep/24/2015 Published: Sep/30/ 2015

Abstract—Congestion, packet loss and increased response-time due to network traffic are common problems in most
networks. This results in lowered network efficiency and poor Quality of Service (QoS). A number of routing protocols have
been developed to deal with network traffic. The goal of every network routing protocol is to direct the traffic from source to
destination maximizing the network performance. The Ant Colony Optimization (ACO) based routing protocol is efficient when
used to dynamically route network traffic. Currently, there are many variations of the ACO algorithm in the domain of network
routing. Past work has been done by researchers to improve the performance of the algorithm. In this paper we first study and
analyze the existing work in this field and weigh the pros and cons of the different modifications and variations of the algorithm.
We then propose a modification to the ACO algorithm in order to improve the quality of service offered by a network by
routing packets according to their priority. Packets that belong to time-sensitive services like VOIP will be given higher priority
and routed differently from low priority packets like FTP. By doing so the proposed algorithm will improve the success rate of
the high priority packets while still maintaining high overall throughput of the network by dropping low priority packets that
form loops. We then implement this algorithm on NS2 network simulator. The algorithm is then tested to see how it
dynamically adapts to network changes. We then conduct tests to calculate the success rate and throughput that is offered by the
algorithm and compare the results to those of other ACO algorithms. Our results indicate that the proposed algorithm improves
the overall performance of the network by striking a balance between throughput and success rate thanks to the priority
mechanism.

Keywords— Computer Networks; Routing; QoS; Ant Colony Optimization; Swarm Intelligence

I. INTRODUCTION

ACO is based on the behavior of real ants in finding the

shortest path from a source to the destination where food is

available. The basic idea behind ACO algorithms for

routing is the acquisition of routing information through the

sampling of paths using small control packets called ants.

The ants are generated concurrently and independently at

the nodes, with the task to test a path from a source node to

an assigned destination node. The ant collects information

about the quality of the path - end-to-end delay, number of

hops - and uses this on its way back from the destination to

the source to update the routing information at the

intermediate nodes and the source. The next set of ants or

data packets can now learn from the pheromone deposit, ie,

feedback left by these initial ants. The main characteristic of

ACO is that after each iteration, the pheromone values are

updated by all the ants that have reached the destination

successfully. In ACO, the next node is selected

dynamically, with the probability to choose the shortest path

more. Thus, when the number of packets increases, packets

may follow alternate paths to control congestion.

It has been found that the current ACO algorithms have a

trade off between throughput and success rate. ACO

algorithms exhibiting a high throughput have a low success

rate and those with a high success rate have low throughput.

Both parameters hold immense importance in evaluating

network performance.

II. EXISTING SYSTEM

The optimal performance of a network is extremely

important for any network. Routing of packets in a network

does not only involve finding the shortest path from the

source to the destination but finding the best path from the

source to the destination. Avoiding congestion, increasing

throughput, greater success rate, avoiding packet loss,

reducing delay, are just some of the factors to be considered

to evaluate network performance.

Ant Colony Optimization based Routing Algorithm is an

emerging algorithm which has proved to be extremely

effective.

ACO Algorithm is based on the behavior exhibited by real

ants while finding the shortest path to the food. It has been

observed that ants deposit a certain amount of pheromone in

its path while travelling from their nest to the food. Again

while returning, the ants are subjected to follow the same

path marked by the pheromone deposit and again deposit

the pheromone in its path. In this way, the ants following

the shorter path are expected to return earlier and hence

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(105-110) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 106

increase the amount of pheromone deposit in its path at a

faster rate than the ant following a longer path.

The ants increasingly begin to use the paths with greater

deposits of pheromone at the same time and the longer path

with lesser deposits of pheromone are soon lost due to

evaporation of the pheromone. Thus, all ants starting their

journey can learn from the information left by the

previously visiting ants and are guided to follow a shorter

path directed by the pheromone deposit.

The ACO algorithm is explained in [1] as follows:

A number of artificial ants (packets) are simulated from a

source to the destination. The forward ants select the next

node randomly for the first time taking the information from

the routing table and the ants who are successful in reaching

the destination update the pheromone deposit at the edges

visited by them by an amount (C/L), where ‘L’ is the total

path length of the ant and C a constant value that is adjusted

according to the experimental conditions to the optimum

value. The next set of the ants can now learn from the

pheromone deposit feedback left by the previously visited

successful ants and will be guided to follow the shortest

path. The probability of selecting a node j from node i is

given by

��� =	
���	.� 		��

∑���	.� 		��

if a link exists between nodes i and j or

pij = 0, if there is no link between nodes i and j

where, pij is the probability of selecting a node i from node

j,

τij is the pheromone associated with the path

joining node i and node j,

ηij =(1/ dij), where dij is the distance between the

nodes i and j and

α and β are parameters that controls the relative

importance of the pheromone versus the heuristic

information ηij.

After each iteration, the pheromone values are updated by

all the number of ants (packets) that have reached to the

destination successfully and found a solution in the iteration

itself. The pheromone value τij while traveling from node i

to node j is updated as follows:

��� = �1 − ��. ��� +	�����
�

���

where ρ is the evaporation rate, m is the total number of

successful ants (packets) and ∆τij is the quantity of

pheromone laid on edge (i,j) by packet k.

ACO Algorithm can be implemented with 3 variations [1]:

a. ACO1: In this method, the ant packets are not

allowed to visit a node that it has already visited

before, i.e., the ant packets are not allowed to form

loops. If a packet reaches a state that it has no other

way except to form a loop, the packet is discarded.

b. ACO2: In this method, the ant packets are allowed

to form loops and visit an already visited node.

However, they cannot visit the node last visited by

it. In this method, to prevent a packet from going

into an infinite loop, if the packet has not reached

the destination after a certain interval of time, it

should be marked as unsuccessful.

c. ACO3: ACO2 is modified with the restriction that

the ant packet will not visit the last n nodes already

visited by it. A Tabu list[3] is maintained to keep a

list of the last n nodes visited.

The ACO algorithm has been successfully applied to

discrete optimization problems such as the Travelling

Salesperson Problem, Graph Colouring, Scheduling etc.

ACO algorithm when applied to the Network Routing

Problem also, outperformed the traditional algorithms such

as Open Shortest Path First (OSPF), Shortest Path First

(SPF), Bellman-Ford (BF), Q-routing and PQ routing.

AntNet was found to perform better, both in terms of

throughput and distribution of packet delay. It also showed

a robust behaviour under the different traffic conditions and

the ability to reach a stable behaviour very quickly. [5]

In spite of the many advantages of ACO routing algorithm,

it was found to have some drawbacks based on its different

implementations [1]:

ACO1 was found to have a high throughput but a low

success rate since a large number of packets are discarded

and hence, do not reach the destination.

On the other hand, ACO2 and ACO3 have a high success

rate since the packets are allowed to form loops and thus,

have a higher probability to reach the destination. But they

have a low throughput due to the cycles formed by the

packets.

This is summarised in Table 1.

TABLE I

COMPARISON OF THE ALGORITHMS

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(105-110) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 107

ACO 1
Highest

throughput
Low success rate

ACO2
Low

throughput
High success rate

ACO 3
Low

throughput
High success rate

III. MODIFICATIONS TO IMPROVE PERFORMANCE OF ACO

Various modifications have been suggested to the ACO

algorithm over time to improve its performance. Some

of them are enlisted below [2].

A. Non-linear Ant Launching:

In many ACO schemes, it was proposed that ants should be

launched at constant intervals. However, in such a scheme it

may occur that a small number of ants are not enough to

obtain a solution whereas the performance of the system

degrades if the number of ants launched is too large.

A more appropriate approach would be to increase the

number of ants being launched as the network becomes

more and more congested. This facilitates the discovery of

alternative uncongested routes when experiencing heavy

traffic conditions. Similarly, under low traffic conditions,

fewer ants should be launched allowing more stable routing

tables.

Thus, in this modification, ants are to be launched at a rate

proportional to the current traffic load of the network. The

ants are launched based on the queue size of the nodes,

which reflect the degree of traffic experienced. To prevent a

node from launching tee few ants, a maximum time interval

between two consecutive ants is to be adopted. Similarly, to

prevent an excessive number of ants from being launched, a

minimum interval threshold is also set.

B. Verification Mechanism

Usually according to the ACO algorithm packets are

forwarded according to the entries in the pheromone table,

and the condition of the link is not considered. Thus if a link

with maximum pheromone value is currently unavailable,

the packet would still be forwarded on it and be lost in the

process.

The proposed algorithm adopts a verification mechanism

which checks the state of a link before forwarding a packet

to it. If the link is available, data packets are forwarded

according to the highest entry in the pheromone table, while

if the link is not available then the next best available link is

chosen.

The verification function continuously checks the status of

the links using both artificial ants and data packets. In this

way ants are able to rapidly interact with sudden network

changes caused by link failures as ants are not allowed to

choose unavailable links and therefore alternative available

links are enforced and made available for future

communication. Therefore the proposed algorithm adapts

immediately to rapid topology changes.

C. Priority Scheduling

The traditional ACO schemes do not distinguish between

the different data types flowing over a network. This means

that all data packets are routed in the same way, as these

techniques are mainly designed to reduce congestion and

improve network performance. However, modern

communication networks have to support multimedia data

flows, requiring a different level of QoS.

The proposed method is able to discriminate between the

different data flows, therefore providing a better QoS. This

was achieved by assigning higher priorities to delay

intolerant information such as VoIP and Videoconferencing

applications, while other content such as FTP is assigned a

lower priority. The priority levels are used to determine the

order in which packets are scheduled once they arrive at the

destination node. A pre-emptive priority scheduling scheme

was adopted.

The packets representing the artificial ants were set to a

medium priority. In this way, ants would still be affected by

the congestion at the nodes, penalizing ants choosing

congested paths, while at the same time ants are still

processed at an acceptable rate.

D. Smart Initialization

The pheromone tables adopted in ACO methods are

generally initiated at random. This means that initially a

setup time is required. The proposed algorithm eliminates

this converging period through the use of a smart

initialization process. To reduce the convergence period, a

scheme that assigns an initial greater probability value to

the neighbouring nodes, when such nodes are listed as

destination is used.

E. Fixed Sized Ants

A previous ACO scheme enforced artificial ants to upgrade

all the entries in the routing table corresponding to all the

intermediate nodes visited by the ants. This enables the

routing tables to adapt more rapidly to network variations.

However, ants were required to remember all the addresses

of the visited nodes and the time at which such visit

occurred, causing the ants to grow proportionally to the

number of nodes visited.

This dynamicity in the ant’s size is undesirable, since

varying size packets require a longer processing time than

fixed sized packets.

The proposed algorithm defines fixed sized ants. This

implies that the number of updates performed at a routing

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(105-110) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 108

table by a single ant would be limited to a predefined

number. In this way, ants still retain the possibility of

multiple updates, therefore being responsive to topology

changes, whilst retaining fixed sized ants for faster

processing.

IV. PROPOSED SYSTEM

The main aim of this work is to improve the performance of

the ACO Routing Algorithm. For this, we will be making

use of the proposed modifications and combining it with the

existing algorithm[4] to attain an optimum variation that

enables it to perform at its best.

In ACO1, ACO2 and ACO3 mentioned above, all packets

are assumed to have the same priority. Thus in ACO1,

which has a low success rate, packets are discarded without

taking into consideration its priority. However, this would

serve as a major setback in networks which deal with

packets from various applications. In such a network, if

packets belonging to delay intolerant applications such as

VoIP and Videoconferencing are discarded upon reaching a

dead end (ACO1), or they are delayed due to the formation

of a sizeable loop (ACO3), it will lead to performance

degradation of that application. Thus, packets of such

applications must be given a higher priority as compared to

applications such as FTP.

In order to deal with this issue, we have implemented the

Priority Scheduling Modification proposed for the ACO

algorithm. The main was to implement a Priority

Mechanism in combination with the ACO1 and ACO2

algorithms using NS2[6].

The packets being routed in the network will be assigned a

priority based on their application. These packets will be

scheduled depending on their priorities. In addition, if a

packet reaches a dead end where no other possible path is

available except forming a node, its priority should be

checked. If it has a high priority, it may be allowed to form

a loop in order to prevent it from being discarded. However,

if the packet has a low priority, it can be discarded.

This modification will help keep the throughput as well as

the success rate considerably high. Since high priority

packets are not discarded on reaching a dead end, it

increases the success rate. On the other hand, all packets are

not allowed to form loops thus, the total time taken for the

packets to reach the destination is less leading to an increase

in throughput.

We have implemented this modification to the ACO

algorithm and analysed its performance under various

network conditions such as constant load, varying load,

different network sizes etc. The focus is mainly on

analysing the throughput and success rate of the algorithm

through comparative studies with the original ACO

algorithm.

A. Algorithm

The basic algorithm will be as follows:

a) At regular intervals of time forward ants are

generated from a randomly selected source to a

randomly selected destination.

b) This ant will read the routing table of the source

node and find out the pheromone values of the

path from this source node to its neighbors

corresponding to the destination.

c) If it is the first ant, all the pheromone values will

be equal. Therefore, it will randomly select the

next node.

d) If it is not the first ant, it will select the next

node based on the pheromone values. It will

choose the node with the maximum pheromone

value along the path to it.

e) On reaching the next node, it pushes the node

and the time elapsed since the ant left the source

onto its stack.

f) It then checks the routing table of the current

node to make its next routing decision.

g) Carrying on in this way, the ant reaches its

destination.

h) Now, a backward ant is generated. This

backward ant follows the same path that the

forward ant followed.

i) The information regarding the path of the

forward ant in its stack is then transferred to the

backward ant.

j) If there are loops in the forward ant’s path, all

the loops are popped from the ant’s stack so that

the path in the backward ant’s stack does not

contain any loops.

k) At every intermediate node, the backward ant

updates the pheromone value in the routing table

according the trip time of the forward ant.

l) The shorter the trip time, the better the path.

Hence the magnitude by which the pheromone

value is increased is higher for shorter paths and

lower for longer paths.

m) Since the backward ant updates routing

information, it should not be delayed. If it is

delayed, the routing information that it carries

will become outdated and the performance of

the algorithm will deteriorate. Thus, backward

ants have the highest priority. They should not

be made to wait at the intermediate nodes.

n) When the backward ant reaches the source, its

journey ends and it is destroyed.

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(105-110) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 109

B. Implementation of Priority Mechanism

a) When actual data packets are sent from source

to destination, the priority mechanism will come

into play.

b) Packets that have time-sensitive services will

have a high priority. Other packets will have

low priority. Forward ant packets will be given

medium priority whereas backward ants are

given highest priority.

c) While making routing decisions if a condition

occurs such that the packet needs to form a loop,

the priority of the packet will determine whether

or not the packet should be allowed to loop.

d) High priority packets will be allowed to form

loops in the hope that they will eventually find

another path to the destination and break out of

the loop.

e) Low priority packets will not be allowed to form

loops. They will be simply discarded and their

journey will end.

f) This priority mechanism will ensure that the

success rate for high priority packets will be

high, without hampering the throughput of the

network.

Once tested under various conditions, it will be possible for

us to reach to a conclusion regarding the performance of a

network using the modified ACO Routing Algorithm

proposed by us.

V. EXPERIMENTAL RESULTS

We first simulated a few links going down to test how

quickly the ACO algorithm adapts to such events. In the

diagrams below, the red packets are data packets travelling

from node 0 to node 10.

Figure 1 The network topology on NS2

The direct link connecting node 0 and node 10 is down.

Therefore, the packets are following path 0-5-10 instead.

Now a few seconds later, link 5-10 goes done as well, thus

cutting of the second shortest path from node 0 to node 10.

After a couple of seconds the algorithm dynamically adapts

to this change and routes the packets via node 9 or node 6.

We then bring link 0-10 up again. Therefore, once the ants

have sufficiently updated the pheromone values, the data

packets follow directly from node 5 to node 10.

After this all links are brought up. The algorithm adapts to

this and routes most of the packets from node 0 directly to

node 10. As time goes by, the pheromone values are

reinforced and more and more packets are sent along the

shortest path 0-10.

We then ran tests to evaluate the performance of the

proposed algorithm in comparison with the existing

algorithms. The tests were run on the same network

topology under the exact same conditions. The success rate

of packets and the overall throughput of the network were

calculated. Multiple runs were taken to establish

repeatability of results.

TABLE II

PERFORMANCE COMPARISON

 ACO1 ACO2 Our Algorithm

Success

Rate

87-90% 93-95% High Priority –

93-95%

Low Priority –

87-90%

Overall – 91-93

Throughput 60KBps 55KBps 58 KBps

The above table shows the performance of our algorithm in

comparison to ACO1 and ACO2[1]. As can be seen, the

algorithm works as we had envisioned when we proposed

the algorithm.

The success rate of high priority packets is very high. It is

same as the success rate provided by ACO2. The success

rate of low priority packets is lower and is comparable to

the success rate provided by ACO1.

When it comes to throughput, due to the combination of

ACO1 and ACO2, the total throughput provided by our

algorithm in our test network was higher than that provided

by ACO2 and less than that provided by ACO1. Thus, in

contrast to ACO1 and ACO2 our algorithm provides a

balance between throughput and success rate.

VI. CONCLUSION

In this paper we first studied the variants of the ACO

algorithm. We looked at the original ACO algorithm and

 International Journal of Computer Sciences and Engineering Vol.-3(9), PP(105-110) Sep 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 110

studied the various modifications like non-linear ant

launching, verification mechanism, priority scheduling,

smart initialization and fixed sized ants. We have then

proposed and implemented a priority scheme to route the

packets to overcome the trade-off between success rate and

throughput of the traditional ACO algorithm. The

performance of this algorithm was analyzed on NS2 and it

was found to improve the performance of ACO algorithm in

network routing.

ACKNOWLEDGMENTS

We thank the management of D.J. Sanghvi College of

Engineering and our Principal, for providing us with all the

facilities needed to complete the project.

We would also like to express our gratitude for the teaching

and non-teaching staff of Computer Department of D. J.

Sanghvi College of Engineering, and thank them for their

co-operation and assistance.

REFERENCES

[1] Debasmita Mukherjee and Sriyankar Acharyya, “Ant

Colony Optimization Technique Applied in Network

Routing Problem”, International Journal of Computer

Applications, Volume-01, Issue-15, Page no (66-73),

May 2012

[2] Chris Saliba and Reuben A. Farrugia, “Quality of

Service Aware Ant Colony Optimization Routing

Algorithm”, 15th IEEE Mediterranean Electrotechnical

Conference, ISBN: 978-1-4244-5793-9, Page no (343-

347) , April 26-28, 2010.

[3] Masaya Yoshikawa and Kazuo Otani, “Ant Colony

Optimization Routing Algorithm with Tabu Search”,

Proceedings of the International Mulitconference of

Engineers and Computer Scientists 2010, Volume –

III, ISBN: 978-988-18210-5-8, Page no (112-117)

March 17-19, 2010.

[4] Vincent Verstraete, Matthias Strobbe, Erik Van

Breusegem, Jan Coppens, Mario Pickavet and Piet

Demeester, “AntNet: ACO routing algorithm in

practice”, Proceedings of the 8e INFORMS

Telecommunications Conference, 2006.

[5] Gianni Di Caro and Marco Dorigo, “Ant colonies for

Adaptive Routing in Packet-Switched Communications

Networks”, Lecture Notes in Computer Science,

Volume 1498, Page no (673-682), June 2006.

[6] The Network Simulator – NS2,

http://www.isi.edu/nsnam/ns/, August 2014.

[7] V. Laxmi, Lavina Jain and M.S. Gaur, "Ant Colony

Optimization Based Routing on NS-2", International

Conference on Wireless Communication and Sensor

Networks (WCSN), India, December 2006.

[8] Gianni Di Caro and Marco Dorigo, “AntNet :

Distributed Stigmergetic Control For Communications

Network”, Journal of Artificial Intelligence Research,

Volume-09, Issue-01, ISSN 1076–9757, Page no (317-

365), August 1998.

