
© 2025, IJCSE All Rights Reserved                                                                                                                                              1 

 

International Journal of Computer Sciences and Engineering  
Vol.13, Issue.3, pp.01-08, March 2025  

ISSN: 2347-2693 (Online) 

Available online at: www.ijcseonline.org                         

 

Research Article  

The High-Performance Linpack (HPL) Evaluation on MIHIR High 

Performance Computing Facility at NCMRWF  

Shivali Gangwar
1*

, B. Athiyaman
2

, Preveen Kumar D.
3

 

 
1,2,3National Centre for Medium Range Weather Forecasting, Noida, India 

 

*Corresponding Author: ✉  

 

Received: 18/Jan/2025; Accepted: 20/Feb/2025; Published: 31/Mar/2025. DOI: https://doi.org/10.26438/ijcse/v13i3.18 

 
Copyright © 2025 by author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International 
License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited & its authors credited. 

 
Abstract: The National Centre for Medium Range and Weather Forecasting (NCMRWF) has, the MIHIR High Performance 

Computing (HPC) Facility with total computing capacity of 2.8 Petaflops to run Numerical Weather Prediction (NWP) models, 

enabling accurate and timely weather forecasting. These models need computations performed in PFLOPS (Peta Floating Point 

Operations Per Second). The HPC nodes are interconnected by the high speed, low latency Cray Aries network. High 

Performance Linpack (HPL) version 2.3 has been compiled and installed on the system for the study. The purpose of running 

HPL is to demonstrate the current computing performance of the HPC, and to assess the systems efficiency by analyzing the 

actual calculated performance (Rmax) and the theoretical peak performance (Rpeak, derived from system specifications). We 

present a performance evaluation of the HPL benchmark on MIHIR, conducting a detailed analysis of HPL parameters to 

optimize performance. The aim is to identify the best-optimized parameter values for MIHIR and determine the maximum 

achievable performance of the compute nodes, utilizing up to 300 nodes available for research. 
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1. Introduction  
 

The National Centre for Medium Range Weather Forecasting 

(NCMRWF) has a High-Performance Computing (HPC) 

facility named MIHIR, which has a computing capacity of 2.8 

Petaflops. This HPC system is specifically designed to run 

Numerical Weather Prediction (NWP) models, enabling 

accurate and timely weather forecasting. The reliability of 

these forecasts is crucial for disaster preparedness, 

agriculture, aviation, and several other sectors that depend on 

precise meteorological information.  

 

One of the key factors contributing to the robust performance 

of this facility is its high-speed interconnection infrastructure. 

The compute nodes within the system are connected through 

a Cray Aries interconnect and utilize a dragonfly topology, 

which provides both high speed and low latency 

communication. Efficient interconnects and computational 

resources directly impact the accuracy and resolution of 

weather models, ensuring that forecasts are both timely and 

reliable.  

 

Given the critical role of HPC in weather prediction, it is 

essential to continuously evaluate and optimize system 

performance. NWP models running on this system perform 

calculations in PFLOPS (Peta Floating Operations Per 

Second), demonstrating the immense computational power 

required for advanced meteorological simulations. To assess 

and ensure the efficiency of MIHIR, benchmarking tests are 

conducted, including the use of High-Performance Linpack 

(HPL) to measure actual computational performance (Rmax) as 

compared to the theoretical peak performance (Rpeak). This 

benchmarking process not only evaluates the current 

performance but also helps identify opportunities for 

optimizing system configurations, improving efficiency, and 

enhancing forecasting capabilities. 

 

This study is significant because it provides a detailed 

analysis of MIHIR’s computational capabilities, highlighting 

its strengths and identifying areas for potential enhancement. 

Understanding the performance limitations of HPC in the 

context of NWP is crucial for ensuring that weather 

forecasting models remain accurate and efficient. By 

benchmarking MIHIR’s capabilities, this study contributes to 

the ongoing efforts to improve HPC infrastructure for 

meteorological applications, ultimately supporting better 

preparedness for extreme weather events and improving the 

overall quality of weather predictions. 
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2. Related Work  
 

High-Performance Linpack (HPL) has been widely used to 

evaluate the computational capability of supercomputers. 

Several studies have focused on optimizing HPL performance 

through parameter tuning, hardware configurations, and 

software optimizations. 

 

2.1 HPL Performance Optimization 

Previous research has highlighted the importance of selecting 

optimal problem sizes (N), block sizes (NB), and process grid 

configurations (P × Q) for achieving maximum performance 

[11, 12]. Studies have shown that improper selection of these 

parameters can lead to significant performance degradation 

[5,6]. 

 

2.2 Impact of BLAS Libraries on HPL 

The choice of BLAS implementation significantly affects 

HPL performance. Research comparing different libraries—

such as ATLAS, OpenBLAS, Intel MKL, and Cray’s 

scientific libraries—has demonstrated variations in efficiency 

based on system architecture and workload distribution [5,9]. 

 

2.3 Parallelization and Scalability in HPC Systems 

Scalability studies on various HPC systems have shown that 

increasing the number of nodes beyond a certain point result 

in diminishing performance gains due to inter-node 

communication overhead. Researchers have investigated MPI 

[10] communication strategies and network topologies to 

mitigate these bottlenecks [9]. 

 

2.4 HPL on Emerging Architectures 

With the rise of heterogeneous computing, recent work has 

explored running HPL on AMD EPYC, ARM-based 

processors, and GPU-accelerated systems [12,7]. These 

studies indicate that different architectures require tailored 

optimization strategies to achieve peak efficiency. 

 

These studies provide valuable insights into HPL 

benchmarking, parameter tuning, and HPC optimization 

strategies, forming the foundation for the present work on 

optimizing MIHIR’s performance. 

 

3. Experiment Design and Methodology 
 

3.1 MIHIR: High Performance Computing 

The MIHIR HPC system at NCMRWF has 2322 compute 

nodes interconnected via a high-performance network. Each 

compute node is a dual socket with an Intel Xeon Broadwell 

processor. The compute node runs a version of Operating 

System optimized for running batch workloads. The software 

set running on the nodes includes the SUSE Linux Enterprise 

Server 12 SP2 operating system, Cray Message Passing 

Interface (MPI) based on MPICH3 source from ANL, Cray's 

libSci scientific library and an Intel MKL. The technical 

specifications of MIHIR HPC are in Table 1. 

 

 

 

Table 1. Technical Specifications of MIHIR HPC 

Components Details 

Processor Type Intel Xeon Broadwell 

E5-2695 

Number of Compute Nodes 2322 

Total Number of Cores 83592 

Interconnect Cray Aries with Dragon 

Fly 

Node Processor Cores 2 x (2.1 GHz, 36-Core) 

Memory Size per Node 128 GB 

Memory Type DDR4 

Node Cache Size 2 x 24 MB 

Turbo Boost OFF 

Usage of Hyper Threading ON 

Peak Compute Power 2806 TF 

Effective Distributed Memory 297TB 

 
3.2 HPL Benchmarking Method 

The Linpack library is a set of FORTRAN subroutines that 

are developed for analysing and solving linear equations [11]. 

This numerical library is used widely for solving systems of 

linear equation of the form: 

            (1) 

 

Equation (1) shows a linear system where A represents a 

dense matrix that can be decomposed into product of 

matrices, having all non-zero elements, x is the unknown 

vector, while vector b on the right-hand side is a known 

vector. The library offers efficient methods for manipulating 

and solving this linear equation problem by performing 

matrix factorization of A. 

 

The Linpack library was originally derived from an auxiliary 

program found in the Linpack User's Guide publication [11]. 

It has evolved into a well-structured numerical code capable 

of solving dense matrices using double-precision arithmetic. 

This suite has now been adopted as a benchmark to efficiently 

evaluate performance on supercomputers. 

 

HPL [6,7] is a benchmarking software that has been utilized 

by various organizations as the benchmark suite to gauge the 

peak performance of their HPC facilities. It is widely adopted 

and used as a standard for obtaining maximum performance 

measurements in all TOP500 [8] HPC facilities. It is freely 

available and highly portable.  

 

To evaluate the accuracy of solutions obtained as well as the 

computation time the HPL software package has been 

included with testing and timing programs. Achieving 

optimal performance with this software hinges on various 

factors specific to the system under evaluation. The 

benchmarks conducted using this software result in a 

measurement computed in Floating-Point Operations per 

Second (FLOPS). 

 

The Message Passing Interface (MPI) [10] has been 

implemented in HPL software that helps it to run on HPC 

systems, which are distributed and need internode 

communication. The MPI library specification will facilitate 

message passing thus enabling internode communication. 
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Configuring the HPL software package requires the inclusion 

of the Basic Linear Algebra Subprograms (BLAS) 

implementation [9]. BLAS comprises application 

programming routines that facilitate basic vector and matrix 

multiplication operations. 

 

Any of the following BLAS software can be utilized for 

compiling HPL. The Cray Scientific Library (CSL), 

developed by CRAY, offers a wide range of highly optimized 

BLAS routines. Additionally, the Intel® Math Kernel Library 

(Intel® MKL) and AMD Core Math Library (ACML) [5,1] 

are optimized and highly threaded math libraries that include 

BLAS routines. Whereas for this paper, the Cray Scientific 

Library (CSL) has been selected to achieve fair and 

satisfactory results on MIHIR HPC. 

 

4. Methodology 

 

The initial stage involves installation, and configuring the 

HPL. Appropriate compilers for compiling codes are 

identified. Following this, the suitable MPI is selected for 

facilitating internode communication. 

 

4.1 Building the HPL benchmark 

Cray compilers, CCE version 8.6.3, cray-mpich version 7.6.3 

and cray scientific library, cray-libsci 17.09.1 has been used. 

 

4.2 HPL main parameters 

To optimize the results, we focus on fine-tuning the HPL.dat 

[6,7] file within HPL. This file contains 17 parameters, of 

which 7 are used for optimizing the result, in this paper, these 

are Problem size (N), Number of Process Grids (P x Q), 

Block Size (NB), Broadcast Parameter (BCAST), Lookahead 

depth (DEPTH), Panel Factorization (PFACT), and Reverse 

Panel Factorization (RFACT) [7]. 

 

Problem size (N) in HPL is one of the pivotal parameters 

used to fully utilize the compute node memory. An important 

consideration is to set the problem size such that it does not 

exceed the available memory, which can result in getting 

swapped out of memory i.e. OOM. Only 93% of memory per 

compute node has been used to avoid memory swap and 

degraded performance. After calculation and testing, the ideal 

problem size value for MIHIR HPC comes out to be 121900.  

 

The processor grid refers to parameters defining the 

dimensions of the process grid, typically represented as P and 

Q. Here P represents the number of rows of the process and Q 

represents the number of columns of the process. To 

determine the optimal processor grid, it's common to use 

values where Q is greater than P. Thus, configuring P as 4 

and Q as 9 seems to be an optimal decision. On MIHIR HPC 

setting P to 4 and Q to 9 resulted in optimal performance of 

the system.  

 

Determining the optimal block size in HPL is not 

straightforward, as it serves dual purposes: distributing data 

effectively across processors and determining computational 

granularity.  

A smaller block size improves load balance in terms of data 

distribution, but it can significantly reduce computational 

performance due to limited data reuse at higher memory 

hierarchy levels. This can lead to an increase in message 

count. Optimal block sizes typically fall within 32 to 256 

intervals, with the ideal value depending on the system's 

computation-to-communication performance ratio. For Intel 

Xeon Broadwell E5-2695, the recommended block size is 

192. However, multiple runs on different values on MIHIR 

HPC revealed that 192 is indeed the optimal block size for 

this system.  

 

The broadcast algorithm is used in HPL to distribute 

factorized panel columns from one panel to another process 

panel. HPL has the following broadcast algorithms available, 

such as Increasing-ring, Increasing-ring (modified), 

Increasing-2-ring, Increasing-2-ring (modified), long 

(bandwidth reducing), and long (bandwidth reducing 

modified). The Increasing-ring (modified) algorithm is 

recommended for MIHIR HPC due to its better performance.  

 

Implementing this modified algorithm in the broadcast 

function on MIHIR HPC has resulted in a significant 

improvement, achieving a finer result of 1.09 Tflops per 

compute node. 

 

5. Results and Discussion 
 

In this study, we evaluated the performance of the High-

Performance Linpack (HPL) benchmark on MIHIR, a high-

performance computing (HPC) system. The goal was to 

analyze the impact of various HPL tuning parameters on 

system performance, optimize them for maximum efficiency, 

and assess the compute capability of MIHIR when scaling up 

to 300 compute nodes. 

 

The primary parameters examined include process grid 

configuration (P × Q), problem size (N), block size (NB), 

panel factorization (PFACT), recursive panel factorization 

(RFACT), broadcast algorithm (BCAST), and lookahead 

depth (DEPTH). The results demonstrate how each parameter 

influences performance in terms of execution time, GFLOPS, 

and efficiency. 

 

5.1 Process grids, P x Q 

The number of process grids will determine the optimal value 

for the number of nodes that have been used for HPL 

execution. The arrangement of P and Q affects the processing 

speed and the time needed for problem solving. The test 

results obtained are shown in Table 2 and Figure 1 indicate 

that as the number of nodes increases, the execution time 

stabilizes after an initial improvement in performance. 

Speedup and efficiency values suggest that optimal resource 

utilization is achieved when all processors are effectively 

engaged.  
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Table 2. Number of Nodes: Processing Speed and Efficiency 

Nodes 
Time 

(s) 
Gflops Speedup 

Efficiency 

(%) 

1 1106.39 1091.50 1 90.228 

2 1114.39 1084.6 0.9936784 89.658 

4 1113.27 1084.70 0.99377 89.666 

6 1121.78 1076.5 0.9862574 88.989 

8 1117.58 1080.60 0.9900137 89.327 

10 1116.03 1082.10 0.991388 89.451 

12 1117.03 1081.10 0.9904718 89.369 

18 1122.05 1076.30 0.9860742 88.972 

22 1128.77 1069.80 0.9801191 88.435 

24 1180.63 1068.90 0.9792945 88.360 

28 1128.79 1069.80 0.9801191 88.435 

30 1128.04 1070.50 0.9807604 88.493 

36 1122.02 1076.30 0.9860742 88.972 

42 1126.67 1071.80 0.9819514 88.600 

54 1125.21 1073.20 0.9832341 88.716 

72 1117.72 1080.40 0.9898305 89.311 

 

 
Figure 1. Graph showing the relationship between Number of Nodes and 

Speedup 
 

According to the results obtained processing speed increases 

until all processors are fully utilized, after which the speedup 

stabilizes and remains constant. 

 
5.2 Problem Size, N 

The problem size refers to the size of the dense matrix that 

the benchmark will solve. The size of the matrix determines 

the computational load, larger the problem size, better reflects 

the true power of the system.  

 

The matrix size determines the amount of memory required 

for the computation. As N increases, the memory usage 

grows as N
2
, since the N x N matrix needs to be stored. For 

supercomputers, the problem size is chosen to ensure 

maximum utilization of memory and processing power. The 

goal is to maximize GFLOPS (billions of floating-point 

operations per second). The below results demonstrate the 

impact of problem size, N on processing speed in solving the 

problem 
                  

 

 

 

Table 3. Problem Size: Processing Speed and Time Taken 

Problem Size, N Time (s) Gflops Speedup  

5000 0.31 273.07 1 

10000 1.22 546.82 2.0024902 

15000 3.44 654.95 2.40 

20000 9.45 564.31 2.06653972 

50000 84.7 983.89 3.60306881 

100000 640.16 1041.40 3.81367415 

110000 851.45 1042.20 3.8166038 

115000 998.22 1015.70 3.71955909 

117000 1017.55 1049.30 3.84260446 

118000 1021.91 1071.90 3.92536712 

120000 1079.05 1067.60 3.90962024 

121000 1090.95 1082.60 3.96455121 

121900 1112.95 1085.1 3.97370638 

 

 
Figure 2. Graph showing the relationship between Problem Size and 

Processing Speed 

 

A larger problem size (high N) increases the computational 

workload to find the solution, thus leading to higher 

computational speeds as shown in Figure 2. However, the 

increase in processing speed will plateau once all the 

processors are fully utilized in solving the problem, reaching 

a saturation point. At this point, the speed increase stabilizes 

as the processing power reaches its maximum effectiveness 

and efficiency. This behaviour underscores the importance of 

selecting an appropriate N to balance workload distribution 

and memory utilization. 

 

5.3 Block Size, NB 

This execution will demonstrate the impact of Block Size, NB 

on the processing speed of the compute node and the time 

taken in problem solving as shown in Table 4. The NB [7] 

defines how data and computations are distributed across the 

processors in the system. It determines how submatrices are 

assigned to each processor. An optimal distribution can 

improve load balancing and reduce communication overhead 

between processor, leading to better performance. The results 

obtained from the execution are shown in Figure 3, indicate 

that a block size 192 shows the highest computation speed. 
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Table 4. Block Size: Processing Speed and Time Taken 

Block size (NB) Time (s) Gflops 

100 1218.51 991.05 

125 1282.83 941.37 

150 1228.57 982.94 

192 1116.51 1081.60 

200 1166.4 1035.30 

210 1150.86 1049.30 

224 1136.74 1062.30 

 

 
Figure 3. Graph showing the relationship between Block Size and 

Processing Speed 

 

Performance degrades for smaller and larger block sizes, as 

inefficient data distribution increases computational delays 

and synchronization overhead. This confirms that choosing an 

appropriate NB is crucial for achieving peak efficiency in 

matrix operations. 

 

5.4 Panel Factorization, PFACT 

PFACT controls the type of factorization algorithm used by 

HPL. Factorization is the process of decomposing a matrix 

into simpler components (such as lower and upper triangular 

matrices). Selecting among these factorization methods 

involves trade-offs between computational efficiency and 

communication overhead. PFACT algorithm decomposes the 

matrix into panels or blocks and these panels are then 

factorized using the LU(Lower-Upper) decomposition 

technique. There are three main PFACT algorithms each with 

a different approach to solve computation problems. These 

are Left PFACT where panels are factorized from the left side 

of the matrix i.e. from left to right matrices are factorized, the 

Right PFACT where factorization is done from right to left 

and the Crout PFACT where factorization is performed from 

both left and right simultaneously. The results obtained 

during execution are shown in Table 5 and Figure 4. As per 

results obtained the Crout PFACT provides the best 

computational   performance of the compute node. Left and 

Right PFACT algorithms exhibit slightly lower efficiency due 

to differences in panel decomposition strategies, impacting 

communication and memory access patterns. 

 
Table 5. Panel Factorization: Processing speed and Time Take 

Panel factorization Time (s) Gflops 

Left 1145.15 1054.5 

Crout 1112.65 1085.40 

Right 1115.16 1082.9 

 
Figure 4. Graph showing the relationship between Panel Factor and 

Processing Speed 

 
5.5 Recursive Panel Factorization, RFACT 

In RFACT, the matrix is divided into submatrices or panels, 

which are then further subdivided until they reach a size 

suitable for direct factorization using algorithms like LU 

decomposition. This recursive approach is performed in 

parallel to improve computational efficiency.  

 

The RFACT algorithms consist of three variants: the left-

looking RFACT, the right-looking RFACT, and the Crout 

RFACT algorithms [10]. Figure 5, presents a graph 

illustrating the relationship between the RFACT and the 

processing speed, measured in Gflops (billion floating-point 

operations per second). The figure highlights the performance 

comparison among these algorithms, showing their 

computational efficiency under varying conditions.  

 
The results presented in Table 6, indicate that the Crout 

algorithm when applied in the context of RFACT, enhances 

the computational performance of the compute node 

compared to the other algorithms analyzed. Also, the Crout 

algorithm's structure allows for more efficient utilization of 

computational resources, leading to improved processing 

speed and better overall performance. This advantage is 

particularly evident when compared to the left-looking and 

right-looking RFACT algorithms, making the Crout method 

more suitable for high-performance scenarios where 

maximizing compute efficiency is crucial. Crout RFACT 

efficiently utilizes computational resources by minimizing 

communication overhead and maximizing parallelism, 

making it the preferred choice for achieving higher GFLOPS. 

 
Table 6. Recursive Panel Factorization: Processing speed and Time Taken 

Recursive panel 

factorization 

Time taken 

(s) Gflops 

Left 1148.95 1051.1 

Crout 1112.65 1085.40 

Right 1130.46 1068.2 
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Figure 5. Graph showing the relationship between RFACT and Processing 

Speed 

 

5.6 Broadcast Parameter, BCAST 

The execution for the BCAST parameter aims to analyze the 

impact of the broadcast algorithms on processing speed and 

problem-solving time in HPC environment. The BCAST 

determines how data is efficiently distributed from one 

processor to another processors or nodes in an HPC.  

 

The following broadcast algorithms are used in the study,  the 

increasing-1-ring, which involves sending data in a linear 

chain or ring and each processor sends the data to the 

immediate neighbor continuing until all processors receive 

data; the increasing-1-ring (modified), it is a variation to 

increase-1-ring with optimizations and reduced 

communication overhead; the increasing-2-ring, where data is 

send to two neighbors simultaneously; the increasing-2-ring 

(modified), is the variation to increase-2-ring with 

optimizations and reduced communication overhead; the long 

(bandwidth reducing), where some techniques like data 

compression, message aggregation, or intelligent routing are 

being used to minimize bandwidth usage; and the long 

(bandwidth reducing modified), is an enhanced version of this 

algorithm with additional optimizations or adjustment. 

 

The results from the execution, are presented in Table 7 and 

Figure 6, indicate that the modified increasing-2-ring 

algorithm enhances the computational performance of the 

compute node compared to the other algorithms evaluated. 

This improvement is evident in terms of both processing 

speed and overall efficiency. The modified approach 

optimizes communication and data handling within the node, 

allowing for better resource utilization and faster 

computation, making it the most effective option among the 

algorithms tested. Other algorithms, such as the long 

bandwidth-reducing methods, demonstrate lower 

performance due to increased data transmission latency. 

 
Table 7. Broadcast: Processing Speed and Time Taken 

Broadcast 

Algorithms Time (s) Gflops 

Increasing-ring 1112.65 1085.40 

Increasing-ring (modified) 1112.95 1085.10 

Increasing 2 ring 1125.54 1072.90 

Increasing 2-ring modified 1113.56 1084.50 

long bandwidth reducing 1168.69 1033.30 

long (bandwidth reducing modified) 1152.02 1048.30 

 
Figure 6. Graph showing the relationship between BCAST and Processing 

Speed 
 

5.7 Lookahead Depth 

The Look Ahead Depth parameter in HPL determines how 

many levels of factorization trees are computed concurrently. 

It is a crucial concept related to pipelining and overlapping 

computations to improve performance. By reordering 

operations, the HPL can execute less efficient operations 

concurrently with more efficient ones, reducing idle times 

and improving overall performance. With a lookahead depth 

of 1, HPL can achieve some overlap between communication 

and computation, but not as much as higher depths. It will 

reduce idle processor time compared to no lookahead (depth 

0). When the look ahead depth is set greater than zero, the 

benchmark precomputes and stores the panels being 

factorized in memory, allowing it to "look ahead". This 

approach consumes more memory but results in a 

performance boost by allowing more parallelism. As shown 

in Figure 7 and Table 8, MIHIR achieves better performance 

with a lookahead depth of 1. A depth of 0 results in lower 

GFLOPS due to reduced concurrency, while higher depths 

may introduce memory overhead without significant 

performance gains. 

 
Table 8. Lookahead Depth:  Processing Speed and Time Taken 

Depth Time (s) Gflops 

0 1117.29 1080.80 

1 1113.56 1084.50 

 

 
Figure 7. Graph showing the relationship between Depth and Processing 

Speed 
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5.8 Final Test Run based on Achieved Values 

Based on the results obtained from execution, the HPL is 

configured with optimized parameters as follows:  

 
Table 9. Optimized Parameters 

Parameters Optimized values 

N 121900 

NB 192 

PFACT Crout 

RFACT Crout 

BCAST 3 (2-ring modified) 

DEPTH 1 

 

The formula used for calculating the Problem size is as shown 

in Figure 1. 

 

        (2) 

The important consideration is to set the problem size such 

that it does not exceed the available memory on the node, 

which can result in getting swapped out of memory i.e. OOM. 

Only 93% of memory per compute node has been used to 

avoid memory swap and degraded performance. After 

calculation and testing, the ideal problem size value for 

MIHIR HPC comes out to be 121900.  

 

The Rpeak is calculated based on system’s specifications, 

whereas the Rmax is measured during the actual HPL 

execution. To calculate the theoretical peak, the rate of 

executing floating-point operations is needed. Manufacturers 

provide a figure for floating-point operations, which serves as 

an upper limit on performance. Thus, the Rpeak is computed 

using equation (3), which takes into account the number of 

floating-point operations for addition and multiplication in 

full precision that can be performed within a specified time 

frame, typically the cycle time of the machine.  

 

The Intel Xeon Broadwell E5-2695, 2.1 GHz processor can 

execute 8 double precision floating-point operations per cycle 

per core and 16 single precision floating point operations per 

cycle per core. The calculations for Rpeak are as follows: 

 

       (3) 
 

    (4) 

 
The highest possible result achievable is 1.209 Tflops per 

compute node as determined by equation (4).  

 

The Rmax obtained by running the HPL benchmark suite is 

measured in Tflops. In this paper, we achieved the Rmax of 

1.0915 Tflops using problem size of 121900, a 4 x 9 

processor grid, a block size of 192 and the 2-ring modified 

broadcast algorithm. The system efficiency can be determined 

by calculating the ratio of Rmax to Rpeak. 

 

 

                        (5) 
 

 (6) 

 
To determine the efficiency of the MIHIR HPC, equation (5) 

has been used. Hence the overall efficiency of MIHIR HPC 

comes out as 90.23%. 

 

5. Conclusion and Future Scope 
 

We presented the performance of the HPL benchmark on 

MIHIR HPC system, focusing on optimizing HPL tuning 

parameters to achieve the best possible computational 

efficiency. The goal was to identify the most optimized 

parameter values for MIHIR and determine the system’s peak 

performance using up to 300 compute nodes. 

 

The process grid configuration affects execution time and 

efficiency, with diminishing returns beyond an optimal node 

count. Problem size (N) must be carefully selected to 

maximize GFLOPS without exceeding memory limitations. 

Block size (NB) of 192 provides the best performance by 

balancing data distribution and computation. Crout panel 

factorization (PFACT) and recursive panel factorization 

(RFACT) yield superior results compared to Left and Right 

variants. The modified increasing-2-ring broadcast algorithm 

optimizes data transmission, reducing communication 

overhead. A lookahead depth of 1 enhances performance by 

effectively overlapping computations. 

 

The HPL tuning parameters N, NB, P and Q are crucial for 

achieving better performance. P and Q must be selected 

ensuring that P<= Q. The 4 x 9 combination yielded the best 

results on MIHIR. The block size NB=192 has been used, 

which is the recommended value for Intel Xeon Broadwell 

E5-2695. The problem size N is set to define the biggest 

problem that would fit into the available memory. 

 

For 300 nodes, the measured parallel efficiency comes out to 

be 90.22% with total maximum calculated performance for 

300 nodes, Rmax=328 TFLOP/s.  

 

Among BLAS implementations, Cray Scientific Libraries 

performed the best, significantly outperforming Intel MKL 

and ATLAS, the latter showing the lowest efficiency. These 

findings confirm that optimal tuning and library selection are 

critical for maximizing HPC performance. 

 

For future work, we aim to extend this study by optimizing 

other HPC architectures, such as AMD processors, and 

experimenting with GPU-accelerated HPL benchmarks. 

Additionally, refining MPI communication strategies and 



International Journal of Computer Sciences and Engineering                                                                           Vol.13(3), Mar. 2025 

© 2025, IJCSE All Rights Reserved                                                                                                                                              8 

evaluating newer BLAS libraries could lead to further 

performance gains. Furthermore, we plan to explore the 

implementation of machine learning techniques to 

automatically optimize HPL parameters for any given HPC 

configuration. 
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