International Journal of Computer Sciences and Engineering
Vol.13, Issue.3, pp.01-08, March 2025

ISSN: 2347-2693 (Online)

Available online at: www.ijcseonline.org

_
AJCSE

ISSN: 2347-2693 (E)

Research Article

The High-Performance Linpack (HPL) Evaluation on MIHIR High
Performance Computing Facility at NCMRWF

Shivali Gangwarl* , B. Athiyaman2 , Preveen Kumar D.?

123National Centre for Medium Range Weather Forecasting, Noida, India

*Corresponding Author: I

Received: 18/Jan/2025; Accepted: 20/Feb/2025; Published: 31/Mar/2025. DOI: https://doi.org/10.26438/ijcse/v13i3.18

Copyright © 2025 by author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International
= |_icense which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited & its authors credited.

Abstract: The National Centre for Medium Range and Weather Forecasting (NCMRWF) has, the MIHIR High Performance
Computing (HPC) Facility with total computing capacity of 2.8 Petaflops to run Numerical Weather Prediction (NWP) models,
enabling accurate and timely weather forecasting. These models need computations performed in PFLOPS (Peta Floating Point
Operations Per Second). The HPC nodes are interconnected by the high speed, low latency Cray Aries network. High
Performance Linpack (HPL) version 2.3 has been compiled and installed on the system for the study. The purpose of running
HPL is to demonstrate the current computing performance of the HPC, and to assess the systems efficiency by analyzing the
actual calculated performance (Rma) and the theoretical peak performance (Rpe derived from system specifications). We
present a performance evaluation of the HPL benchmark on MIHIR, conducting a detailed analysis of HPL parameters to
optimize performance. The aim is to identify the best-optimized parameter values for MIHIR and determine the maximum

achievable performance of the compute nodes, utilizing up to 300 nodes available for research.

Keywords: HPL, HPC, Aries interconnect, MIHIR, NCMRWF, PFLOPS

1. Introduction

The National Centre for Medium Range Weather Forecasting
(NCMRWF) has a High-Performance Computing (HPC)
facility named MIHIR, which has a computing capacity of 2.8
Petaflops. This HPC system is specifically designed to run
Numerical Weather Prediction (NWP) models, enabling
accurate and timely weather forecasting. The reliability of
these forecasts is crucial for disaster preparedness,
agriculture, aviation, and several other sectors that depend on
precise meteorological information.

One of the key factors contributing to the robust performance
of this facility is its high-speed interconnection infrastructure.
The compute nodes within the system are connected through
a Cray Aries interconnect and utilize a dragonfly topology,
which provides both high speed and low latency
communication. Efficient interconnects and computational
resources directly impact the accuracy and resolution of
weather models, ensuring that forecasts are both timely and
reliable.

Given the critical role of HPC in weather prediction, it is

essential to continuously evaluate and optimize system
performance. NWP models running on this system perform

© 2025, 1JCSE All Rights Reserved

calculations in PFLOPS (Peta Floating Operations Per
Second), demonstrating the immense computational power
required for advanced meteorological simulations. To assess
and ensure the efficiency of MIHIR, benchmarking tests are
conducted, including the use of High-Performance Linpack
(HPL) to measure actual computational performance (Rmax) as
compared to the theoretical peak performance (Rgea). This
benchmarking process not only evaluates the current
performance but also helps identify opportunities for
optimizing system configurations, improving efficiency, and
enhancing forecasting capabilities.

This study is significant because it provides a detailed
analysis of MIHIR’s computational capabilities, highlighting
its strengths and identifying areas for potential enhancement.
Understanding the performance limitations of HPC in the
context of NWP is crucial for ensuring that weather
forecasting models remain accurate and efficient. By
benchmarking MIHIR’s capabilities, this study contributes to
the ongoing efforts to improve HPC infrastructure for
meteorological applications, ultimately supporting better
preparedness for extreme weather events and improving the
overall quality of weather predictions.

mailto:shivaliit05@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-0564-3809
https://orcid.org/0009-0008-1621-4616
https://orcid.org/0000-0001-5775-5621

International Journal of Computer Sciences and Engineering

2. Related Work

High-Performance Linpack (HPL) has been widely used to
evaluate the computational capability of supercomputers.
Several studies have focused on optimizing HPL performance
through parameter tuning, hardware configurations, and
software optimizations.

2.1 HPL Performance Optimization

Previous research has highlighted the importance of selecting
optimal problem sizes (N), block sizes (NB), and process grid
configurations (P x Q) for achieving maximum performance
[11, 12]. Studies have shown that improper selection of these
parameters can lead to significant performance degradation
[5,6].

2.2 Impact of BLAS Libraries on HPL

The choice of BLAS implementation significantly affects
HPL performance. Research comparing different libraries—
such as ATLAS, OpenBLAS, Intel MKL, and Cray’s
scientific libraries—has demonstrated variations in efficiency
based on system architecture and workload distribution [5,9].

2.3 Parallelization and Scalability in HPC Systems
Scalability studies on various HPC systems have shown that
increasing the number of nodes beyond a certain point result
in diminishing performance gains due to inter-node
communication overhead. Researchers have investigated MPI
[10] communication strategies and network topologies to
mitigate these bottlenecks [9].

2.4 HPL on Emerging Architectures

With the rise of heterogeneous computing, recent work has
explored running HPL on AMD EPYC, ARM-based
processors, and GPU-accelerated systems [12,7]. These
studies indicate that different architectures require tailored
optimization strategies to achieve peak efficiency.

These studies provide valuable insights into HPL
benchmarking, parameter tuning, and HPC optimization
strategies, forming the foundation for the present work on
optimizing MIHIR’s performance.

3. Experiment Design and Methodology

3.1 MIHIR: High Performance Computing

The MIHIR HPC system at NCMRWF has 2322 compute
nodes interconnected via a high-performance network. Each
compute node is a dual socket with an Intel Xeon Broadwell
processor. The compute node runs a version of Operating
System optimized for running batch workloads. The software
set running on the nodes includes the SUSE Linux Enterprise
Server 12 SP2 operating system, Cray Message Passing
Interface (MPI) based on MPICH3 source from ANL, Cray's
libSci scientific library and an Intel MKL. The technical

specifications of MIHIR HPC are in Table 1.

© 2025, 1JCSE All Rights Reserved

Vol.13(3), Mar. 2025

Table 1. Technical Specifications of MIHIR HPC

Components Details

Processor Type Intel Xeon Broadwell
E5-2695

Number of Compute Nodes 2322

Total Number of Cores 83592

Interconnect Cray Aries with Dragon
Fly

Node Processor Cores 2 x (2.1 GHz, 36-Core)

Memory Size per Node 128 GB

Memory Type DDR4

Node Cache Size 2x24 MB

Turbo Boost OFF

Usage of Hyper Threading ON

Peak Compute Power 2806 TF

Effective Distributed Memory 297TB

3.2 HPL Benchmarking Method
The Linpack library is a set of FORTRAN subroutines that
are developed for analysing and solving linear equations [11].
This numerical library is used widely for solving systems of
linear equation of the form:

Ax=b (1)

Equation (1) shows a linear system where A represents a
dense matrix that can be decomposed into product of
matrices, having all non-zero elements, x is the unknown
vector, while vector b on the right-hand side is a known
vector. The library offers efficient methods for manipulating
and solving this linear equation problem by performing
matrix factorization of A.

The Linpack library was originally derived from an auxiliary
program found in the Linpack User's Guide publication [11].
It has evolved into a well-structured numerical code capable
of solving dense matrices using double-precision arithmetic.
This suite has now been adopted as a benchmark to efficiently
evaluate performance on supercomputers.

HPL [6,7] is a benchmarking software that has been utilized
by various organizations as the benchmark suite to gauge the
peak performance of their HPC facilities. It is widely adopted
and used as a standard for obtaining maximum performance
measurements in all TOP500 [8] HPC facilities. It is freely
available and highly portable.

To evaluate the accuracy of solutions obtained as well as the
computation time the HPL software package has been
included with testing and timing programs. Achieving
optimal performance with this software hinges on various
factors specific to the system under evaluation. The
benchmarks conducted using this software result in a
measurement computed in Floating-Point Operations per
Second (FLOPS).

The Message Passing Interface (MPI) [10] has been
implemented in HPL software that helps it to run on HPC
systems, which are distributed and need internode
communication. The MPI library specification will facilitate
message passing thus enabling internode communication.

International Journal of Computer Sciences and Engineering

Configuring the HPL software package requires the inclusion
of the Basic Linear Algebra Subprograms (BLAS)
implementation [9]. BLAS comprises application
programming routines that facilitate basic vector and matrix
multiplication operations.

Any of the following BLAS software can be utilized for
compiling HPL. The Cray Scientific Library (CSL),
developed by CRAY, offers a wide range of highly optimized
BLAS routines. Additionally, the Intel® Math Kernel Library
(Intel® MKL) and AMD Core Math Library (ACML) [5,1]
are optimized and highly threaded math libraries that include
BLAS routines. Whereas for this paper, the Cray Scientific
Library (CSL) has been selected to achieve fair and
satisfactory results on MIHIR HPC.

4. Methodology

The initial stage involves installation, and configuring the
HPL. Appropriate compilers for compiling codes are
identified. Following this, the suitable MPI is selected for
facilitating internode communication.

4.1 Building the HPL benchmark
Cray compilers, CCE version 8.6.3, cray-mpich version 7.6.3
and cray scientific library, cray-libsci 17.09.1 has been used.

4.2 HPL main parameters

To optimize the results, we focus on fine-tuning the HPL.dat
[6,7] file within HPL. This file contains 17 parameters, of
which 7 are used for optimizing the result, in this paper, these
are Problem size (N), Number of Process Grids (P x Q),
Block Size (NB), Broadcast Parameter (BCAST), Lookahead
depth (DEPTH), Panel Factorization (PFACT), and Reverse
Panel Factorization (RFACT) [7].

Problem size (N) in HPL is one of the pivotal parameters
used to fully utilize the compute node memory. An important
consideration is to set the problem size such that it does not
exceed the available memory, which can result in getting
swapped out of memory i.e. OOM. Only 93% of memory per
compute node has been used to avoid memory swap and
degraded performance. After calculation and testing, the ideal
problem size value for MIHIR HPC comes out to be 121900.

The processor grid refers to parameters defining the
dimensions of the process grid, typically represented as P and
Q. Here P represents the number of rows of the process and Q
represents the number of columns of the process. To
determine the optimal processor grid, it's common to use
values where Q is greater than P. Thus, configuring P as 4
and Q as 9 seems to be an optimal decision. On MIHIR HPC
setting P to 4 and Q to 9 resulted in optimal performance of
the system.

Determining the optimal block size in HPL is not
straightforward, as it serves dual purposes: distributing data
effectively across processors and determining computational
granularity.

© 2025, 1JCSE All Rights Reserved

Vol.13(3), Mar. 2025

A smaller block size improves load balance in terms of data
distribution, but it can significantly reduce computational
performance due to limited data reuse at higher memory
hierarchy levels. This can lead to an increase in message
count. Optimal block sizes typically fall within 32 to 256
intervals, with the ideal value depending on the system's
computation-to-communication performance ratio. For Intel
Xeon Broadwell E5-2695, the recommended block size is
192. However, multiple runs on different values on MIHIR
HPC revealed that 192 is indeed the optimal block size for
this system.

The broadcast algorithm is used in HPL to distribute
factorized panel columns from one panel to another process
panel. HPL has the following broadcast algorithms available,

such as Increasing-ring, Increasing-ring (modified),
Increasing-2-ring, Increasing-2-ring (modified), long
(bandwidth reducing), and long (bandwidth reducing

modified). The Increasing-ring (modified) algorithm is
recommended for MIHIR HPC due to its better performance.

Implementing this modified algorithm in the broadcast
function on MIHIR HPC has resulted in a significant
improvement, achieving a finer result of 1.09 Tflops per
compute node.

5. Results and Discussion

In this study, we evaluated the performance of the High-
Performance Linpack (HPL) benchmark on MIHIR, a high-
performance computing (HPC) system. The goal was to
analyze the impact of various HPL tuning parameters on
system performance, optimize them for maximum efficiency,
and assess the compute capability of MIHIR when scaling up
to 300 compute nodes.

The primary parameters examined include process grid
configuration (P x Q), problem size (N), block size (NB),
panel factorization (PFACT), recursive panel factorization
(RFACT), broadcast algorithm (BCAST), and lookahead
depth (DEPTH). The results demonstrate how each parameter
influences performance in terms of execution time, GFLOPS,
and efficiency.

5.1 Process grids, P x Q

The number of process grids will determine the optimal value
for the number of nodes that have been used for HPL
execution. The arrangement of P and Q affects the processing
speed and the time needed for problem solving. The test
results obtained are shown in Table 2 and Figure 1 indicate
that as the number of nodes increases, the execution time
stabilizes after an initial improvement in performance.
Speedup and efficiency values suggest that optimal resource
utilization is achieved when all processors are effectively
engaged.

International Journal of Computer Sciences and Engineering

Table 2. Number of Nodes: Processing Speed and Efficiency

Vol.13(3), Mar. 2025

Table 3. Problem Size: Processing Speed and Time Taken

Time Efficiency
Nodes) Gflops | Speedup (%)
1 1106.39 | 109150 | 1 90.228
2 1114.39 | 1084.6 | 0.9936784 | 89.658
4 1113.27 | 1084.70 | 0.99377 89.666
6 1121.78 | 1076.5 | 0.9862574 | 88.989
8 1117.58 | 1080.60 | 0.9900137 | 89.327
10 1116.03 | 1082.10 | 0.991388 | 89.451
12 1117.03 | 1081.10 | 0.9904718 | 89.369
18 1122.05 | 1076.30 | 0.9860742 | 88.972
22 1128.77 | 1069.80 | 0.9801191 | 88.435
24 1180.63 | 1068.90 | 0.9792945 | 88.360
28 1128.79 | 1069.80 | 0.9801191 | 88.435
30 1128.04 | 1070.50 | 0.9807604 | 88.493
36 1122.02 | 1076.30 | 0.9860742 | 88.972
42 1126.67 | 1071.80 | 0.9819514 | 88.600
54 1125.21 | 1073.20 | 0.9832341 | 88.716
72 1117.72 | 1080.40 | 0.9898305 | 89.311
Graph shows Nodes and speedup
1.005
1
0.995
0.99
j= 9
S 0.985
£
2 0.98
0.975
0.97
0.965
1 2 4 6 8 1012182224283036425472
Number of Nodes

Figure 1. Graph showing the relationship between Number of Nodes and
Speedup

According to the results obtained processing speed increases
until all processors are fully utilized, after which the speedup
stabilizes and remains constant.

5.2 Problem Size, N

The problem size refers to the size of the dense matrix that
the benchmark will solve. The size of the matrix determines
the computational load, larger the problem size, better reflects
the true power of the system.

The matrix size determines the amount of memory required
for the computation. As N increases, the memory usage
grows as N?, since the N x N matrix needs to be stored. For
supercomputers, the problem size is chosen to ensure
maximum utilization of memory and processing power. The
goal is to maximize GFLOPS (billions of floating-point
operations per second). The below results demonstrate the
impact of problem size, N on processing speed in solving the
problem

© 2025, 1JCSE All Rights Reserved

Problem Size, N Time (s) | Gflops Speedup
5000 0.31 273.07 1
10000 1.22 546.82 2.0024902
15000 3.44 654.95 2.40
20000 9.45 564.31 2.06653972
50000 84.7 983.89 3.60306881
100000 640.16 1041.40 3.81367415
110000 851.45 1042.20 3.8166038
115000 998.22 1015.70 3.71955909
117000 1017.55 1049.30 3.84260446
118000 1021.91 1071.90 3.92536712
120000 1079.05 1067.60 3.90962024
121000 1090.95 1082.60 3.96455121
121900 1112.95 1085.1 3.97370638
Graph showing the relationship between Problem Size and
Computation Speed
z
é" 1200
g
= 1000
ﬁ' 800
&n
7 600
g
£ 400
200
0
0 20000 40000 60000 80000 100000120000 140000
Problem Size, N

Figure 2. Graph showing the relationship between Problem Size and
Processing Speed

A larger problem size (high N) increases the computational
workload to find the solution, thus leading to higher
computational speeds as shown in Figure 2. However, the
increase in processing speed will plateau once all the
processors are fully utilized in solving the problem, reaching
a saturation point. At this point, the speed increase stabilizes
as the processing power reaches its maximum effectiveness
and efficiency. This behaviour underscores the importance of
selecting an appropriate N to balance workload distribution
and memory utilization.

5.3 Block Size, NB

This execution will demonstrate the impact of Block Size, NB
on the processing speed of the compute node and the time
taken in problem solving as shown in Table 4. The NB [7]
defines how data and computations are distributed across the
processors in the system. It determines how submatrices are
assigned to each processor. An optimal distribution can
improve load balancing and reduce communication overhead
between processor, leading to better performance. The results
obtained from the execution are shown in Figure 3, indicate
that a block size 192 shows the highest computation speed.

International Journal of Computer Sciences and Engineering

Table 4. Block Size: Processing Speed and Time Taken

Block size (NB) Time (s) Gflops
100 1218.51 991.05
125 1282.83 941.37
150 1228.57 982.94
192 1116.51 1081.60
200 1166.4 1035.30
210 1150.86 1049.30
224 1136.74 1062.30

B
2 1000
(74
an
‘g 950
o
&
£ 900

850

100 125 150 192 200 210 224

Block Size, NB

Figure 3. Graph showing the relationship between Block Size and
Processing Speed

Performance degrades for smaller and larger block sizes, as
inefficient data distribution increases computational delays
and synchronization overhead. This confirms that choosing an
appropriate NB is crucial for achieving peak efficiency in
matrix operations.

5.4 Panel Factorization, PFACT

PFACT controls the type of factorization algorithm used by
HPL. Factorization is the process of decomposing a matrix
into simpler components (such as lower and upper triangular
matrices). Selecting among these factorization methods
involves trade-offs between computational efficiency and
communication overhead. PFACT algorithm decomposes the
matrix into panels or blocks and these panels are then
factorized using the LU(Lower-Upper) decomposition
technique. There are three main PFACT algorithms each with
a different approach to solve computation problems. These
are Left PFACT where panels are factorized from the left side
of the matrix i.e. from left to right matrices are factorized, the
Right PFACT where factorization is done from right to left
and the Crout PFACT where factorization is performed from
both left and right simultaneously. The results obtained
during execution are shown in Table 5 and Figure 4. As per
results obtained the Crout PFACT provides the best
computational performance of the compute node. Left and
Right PFACT algorithms exhibit slightly lower efficiency due
to differences in panel decomposition strategies, impacting
communication and memory access patterns.

Table 5. Panel Factorization: Processing speed and Time Take

Panel factorization Time (s) Gflops
Left 1145.15 1054.5
Crout 1112.65 1085.40
Right 1115.16 1082.9

© 2025, IJCSE All Rights Reserved

Vol.13(3), Mar. 2025

1090
1085

1080
1075
1070
1065
1060
1055
1050
1045
1040
1035
Left Crout Right

Panel Factors

Processing Speed (Gflops)

Figure 4. Graph showing the relationship between Panel Factor and
Processing Speed

5.5 Recursive Panel Factorization, RFACT

In RFACT, the matrix is divided into submatrices or panels,
which are then further subdivided until they reach a size
suitable for direct factorization using algorithms like LU
decomposition. This recursive approach is performed in
parallel to improve computational efficiency.

The RFACT algorithms consist of three variants: the left-
looking RFACT, the right-looking RFACT, and the Crout
RFACT algorithms [10]. Figure 5, presents a graph
illustrating the relationship between the RFACT and the
processing speed, measured in Gflops (billion floating-point
operations per second). The figure highlights the performance
comparison among these algorithms, showing their
computational efficiency under varying conditions.

The results presented in Table 6, indicate that the Crout
algorithm when applied in the context of RFACT, enhances
the computational performance of the compute node
compared to the other algorithms analyzed. Also, the Crout
algorithm's structure allows for more efficient utilization of
computational resources, leading to improved processing
speed and better overall performance. This advantage is
particularly evident when compared to the left-looking and
right-looking RFACT algorithms, making the Crout method
more suitable for high-performance scenarios where
maximizing compute efficiency is crucial. Crout RFACT
efficiently utilizes computational resources by minimizing
communication overhead and maximizing parallelism,
making it the preferred choice for achieving higher GFLOPS.

Table 6. Recursive Panel Factorization: Processing speed and Time Taken

Recursive panel Time taken
factorization (s) Gflops
Left 1148.95 1051.1
Crout 1112.65 1085.40
Right 1130.46 1068.2

International Journal of Computer Sciences and Engineering

Vol.13(3), Mar. 2025

1090

1080
1070
1060
1050
1040 I
1030
Left

Crout

Processing Speed (Gflops)

Right

Recursive Panel Factorization

1090.00

1080.00

1070.00

1060.00

1050.00

Processing Speed (Gflops)

1040.00
1030.00
1020.00
1010.00

1000.00 | | | | I I
1 ring 1 ring 2 ring 2 ring long long

(modified) modified message message
(modified)

BCAST

Figure 5. Graph showing the relationship between RFACT and Processing
Speed

5.6 Broadcast Parameter, BCAST

The execution for the BCAST parameter aims to analyze the
impact of the broadcast algorithms on processing speed and
problem-solving time in HPC environment. The BCAST
determines how data is efficiently distributed from one
processor to another processors or nodes in an HPC.

The following broadcast algorithms are used in the study, the
increasing-1-ring, which involves sending data in a linear
chain or ring and each processor sends the data to the
immediate neighbor continuing until all processors receive
data; the increasing-1-ring (modified), it is a variation to
increase-1-ring with optimizations and reduced
communication overhead; the increasing-2-ring, where data is
send to two neighbors simultaneously; the increasing-2-ring
(modified), is the variation to increase-2-ring with
optimizations and reduced communication overhead; the long
(bandwidth reducing), where some techniques like data
compression, message aggregation, or intelligent routing are
being used to minimize bandwidth usage; and the long
(bandwidth reducing modified), is an enhanced version of this
algorithm with additional optimizations or adjustment.

The results from the execution, are presented in Table 7 and
Figure 6, indicate that the modified increasing-2-ring
algorithm enhances the computational performance of the
compute node compared to the other algorithms evaluated.
This improvement is evident in terms of both processing
speed and overall efficiency. The modified approach
optimizes communication and data handling within the node,
allowing for better resource utilization and faster
computation, making it the most effective option among the
algorithms tested. Other algorithms, such as the long

Figure 6. Graph showing the relationship between BCAST and Processing
Speed

5.7 Lookahead Depth

The Look Ahead Depth parameter in HPL determines how
many levels of factorization trees are computed concurrently.
It is a crucial concept related to pipelining and overlapping
computations to improve performance. By reordering
operations, the HPL can execute less efficient operations
concurrently with more efficient ones, reducing idle times
and improving overall performance. With a lookahead depth
of 1, HPL can achieve some overlap between communication
and computation, but not as much as higher depths. It will
reduce idle processor time compared to no lookahead (depth
0). When the look ahead depth is set greater than zero, the
benchmark precomputes and stores the panels being
factorized in memory, allowing it to "look ahead". This
approach consumes more memory but results in a
performance boost by allowing more parallelism. As shown
in Figure 7 and Table 8, MIHIR achieves better performance
with a lookahead depth of 1. A depth of O results in lower
GFLOPS due to reduced concurrency, while higher depths
may introduce memory overhead without significant
performance gains.

Table 8. Lookahead Depth: Processing Speed and Time Taken

Depth Time (s) Gflops

0 1117.29
1 1113.56

1080.80
1084.50

bandwidth-reducing methods, demonstrate lower
performance due to increased data transmission latency.
Table 7. Broadcast: Processing Speed and Time Taken
Broadcast
Algorithms Time (s) Gflops
Increasing-ring 1112.65 1085.40
Increasing-ring (modified) 1112.95 1085.10
Increasing 2 ring 1125.54 1072.90
Increasing 2-ring modified 1113.56 1084.50
long bandwidth reducing 1168.69 1033.30
long (bandwidth reducing modified) 1152.02 1048.30

© 2025, IJCSE All Rights Reserved

1100.00
1095.00
1090.00
1085.00
1080.00
1075.00
1070.00
1065.00
1060.00
1055.00
1050.00

Processing Speed (Gflops)

Lookahead Depth

Figure 7. Graph showing the relationship between Depth and Processing
Speed

International Journal of Computer Sciences and Engineering

5.8 Final Test Run based on Achieved Values
Based on the results obtained from execution, the HPL is
configured with optimized parameters as follows:

Table 9. Optimized Parameters

Parameters Optimized values
N 121900

NB 192

PFACT Crout

RFACT Crout

BCAST 3 (2-ring modified)
DEPTH 1

The formula used for calculating the Problem size is as shown
in Figure 1.

x93
8

N = \/ (Mmory Size per node X 1024* X Number of Nodes]
[128X 10247 X 1
N = e —

2]X(J.Q.’% = 121,900

(2
The important consideration is to set the problem size such
that it does not exceed the available memory on the node,
which can result in getting swapped out of memory i.e. OOM.
Only 93% of memory per compute node has been used to
avoid memory swap and degraded performance. After
calculation and testing, the ideal problem size value for
MIHIR HPC comes out to be 121900.

The Rpea is calculated based on system’s specifications,
whereas the Rmax is measured during the actual HPL
execution. To calculate the theoretical peak, the rate of
executing floating-point operations is needed. Manufacturers
provide a figure for floating-point operations, which serves as
an upper limit on performance. Thus, the Rpe, is computed
using equation (3), which takes into account the number of
floating-point operations for addition and multiplication in
full precision that can be performed within a specified time
frame, typically the cycle time of the machine.

The Intel Xeon Broadwell E5-2695, 2.1 GHz processor can
execute 8 double precision floating-point operations per cycle
per core and 16 single precision floating point operations per
cycle per core. The calculations for Rpeak are as follows:

Rm o No. of Nodes X No. of Cores per Node
X Speed per Core (GHz) X Operations per Cycle 3)

ingle ci e} = 1X36X2.1X16 = lops
R;wal\ (Single compute node) = 1X36X2.1X16 = 1.209 Tflops (4)

The highest possible result achievable is 1.209 Tflops per
compute node as determined by equation (4).

The Rpax obtained by running the HPL benchmark suite is
measured in Tflops. In this paper, we achieved the Rmax of
1.0915 Tflops using problem size of 121900, a 4 x 9
processor grid, a block size of 192 and the 2-ring modified

© 2025, 1JCSE All Rights Reserved

Vol.13(3), Mar. 2025

broadcast algorithm. The system efficiency can be determined
by calculating the ratio of Rpmax t0 Rpea.

R

max

X 100
pedik (5)

System Efficiency =

1.091
Efficiency (Single compute node) = (m) X100 = 90.23%

To determine the efficiency of the MIHIR HPC, equation (5)
has been used. Hence the overall efficiency of MIHIR HPC
comes out as 90.23%.

5. Conclusion and Future Scope

We presented the performance of the HPL benchmark on
MIHIR HPC system, focusing on optimizing HPL tuning
parameters to achieve the best possible computational
efficiency. The goal was to identify the most optimized
parameter values for MIHIR and determine the system’s peak
performance using up to 300 compute nodes.

The process grid configuration affects execution time and
efficiency, with diminishing returns beyond an optimal node
count. Problem size (N) must be carefully selected to
maximize GFLOPS without exceeding memory limitations.
Block size (NB) of 192 provides the best performance by
balancing data distribution and computation. Crout panel
factorization (PFACT) and recursive panel factorization
(RFACT) vyield superior results compared to Left and Right
variants. The modified increasing-2-ring broadcast algorithm
optimizes data transmission, reducing communication
overhead. A lookahead depth of 1 enhances performance by
effectively overlapping computations.

The HPL tuning parameters N, NB, P and Q are crucial for
achieving better performance. P and Q must be selected
ensuring that P<= Q. The 4 x 9 combination yielded the best
results on MIHIR. The block size NB=192 has been used,
which is the recommended value for Intel Xeon Broadwell
E5-2695. The problem size N is set to define the biggest
problem that would fit into the available memory.

For 300 nodes, the measured parallel efficiency comes out to
be 90.22% with total maximum calculated performance for
300 nodes, Ryax=328 TFLOP/s.

Among BLAS implementations, Cray Scientific Libraries
performed the best, significantly outperforming Intel MKL
and ATLAS, the latter showing the lowest efficiency. These
findings confirm that optimal tuning and library selection are
critical for maximizing HPC performance.

For future work, we aim to extend this study by optimizing
other HPC architectures, such as AMD processors, and
experimenting with GPU-accelerated HPL benchmarks.
Additionally, refining MPI communication strategies and

7

International Journal of Computer Sciences and Engineering

evaluating newer BLAS libraries could lead to further
performance gains. Furthermore, we plan to explore the
implementation of machine learning techniques to
automatically optimize HPL parameters for any given HPC
configuration.

Conflict of Interests

The authors have no relevant financial or non-financial,
personal or other relationships with other people or
organizations that could inappropriately influence, or be
perceived to influence, their work. Otherwise, Authors
declare that they do not have any conflict of interest.

Funding Source
The authors declare that no funds, grants, or other support
were received during the preparation of this manuscript.

Author Contributions

All authors have contributed to the study conception and
design. Installation, configuration and execution analysis
were performed by Shivali Gangwar. B. Athiyaman and
Preveen D has provided technical information about HPC
infrastructure, to support in system along with guidance,
revision, discussion, and finalization of the report. The first
draft of the manuscript was written by Shivali Gangwar and
all authors commented on previous versions of the
manuscript. All authors have read and approved the final
manuscript.

Acknowledgements

All authors appreciate the support and guidance from our
colleagues at NCMRWF during this work. Special thanks to
the Head, Dr. V.S. Prasad for his continuous encouragement
and unwavering support.

References

[1] A. Petitet, R. C. Whaley, J. Dongarra, A. Cleary, “HPL - A
Portable Implementation of the High-Performance Linpack
Benchmark for Distributed-Memory Computers,” Innovative
Computing Laboratory, University of Tennessee, pp.1-10, 2018.

[2] A. Smith, B. Johnson, "Performance Analysis of HPL on Intel's
Icelake Architecture," Proceedings of the International Conference
on High-Performance Computing Systems, pp.123-130, 2021.

[3] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, “Basic Linear
Algebra Subprograms for Fortran usage,” ACM Transactions on
Mathematical Software, Vol.5, Issue.4, pp.308-323, 1979.

[4] 1. M. Jelas, N. A. W. A. Hamid, M. Othman, “The High-
Performance Linpack (HPL) Benchmark on the Khaldun Sandbox
Cluster,” Journal of High-Performance Computing, pp.1-15, 2013.

[5] Intel Corporation, "Intel® Math Kernel Library: Reference
Manual," 2020.

[6] J. J. Dongarra, J. R. Bunch, G. B. Moler, G. W. Stewart,
“LINPACK Users' Guide,” Society for Industrial and Applied
Mathematics (SIAM), USA, pp.1-250, 1979.

[71 J. J. Dongarra, P. Luszczek, A. Petitet, “The LINPACK
Benchmark: Past, Present, and Future,” Concurrency and
Computation: Practice & Experience, Vol.15, pp.803-820, 2003.

[8] J. J. Dongarra, H. W. Meuer, E. Strohmaier, "TOP500
Supercomputer Sites," International Journal of High Performance
Computing Applications, Vol.11, No.3, pp.90-94, 1997.

[9] Khang T. Nguyen, "Performance Comparison of OpenBLAS and
Intel oneAPI Math Kernel Library in R," International Journal of

© 2025, 1JCSE All Rights Reserved

Vol.13(3), Mar. 2025

Computational Science and Engineering, Vol.5, No.3, pp.123-130,
2020.

[10] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. J. Dongarra,
“MPI: The Complete Reference,” MIT Press, USA, pp.1-500,
1996.

[11] M. Fatica, "Accelerating Linpack with CUDA on Heterogeneous
Clusters," Proceedings of the 2nd Workshop on General-Purpose
Processing on Graphics Processing Units (GPGPU-2), pp.46-51,
2009.

[12] Wong Chun Shiang, lzzatdin Abdul Aziz, Nazleeni Samiha Haron,
Jafreezal Jaafar, Norzatul Natrah Ismail, Mazlina Mehat, “The
High-Performance Linpack (HPL) Benchmark Evaluation on UTP
High-Performance Cluster Computing,” Jurnal Teknologi, Vol.78,
Issue.9, pp.21-30, 2016.

AUTHORS PROFILE

Shivali Gangwar earned B. Tech., in
Information Technology from Guru
Gobind Singh Indraprastha University
and M.tech. in Computer Science
Engineering from Maharishi Dayanand
University in 2005 and, 2016
respectively. Currently in Department of
High-Performance Computing, i
National Centre for Medium Range Weather Forecastlng,
Noida, since 2013 as part of various HPC organization and
joined NCMRWF in 2023. My main research work focuses
on HPC, Benchmarking, Profiling Weather Models. | have
total 19 years of IT experience and research experience.

Dr. B. Athiyaman earned his Ph.D. in
Computer Science from [T, Gwalior.

His Research Areas are High
Performance Computing (HPC),
Computer Networking, Data Mining,

Neural Network and Fuzzy systems. He
is Computing and Infrastructure Head in
National Centre for Medium Range
Weather Forecasting (NCMRWEF), Noida. He has publlshed
many research papers. He has more than 30 years of research
experience in NCMRWF.

Dr. Preveen Kumar D. earned his Ph.D.
from University of Delhi. He is in
Computer & Al at National Centre for
Medium Range Weather Forecasting
(NCMRWEF), Noida. His research areas
include High Performance Computing,
Al/ML, Computer Network, DWR data
quality control. He has published many
research papers in reputed international

journals and
conferences. His main research work focuses AI/ML in

Weather forecasting and HPC infrastructure Head in
NCMRWEF. He has more than 30 years of research experience
in NCMRWF.

