
© 2025, IJCSE All Rights Reserved 1

International Journal of Computer Sciences and Engineering
Vol.13, Issue.3, pp.01-08, March 2025

ISSN: 2347-2693 (Online)

Available online at: www.ijcseonline.org

Research Article

The High-Performance Linpack (HPL) Evaluation on MIHIR High

Performance Computing Facility at NCMRWF

Shivali Gangwar
1*

, B. Athiyaman
2

, Preveen Kumar D.
3

1,2,3National Centre for Medium Range Weather Forecasting, Noida, India

*Corresponding Author: ✉

Received: 18/Jan/2025; Accepted: 20/Feb/2025; Published: 31/Mar/2025. DOI: https://doi.org/10.26438/ijcse/v13i3.18

Copyright © 2025 by author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International
License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited & its authors credited.

Abstract: The National Centre for Medium Range and Weather Forecasting (NCMRWF) has, the MIHIR High Performance

Computing (HPC) Facility with total computing capacity of 2.8 Petaflops to run Numerical Weather Prediction (NWP) models,

enabling accurate and timely weather forecasting. These models need computations performed in PFLOPS (Peta Floating Point

Operations Per Second). The HPC nodes are interconnected by the high speed, low latency Cray Aries network. High

Performance Linpack (HPL) version 2.3 has been compiled and installed on the system for the study. The purpose of running

HPL is to demonstrate the current computing performance of the HPC, and to assess the systems efficiency by analyzing the

actual calculated performance (Rmax) and the theoretical peak performance (Rpeak, derived from system specifications). We

present a performance evaluation of the HPL benchmark on MIHIR, conducting a detailed analysis of HPL parameters to

optimize performance. The aim is to identify the best-optimized parameter values for MIHIR and determine the maximum

achievable performance of the compute nodes, utilizing up to 300 nodes available for research.

Keywords: HPL, HPC, Aries interconnect, MIHIR, NCMRWF, PFLOPS

1. Introduction

The National Centre for Medium Range Weather Forecasting

(NCMRWF) has a High-Performance Computing (HPC)

facility named MIHIR, which has a computing capacity of 2.8

Petaflops. This HPC system is specifically designed to run

Numerical Weather Prediction (NWP) models, enabling

accurate and timely weather forecasting. The reliability of

these forecasts is crucial for disaster preparedness,

agriculture, aviation, and several other sectors that depend on

precise meteorological information.

One of the key factors contributing to the robust performance

of this facility is its high-speed interconnection infrastructure.

The compute nodes within the system are connected through

a Cray Aries interconnect and utilize a dragonfly topology,

which provides both high speed and low latency

communication. Efficient interconnects and computational

resources directly impact the accuracy and resolution of

weather models, ensuring that forecasts are both timely and

reliable.

Given the critical role of HPC in weather prediction, it is

essential to continuously evaluate and optimize system

performance. NWP models running on this system perform

calculations in PFLOPS (Peta Floating Operations Per

Second), demonstrating the immense computational power

required for advanced meteorological simulations. To assess

and ensure the efficiency of MIHIR, benchmarking tests are

conducted, including the use of High-Performance Linpack

(HPL) to measure actual computational performance (Rmax) as

compared to the theoretical peak performance (Rpeak). This

benchmarking process not only evaluates the current

performance but also helps identify opportunities for

optimizing system configurations, improving efficiency, and

enhancing forecasting capabilities.

This study is significant because it provides a detailed

analysis of MIHIR’s computational capabilities, highlighting

its strengths and identifying areas for potential enhancement.

Understanding the performance limitations of HPC in the

context of NWP is crucial for ensuring that weather

forecasting models remain accurate and efficient. By

benchmarking MIHIR’s capabilities, this study contributes to

the ongoing efforts to improve HPC infrastructure for

meteorological applications, ultimately supporting better

preparedness for extreme weather events and improving the

overall quality of weather predictions.

mailto:shivaliit05@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-0564-3809
https://orcid.org/0009-0008-1621-4616
https://orcid.org/0000-0001-5775-5621

International Journal of Computer Sciences and Engineering Vol.13(3), Mar. 2025

© 2025, IJCSE All Rights Reserved 2

2. Related Work

High-Performance Linpack (HPL) has been widely used to

evaluate the computational capability of supercomputers.

Several studies have focused on optimizing HPL performance

through parameter tuning, hardware configurations, and

software optimizations.

2.1 HPL Performance Optimization

Previous research has highlighted the importance of selecting

optimal problem sizes (N), block sizes (NB), and process grid

configurations (P × Q) for achieving maximum performance

[11, 12]. Studies have shown that improper selection of these

parameters can lead to significant performance degradation

[5,6].

2.2 Impact of BLAS Libraries on HPL

The choice of BLAS implementation significantly affects

HPL performance. Research comparing different libraries—

such as ATLAS, OpenBLAS, Intel MKL, and Cray’s

scientific libraries—has demonstrated variations in efficiency

based on system architecture and workload distribution [5,9].

2.3 Parallelization and Scalability in HPC Systems

Scalability studies on various HPC systems have shown that

increasing the number of nodes beyond a certain point result

in diminishing performance gains due to inter-node

communication overhead. Researchers have investigated MPI

[10] communication strategies and network topologies to

mitigate these bottlenecks [9].

2.4 HPL on Emerging Architectures

With the rise of heterogeneous computing, recent work has

explored running HPL on AMD EPYC, ARM-based

processors, and GPU-accelerated systems [12,7]. These

studies indicate that different architectures require tailored

optimization strategies to achieve peak efficiency.

These studies provide valuable insights into HPL

benchmarking, parameter tuning, and HPC optimization

strategies, forming the foundation for the present work on

optimizing MIHIR’s performance.

3. Experiment Design and Methodology

3.1 MIHIR: High Performance Computing

The MIHIR HPC system at NCMRWF has 2322 compute

nodes interconnected via a high-performance network. Each

compute node is a dual socket with an Intel Xeon Broadwell

processor. The compute node runs a version of Operating

System optimized for running batch workloads. The software

set running on the nodes includes the SUSE Linux Enterprise

Server 12 SP2 operating system, Cray Message Passing

Interface (MPI) based on MPICH3 source from ANL, Cray's

libSci scientific library and an Intel MKL. The technical

specifications of MIHIR HPC are in Table 1.

Table 1. Technical Specifications of MIHIR HPC

Components Details

Processor Type Intel Xeon Broadwell

E5-2695

Number of Compute Nodes 2322

Total Number of Cores 83592

Interconnect Cray Aries with Dragon

Fly

Node Processor Cores 2 x (2.1 GHz, 36-Core)

Memory Size per Node 128 GB

Memory Type DDR4

Node Cache Size 2 x 24 MB

Turbo Boost OFF

Usage of Hyper Threading ON

Peak Compute Power 2806 TF

Effective Distributed Memory 297TB

3.2 HPL Benchmarking Method

The Linpack library is a set of FORTRAN subroutines that

are developed for analysing and solving linear equations [11].

This numerical library is used widely for solving systems of

linear equation of the form:

 (1)

Equation (1) shows a linear system where A represents a

dense matrix that can be decomposed into product of

matrices, having all non-zero elements, x is the unknown

vector, while vector b on the right-hand side is a known

vector. The library offers efficient methods for manipulating

and solving this linear equation problem by performing

matrix factorization of A.

The Linpack library was originally derived from an auxiliary

program found in the Linpack User's Guide publication [11].

It has evolved into a well-structured numerical code capable

of solving dense matrices using double-precision arithmetic.

This suite has now been adopted as a benchmark to efficiently

evaluate performance on supercomputers.

HPL [6,7] is a benchmarking software that has been utilized

by various organizations as the benchmark suite to gauge the

peak performance of their HPC facilities. It is widely adopted

and used as a standard for obtaining maximum performance

measurements in all TOP500 [8] HPC facilities. It is freely

available and highly portable.

To evaluate the accuracy of solutions obtained as well as the

computation time the HPL software package has been

included with testing and timing programs. Achieving

optimal performance with this software hinges on various

factors specific to the system under evaluation. The

benchmarks conducted using this software result in a

measurement computed in Floating-Point Operations per

Second (FLOPS).

The Message Passing Interface (MPI) [10] has been

implemented in HPL software that helps it to run on HPC

systems, which are distributed and need internode

communication. The MPI library specification will facilitate

message passing thus enabling internode communication.

International Journal of Computer Sciences and Engineering Vol.13(3), Mar. 2025

© 2025, IJCSE All Rights Reserved 3

Configuring the HPL software package requires the inclusion

of the Basic Linear Algebra Subprograms (BLAS)

implementation [9]. BLAS comprises application

programming routines that facilitate basic vector and matrix

multiplication operations.

Any of the following BLAS software can be utilized for

compiling HPL. The Cray Scientific Library (CSL),

developed by CRAY, offers a wide range of highly optimized

BLAS routines. Additionally, the Intel® Math Kernel Library

(Intel® MKL) and AMD Core Math Library (ACML) [5,1]

are optimized and highly threaded math libraries that include

BLAS routines. Whereas for this paper, the Cray Scientific

Library (CSL) has been selected to achieve fair and

satisfactory results on MIHIR HPC.

4. Methodology

The initial stage involves installation, and configuring the

HPL. Appropriate compilers for compiling codes are

identified. Following this, the suitable MPI is selected for

facilitating internode communication.

4.1 Building the HPL benchmark

Cray compilers, CCE version 8.6.3, cray-mpich version 7.6.3

and cray scientific library, cray-libsci 17.09.1 has been used.

4.2 HPL main parameters

To optimize the results, we focus on fine-tuning the HPL.dat

[6,7] file within HPL. This file contains 17 parameters, of

which 7 are used for optimizing the result, in this paper, these

are Problem size (N), Number of Process Grids (P x Q),

Block Size (NB), Broadcast Parameter (BCAST), Lookahead

depth (DEPTH), Panel Factorization (PFACT), and Reverse

Panel Factorization (RFACT) [7].

Problem size (N) in HPL is one of the pivotal parameters

used to fully utilize the compute node memory. An important

consideration is to set the problem size such that it does not

exceed the available memory, which can result in getting

swapped out of memory i.e. OOM. Only 93% of memory per

compute node has been used to avoid memory swap and

degraded performance. After calculation and testing, the ideal

problem size value for MIHIR HPC comes out to be 121900.

The processor grid refers to parameters defining the

dimensions of the process grid, typically represented as P and

Q. Here P represents the number of rows of the process and Q

represents the number of columns of the process. To

determine the optimal processor grid, it's common to use

values where Q is greater than P. Thus, configuring P as 4

and Q as 9 seems to be an optimal decision. On MIHIR HPC

setting P to 4 and Q to 9 resulted in optimal performance of

the system.

Determining the optimal block size in HPL is not

straightforward, as it serves dual purposes: distributing data

effectively across processors and determining computational

granularity.

A smaller block size improves load balance in terms of data

distribution, but it can significantly reduce computational

performance due to limited data reuse at higher memory

hierarchy levels. This can lead to an increase in message

count. Optimal block sizes typically fall within 32 to 256

intervals, with the ideal value depending on the system's

computation-to-communication performance ratio. For Intel

Xeon Broadwell E5-2695, the recommended block size is

192. However, multiple runs on different values on MIHIR

HPC revealed that 192 is indeed the optimal block size for

this system.

The broadcast algorithm is used in HPL to distribute

factorized panel columns from one panel to another process

panel. HPL has the following broadcast algorithms available,

such as Increasing-ring, Increasing-ring (modified),

Increasing-2-ring, Increasing-2-ring (modified), long

(bandwidth reducing), and long (bandwidth reducing

modified). The Increasing-ring (modified) algorithm is

recommended for MIHIR HPC due to its better performance.

Implementing this modified algorithm in the broadcast

function on MIHIR HPC has resulted in a significant

improvement, achieving a finer result of 1.09 Tflops per

compute node.

5. Results and Discussion

In this study, we evaluated the performance of the High-

Performance Linpack (HPL) benchmark on MIHIR, a high-

performance computing (HPC) system. The goal was to

analyze the impact of various HPL tuning parameters on

system performance, optimize them for maximum efficiency,

and assess the compute capability of MIHIR when scaling up

to 300 compute nodes.

The primary parameters examined include process grid

configuration (P × Q), problem size (N), block size (NB),

panel factorization (PFACT), recursive panel factorization

(RFACT), broadcast algorithm (BCAST), and lookahead

depth (DEPTH). The results demonstrate how each parameter

influences performance in terms of execution time, GFLOPS,

and efficiency.

5.1 Process grids, P x Q

The number of process grids will determine the optimal value

for the number of nodes that have been used for HPL

execution. The arrangement of P and Q affects the processing

speed and the time needed for problem solving. The test

results obtained are shown in Table 2 and Figure 1 indicate

that as the number of nodes increases, the execution time

stabilizes after an initial improvement in performance.

Speedup and efficiency values suggest that optimal resource

utilization is achieved when all processors are effectively

engaged.

International Journal of Computer Sciences and Engineering Vol.13(3), Mar. 2025

© 2025, IJCSE All Rights Reserved 4

Table 2. Number of Nodes: Processing Speed and Efficiency

Nodes
Time

(s)
Gflops Speedup

Efficiency

(%)

1 1106.39 1091.50 1 90.228

2 1114.39 1084.6 0.9936784 89.658

4 1113.27 1084.70 0.99377 89.666

6 1121.78 1076.5 0.9862574 88.989

8 1117.58 1080.60 0.9900137 89.327

10 1116.03 1082.10 0.991388 89.451

12 1117.03 1081.10 0.9904718 89.369

18 1122.05 1076.30 0.9860742 88.972

22 1128.77 1069.80 0.9801191 88.435

24 1180.63 1068.90 0.9792945 88.360

28 1128.79 1069.80 0.9801191 88.435

30 1128.04 1070.50 0.9807604 88.493

36 1122.02 1076.30 0.9860742 88.972

42 1126.67 1071.80 0.9819514 88.600

54 1125.21 1073.20 0.9832341 88.716

72 1117.72 1080.40 0.9898305 89.311

Figure 1. Graph showing the relationship between Number of Nodes and

Speedup

According to the results obtained processing speed increases

until all processors are fully utilized, after which the speedup

stabilizes and remains constant.

5.2 Problem Size, N

The problem size refers to the size of the dense matrix that

the benchmark will solve. The size of the matrix determines

the computational load, larger the problem size, better reflects

the true power of the system.

The matrix size determines the amount of memory required

for the computation. As N increases, the memory usage

grows as N
2
, since the N x N matrix needs to be stored. For

supercomputers, the problem size is chosen to ensure

maximum utilization of memory and processing power. The

goal is to maximize GFLOPS (billions of floating-point

operations per second). The below results demonstrate the

impact of problem size, N on processing speed in solving the

problem

Table 3. Problem Size: Processing Speed and Time Taken

Problem Size, N Time (s) Gflops Speedup

5000 0.31 273.07 1

10000 1.22 546.82 2.0024902

15000 3.44 654.95 2.40

20000 9.45 564.31 2.06653972

50000 84.7 983.89 3.60306881

100000 640.16 1041.40 3.81367415

110000 851.45 1042.20 3.8166038

115000 998.22 1015.70 3.71955909

117000 1017.55 1049.30 3.84260446

118000 1021.91 1071.90 3.92536712

120000 1079.05 1067.60 3.90962024

121000 1090.95 1082.60 3.96455121

121900 1112.95 1085.1 3.97370638

Figure 2. Graph showing the relationship between Problem Size and

Processing Speed

A larger problem size (high N) increases the computational

workload to find the solution, thus leading to higher

computational speeds as shown in Figure 2. However, the

increase in processing speed will plateau once all the

processors are fully utilized in solving the problem, reaching

a saturation point. At this point, the speed increase stabilizes

as the processing power reaches its maximum effectiveness

and efficiency. This behaviour underscores the importance of

selecting an appropriate N to balance workload distribution

and memory utilization.

5.3 Block Size, NB

This execution will demonstrate the impact of Block Size, NB

on the processing speed of the compute node and the time

taken in problem solving as shown in Table 4. The NB [7]

defines how data and computations are distributed across the

processors in the system. It determines how submatrices are

assigned to each processor. An optimal distribution can

improve load balancing and reduce communication overhead

between processor, leading to better performance. The results

obtained from the execution are shown in Figure 3, indicate

that a block size 192 shows the highest computation speed.

International Journal of Computer Sciences and Engineering Vol.13(3), Mar. 2025

© 2025, IJCSE All Rights Reserved 5

Table 4. Block Size: Processing Speed and Time Taken

Block size (NB) Time (s) Gflops

100 1218.51 991.05

125 1282.83 941.37

150 1228.57 982.94

192 1116.51 1081.60

200 1166.4 1035.30

210 1150.86 1049.30

224 1136.74 1062.30

Figure 3. Graph showing the relationship between Block Size and

Processing Speed

Performance degrades for smaller and larger block sizes, as

inefficient data distribution increases computational delays

and synchronization overhead. This confirms that choosing an

appropriate NB is crucial for achieving peak efficiency in

matrix operations.

5.4 Panel Factorization, PFACT

PFACT controls the type of factorization algorithm used by

HPL. Factorization is the process of decomposing a matrix

into simpler components (such as lower and upper triangular

matrices). Selecting among these factorization methods

involves trade-offs between computational efficiency and

communication overhead. PFACT algorithm decomposes the

matrix into panels or blocks and these panels are then

factorized using the LU(Lower-Upper) decomposition

technique. There are three main PFACT algorithms each with

a different approach to solve computation problems. These

are Left PFACT where panels are factorized from the left side

of the matrix i.e. from left to right matrices are factorized, the

Right PFACT where factorization is done from right to left

and the Crout PFACT where factorization is performed from

both left and right simultaneously. The results obtained

during execution are shown in Table 5 and Figure 4. As per

results obtained the Crout PFACT provides the best

computational performance of the compute node. Left and

Right PFACT algorithms exhibit slightly lower efficiency due

to differences in panel decomposition strategies, impacting

communication and memory access patterns.

Table 5. Panel Factorization: Processing speed and Time Take

Panel factorization Time (s) Gflops

Left 1145.15 1054.5

Crout 1112.65 1085.40

Right 1115.16 1082.9

Figure 4. Graph showing the relationship between Panel Factor and

Processing Speed

5.5 Recursive Panel Factorization, RFACT

In RFACT, the matrix is divided into submatrices or panels,

which are then further subdivided until they reach a size

suitable for direct factorization using algorithms like LU

decomposition. This recursive approach is performed in

parallel to improve computational efficiency.

The RFACT algorithms consist of three variants: the left-

looking RFACT, the right-looking RFACT, and the Crout

RFACT algorithms [10]. Figure 5, presents a graph

illustrating the relationship between the RFACT and the

processing speed, measured in Gflops (billion floating-point

operations per second). The figure highlights the performance

comparison among these algorithms, showing their

computational efficiency under varying conditions.

The results presented in Table 6, indicate that the Crout

algorithm when applied in the context of RFACT, enhances

the computational performance of the compute node

compared to the other algorithms analyzed. Also, the Crout

algorithm's structure allows for more efficient utilization of

computational resources, leading to improved processing

speed and better overall performance. This advantage is

particularly evident when compared to the left-looking and

right-looking RFACT algorithms, making the Crout method

more suitable for high-performance scenarios where

maximizing compute efficiency is crucial. Crout RFACT

efficiently utilizes computational resources by minimizing

communication overhead and maximizing parallelism,

making it the preferred choice for achieving higher GFLOPS.

Table 6. Recursive Panel Factorization: Processing speed and Time Taken

Recursive panel

factorization

Time taken

(s) Gflops

Left 1148.95 1051.1

Crout 1112.65 1085.40

Right 1130.46 1068.2

International Journal of Computer Sciences and Engineering Vol.13(3), Mar. 2025

© 2025, IJCSE All Rights Reserved 6

Figure 5. Graph showing the relationship between RFACT and Processing

Speed

5.6 Broadcast Parameter, BCAST

The execution for the BCAST parameter aims to analyze the

impact of the broadcast algorithms on processing speed and

problem-solving time in HPC environment. The BCAST

determines how data is efficiently distributed from one

processor to another processors or nodes in an HPC.

The following broadcast algorithms are used in the study, the

increasing-1-ring, which involves sending data in a linear

chain or ring and each processor sends the data to the

immediate neighbor continuing until all processors receive

data; the increasing-1-ring (modified), it is a variation to

increase-1-ring with optimizations and reduced

communication overhead; the increasing-2-ring, where data is

send to two neighbors simultaneously; the increasing-2-ring

(modified), is the variation to increase-2-ring with

optimizations and reduced communication overhead; the long

(bandwidth reducing), where some techniques like data

compression, message aggregation, or intelligent routing are

being used to minimize bandwidth usage; and the long

(bandwidth reducing modified), is an enhanced version of this

algorithm with additional optimizations or adjustment.

The results from the execution, are presented in Table 7 and

Figure 6, indicate that the modified increasing-2-ring

algorithm enhances the computational performance of the

compute node compared to the other algorithms evaluated.

This improvement is evident in terms of both processing

speed and overall efficiency. The modified approach

optimizes communication and data handling within the node,

allowing for better resource utilization and faster

computation, making it the most effective option among the

algorithms tested. Other algorithms, such as the long

bandwidth-reducing methods, demonstrate lower

performance due to increased data transmission latency.

Table 7. Broadcast: Processing Speed and Time Taken

Broadcast

Algorithms Time (s) Gflops

Increasing-ring 1112.65 1085.40

Increasing-ring (modified) 1112.95 1085.10

Increasing 2 ring 1125.54 1072.90

Increasing 2-ring modified 1113.56 1084.50

long bandwidth reducing 1168.69 1033.30

long (bandwidth reducing modified) 1152.02 1048.30

Figure 6. Graph showing the relationship between BCAST and Processing

Speed

5.7 Lookahead Depth

The Look Ahead Depth parameter in HPL determines how

many levels of factorization trees are computed concurrently.

It is a crucial concept related to pipelining and overlapping

computations to improve performance. By reordering

operations, the HPL can execute less efficient operations

concurrently with more efficient ones, reducing idle times

and improving overall performance. With a lookahead depth

of 1, HPL can achieve some overlap between communication

and computation, but not as much as higher depths. It will

reduce idle processor time compared to no lookahead (depth

0). When the look ahead depth is set greater than zero, the

benchmark precomputes and stores the panels being

factorized in memory, allowing it to "look ahead". This

approach consumes more memory but results in a

performance boost by allowing more parallelism. As shown

in Figure 7 and Table 8, MIHIR achieves better performance

with a lookahead depth of 1. A depth of 0 results in lower

GFLOPS due to reduced concurrency, while higher depths

may introduce memory overhead without significant

performance gains.

Table 8. Lookahead Depth: Processing Speed and Time Taken

Depth Time (s) Gflops

0 1117.29 1080.80

1 1113.56 1084.50

Figure 7. Graph showing the relationship between Depth and Processing

Speed

International Journal of Computer Sciences and Engineering Vol.13(3), Mar. 2025

© 2025, IJCSE All Rights Reserved 7

5.8 Final Test Run based on Achieved Values

Based on the results obtained from execution, the HPL is

configured with optimized parameters as follows:

Table 9. Optimized Parameters

Parameters Optimized values

N 121900

NB 192

PFACT Crout

RFACT Crout

BCAST 3 (2-ring modified)

DEPTH 1

The formula used for calculating the Problem size is as shown

in Figure 1.

 (2)

The important consideration is to set the problem size such

that it does not exceed the available memory on the node,

which can result in getting swapped out of memory i.e. OOM.

Only 93% of memory per compute node has been used to

avoid memory swap and degraded performance. After

calculation and testing, the ideal problem size value for

MIHIR HPC comes out to be 121900.

The Rpeak is calculated based on system’s specifications,

whereas the Rmax is measured during the actual HPL

execution. To calculate the theoretical peak, the rate of

executing floating-point operations is needed. Manufacturers

provide a figure for floating-point operations, which serves as

an upper limit on performance. Thus, the Rpeak is computed

using equation (3), which takes into account the number of

floating-point operations for addition and multiplication in

full precision that can be performed within a specified time

frame, typically the cycle time of the machine.

The Intel Xeon Broadwell E5-2695, 2.1 GHz processor can

execute 8 double precision floating-point operations per cycle

per core and 16 single precision floating point operations per

cycle per core. The calculations for Rpeak are as follows:

 (3)

 (4)

The highest possible result achievable is 1.209 Tflops per

compute node as determined by equation (4).

The Rmax obtained by running the HPL benchmark suite is

measured in Tflops. In this paper, we achieved the Rmax of

1.0915 Tflops using problem size of 121900, a 4 x 9

processor grid, a block size of 192 and the 2-ring modified

broadcast algorithm. The system efficiency can be determined

by calculating the ratio of Rmax to Rpeak.

 (5)

 (6)

To determine the efficiency of the MIHIR HPC, equation (5)

has been used. Hence the overall efficiency of MIHIR HPC

comes out as 90.23%.

5. Conclusion and Future Scope

We presented the performance of the HPL benchmark on

MIHIR HPC system, focusing on optimizing HPL tuning

parameters to achieve the best possible computational

efficiency. The goal was to identify the most optimized

parameter values for MIHIR and determine the system’s peak

performance using up to 300 compute nodes.

The process grid configuration affects execution time and

efficiency, with diminishing returns beyond an optimal node

count. Problem size (N) must be carefully selected to

maximize GFLOPS without exceeding memory limitations.

Block size (NB) of 192 provides the best performance by

balancing data distribution and computation. Crout panel

factorization (PFACT) and recursive panel factorization

(RFACT) yield superior results compared to Left and Right

variants. The modified increasing-2-ring broadcast algorithm

optimizes data transmission, reducing communication

overhead. A lookahead depth of 1 enhances performance by

effectively overlapping computations.

The HPL tuning parameters N, NB, P and Q are crucial for

achieving better performance. P and Q must be selected

ensuring that P<= Q. The 4 x 9 combination yielded the best

results on MIHIR. The block size NB=192 has been used,

which is the recommended value for Intel Xeon Broadwell

E5-2695. The problem size N is set to define the biggest

problem that would fit into the available memory.

For 300 nodes, the measured parallel efficiency comes out to

be 90.22% with total maximum calculated performance for

300 nodes, Rmax=328 TFLOP/s.

Among BLAS implementations, Cray Scientific Libraries

performed the best, significantly outperforming Intel MKL

and ATLAS, the latter showing the lowest efficiency. These

findings confirm that optimal tuning and library selection are

critical for maximizing HPC performance.

For future work, we aim to extend this study by optimizing

other HPC architectures, such as AMD processors, and

experimenting with GPU-accelerated HPL benchmarks.

Additionally, refining MPI communication strategies and

International Journal of Computer Sciences and Engineering Vol.13(3), Mar. 2025

© 2025, IJCSE All Rights Reserved 8

evaluating newer BLAS libraries could lead to further

performance gains. Furthermore, we plan to explore the

implementation of machine learning techniques to

automatically optimize HPL parameters for any given HPC

configuration.

Conflict of Interests

The authors have no relevant financial or non-financial,

personal or other relationships with other people or

organizations that could inappropriately influence, or be

perceived to influence, their work. Otherwise, Authors

declare that they do not have any conflict of interest.

Funding Source

The authors declare that no funds, grants, or other support

were received during the preparation of this manuscript.

Author Contributions

All authors have contributed to the study conception and

design. Installation, configuration and execution analysis

were performed by Shivali Gangwar. B. Athiyaman and

Preveen D has provided technical information about HPC

infrastructure, to support in system along with guidance,

revision, discussion, and finalization of the report. The first

draft of the manuscript was written by Shivali Gangwar and

all authors commented on previous versions of the

manuscript. All authors have read and approved the final

manuscript.

.

Acknowledgements

All authors appreciate the support and guidance from our

colleagues at NCMRWF during this work. Special thanks to

the Head, Dr. V.S. Prasad for his continuous encouragement

and unwavering support.

References

[1] A. Petitet, R. C. Whaley, J. Dongarra, A. Cleary, “HPL - A

Portable Implementation of the High-Performance Linpack

Benchmark for Distributed-Memory Computers,” Innovative

Computing Laboratory, University of Tennessee, pp.1-10, 2018.

[2] A. Smith, B. Johnson, "Performance Analysis of HPL on Intel's

Icelake Architecture," Proceedings of the International Conference

on High-Performance Computing Systems, pp.123-130, 2021.

[3] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, “Basic Linear

Algebra Subprograms for Fortran usage,” ACM Transactions on

Mathematical Software, Vol.5, Issue.4, pp.308–323, 1979.

[4] I. M. Jelas, N. A. W. A. Hamid, M. Othman, “The High-

Performance Linpack (HPL) Benchmark on the Khaldun Sandbox

Cluster,” Journal of High-Performance Computing, pp.1-15, 2013.

[5] Intel Corporation, "Intel® Math Kernel Library: Reference

Manual," 2020.

[6] J. J. Dongarra, J. R. Bunch, G. B. Moler, G. W. Stewart,

“LINPACK Users' Guide,” Society for Industrial and Applied

Mathematics (SIAM), USA, pp.1-250, 1979.

[7] J. J. Dongarra, P. Luszczek, A. Petitet, “The LINPACK

Benchmark: Past, Present, and Future,” Concurrency and

Computation: Practice & Experience, Vol.15, pp.803-820, 2003.

[8] J. J. Dongarra, H. W. Meuer, E. Strohmaier, "TOP500

Supercomputer Sites," International Journal of High Performance

Computing Applications, Vol.11, No.3, pp.90-94, 1997.

[9] Khang T. Nguyen, "Performance Comparison of OpenBLAS and

Intel oneAPI Math Kernel Library in R," International Journal of

Computational Science and Engineering, Vol.5, No.3, pp.123-130,

2020.
[10] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. J. Dongarra,

“MPI: The Complete Reference,” MIT Press, USA, pp.1-500,

1996.

[11] M. Fatica, "Accelerating Linpack with CUDA on Heterogeneous

Clusters," Proceedings of the 2nd Workshop on General-Purpose

Processing on Graphics Processing Units (GPGPU-2), pp.46-51,

2009.

[12] Wong Chun Shiang, Izzatdin Abdul Aziz, Nazleeni Samiha Haron,

Jafreezal Jaafar, Norzatul Natrah Ismail, Mazlina Mehat, “The

High-Performance Linpack (HPL) Benchmark Evaluation on UTP

High-Performance Cluster Computing,” Jurnal Teknologi, Vol.78,

Issue.9, pp.21–30, 2016.

AUTHORS PROFILE

Shivali Gangwar earned B. Tech., in

Information Technology from Guru

Gobind Singh Indraprastha University

and M.tech. in Computer Science

Engineering from Maharishi Dayanand

University in 2005 and, 2016

respectively. Currently in Department of

High-Performance Computing, in

National Centre for Medium Range Weather Forecasting,

Noida, since 2013 as part of various HPC organization and

joined NCMRWF in 2023. My main research work focuses

on HPC, Benchmarking, Profiling Weather Models. I have

total 19 years of IT experience and research experience.

Dr. B. Athiyaman earned his Ph.D. in

Computer Science from IIIT, Gwalior.

His Research Areas are High

Performance Computing (HPC),

Computer Networking, Data Mining,

Neural Network and Fuzzy systems. He

is Computing and Infrastructure Head in

National Centre for Medium Range

Weather Forecasting (NCMRWF), Noida. He has published

many research papers. He has more than 30 years of research

experience in NCMRWF.

Dr. Preveen Kumar D. earned his Ph.D.

from University of Delhi. He is in

Computer & AI at National Centre for

Medium Range Weather Forecasting

(NCMRWF), Noida. His research areas

include High Performance Computing,

AI/ML, Computer Network, DWR data

quality control. He has published many

research papers in reputed international journals and

conferences. His main research work focuses AI/ML in

Weather forecasting and HPC infrastructure Head in

NCMRWF. He has more than 30 years of research experience

in NCMRWF.

