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Abstract: Air pollution presents substantial risks to public health and environmental sustainability, necessitating robust 

predictive models capable of monitoring and forecasting air quality. This study aimed to design and evaluate a robust air 

pollution prediction model by leveraging data-driven modeling techniques. The research employed a comprehensive 

methodology that involved the aggregation of global air pollution datasets, followed by data preprocessing and transformation to 

ensure the accuracy and relevance of the input data. This data-driven approach facilitated the analysis and interpretation of the 

dataset using various machine learning algorithms. The study explored the performance of several machine learning algorithms, 

including AdaBoost, Decision Tree, Extra Tree, Random Forest, Naïve Bayes, K-Nearest Neighbor (KNN), and Neural 

Network, to determine their effectiveness in predicting different levels of air quality. Each algorithm was evaluated based on 

precision, recall, f1-score, and overall accuracy, with a particular focus on challenging air quality categories such as "Unhealthy" 

and "Very Unhealthy." The results revealed that while some models like Decision Tree, Extra Tree, Random Forest, and Neural 

Network achieved high accuracy and f1-scores, others such as AdaBoost and Naïve Bayes displayed limitations in handling 

certain air quality categories. To overcome these limitations and enhance the overall prediction accuracy, an ensemble model 

was developed by combining the strengths of the top-performing algorithms. The ensemble model demonstrated exceptional 

performance, achieving perfect precision, recall, f1-scores, and accuracy across all air quality categories, indicating its potential 

as a highly reliable tool for real-time air quality monitoring and prediction. This study concludes that the ensemble model 

represents a significant advancement in air pollution prediction. Hence, offering an efficient solution for environmental 

monitoring systems. The study highlights the importance of integrating multiple machine learning algorithms to improve model 

robustness and accuracy, providing valuable insights for public health management and policymaking. The study recommends 

further exploration of ensemble models in different geographic regions and the integration of real-time data from IoT devices to 

enhance the model's applicability and effectiveness in diverse environmental scenarios. 
 

Keywords: Air Pollution Prediction, Machine Learning, Ensemble Model, Environmental Monitoring, Data-Driven Modeling, 

Air Quality Forecasting 

  

1. Introduction   
 

The issue of urban air pollution is growing progressively 

more severe. This has emerged as a pivotal impediment to the 

sustainable advancement of Nigerian cities and the 

establishment of an ecological civilization [1]. The air quality 

profoundly impacts individuals' lives, productivity, and 

overall well-being. Due to the increase in population and 

human-made emissions in urban areas like Port Harcourt, 

concerns related to airborne particulate pollution have 

garnered more attention than before. The issue of urban air 

pollution has escalated due to the accumulation of black 

carbon, which has been distinctly observable since the final 

quarter of 2016 [2]. This perilous deposition, originating from 

human activities, underscores the pressing need for 

comprehensive data on fluctuations in pollution levels within 

the boundary layer [3]. 

  

Human existence relies solely on the presence of air, making 

its quality a vital determinant of overall well-being. 

Monitoring and comprehending air quality are imperative 

tasks. The global prevalence of air pollution has led to 
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millions of individuals experiencing physiological ailments 

and even succumbing to respiratory-related fatalities. 

Supported by scientific findings, it is evident that air pollution 

constitutes the foremost environmental hazard [4]. As a 

consequence of swift industrialization, there has been a 

substantial rise in population levels coupled with the emission 

of toxic gases. The significant increase in population is 

closely linked to this phenomenon. The contamination of the 

air with perilous substances has led to severe repercussions 

on health. Unregulated pollution has resulted in a significant 

deterioration of air quality [4]. 

 

In recent decades, as industrialization and urbanization have 

continued to progress, substantial energy consumption has 

given rise to a progressively severe air pollution issue [5], [6], 

[7]. This pollution encompasses various air pollutants, 

including PM2.5, CO, SO2, NO2, and others, all capable of 

inducing numerous diseases such as asthma, heart disease, 

chronic obstructive pulmonary disease, and even cancer [8], 

[9]. The World Health Organization (WHO) reports that the 

simple act of breathing results in 7 million annual deaths 

worldwide due to air pollution, presenting a grave threat to 

human well-being [7]. 

 

Air quality is a pivotal concern regarding public health and 

sustainable livelihoods. Furthermore, it presents a hindrance 

to regional economic growth and societal advancement. Apart 

from monitoring and controlling air quality, predicting air 

quality in times of polluted weather has emerged as a central 

aspect of environmental management. This is particularly 

crucial during significant events and instances of severe 

pollution, as timely and precise air quality forecasts, coupled 

with source analysis, can furnish essential information for 

managerial decision-making [1]. 

 

To mitigate the adverse effects of air pollution, researchers 

have introduced various models aimed at forecasting changes 

in air pollution, allowing for timely interventions [7], [10]. 

Among these models, the deep learning approach has 

demonstrated the most effective predictive capabilities [11]. 

However, the challenge with deep learning models lies in 

their "black box" nature, which makes it intricate to 

understand the reasoning behind their predictions. 

Additionally, the time-series data related to atmospheric 

conditions amalgamate signals of varying frequencies and 

incorporate erroneous noise, thereby concealing the 

underlying correlations between atmospheric and pollutant 

variables. This intricate web of signals makes reliable 

identification difficult. Therefore, enhancing both the 

interpretability and accuracy of predictions becomes pivotal. 

This can be achieved by disentangling the various frequency 

signals from the original data, revealing clearer patterns, and 

constructing an interpretable neural network to extract these 

correlation rules [7]. 

 

Various technical approaches have recently been utilized for 

air quality prediction, integrating both mechanistic and 

statistical models. Mechanistic models simulate the physical 

and chemical processes governing air dispersion, including 

Gaussian diffusion models, Weather Research and 

Forecasting (WRF) models, and Community Multiscale Air 

Quality (CMAQ) models. For example, Cheng et al. 

developed an inference model leveraging the Gaussian 

process to estimate pollutant concentrations at arbitrary 

locations. Similarly, Rogers et al. refined the WRF model 

configuration through extensive sensitivity analyses in central 

California, enhancing its ability to simulate meteorological 

variables with reasonable accuracy. Additionally, Lee et al. 

(2007) examined and assessed atmospheric O₃ using a 

CMAQ modeling system, contributing to air pollution 

management strategies in China. However, mechanistic 

models require detailed and accurate external environmental 

parameters as inputs. Given the complexity of real-world 

environments, acquiring reliable data for these parameters 

remains challenging, thereby constraining the predictive 

capabilities of mechanistic models.  

 

On the other hand, statistical models are designed to predict 

future variable changes by discerning patterns within 

historical data. These encompass linear regression models 

[18], [19], perceptron models [20], [21], support vector 

machines (SVM) [22], [23], tree models [24], [25], [26], and 

deep neural networks (DNN) [27], [28], [29]. Linear 

regression models can be both univariate and multivariate, 

with the latter possessing superior nonlinear fitting 

capabilities. However, when compared to alternatives like 

perceptron models, tree models, and DNNs, multivariate 

linear regression might still fall short. With the ongoing 

progress in artificial intelligence technology, novel iterations 

of deep neural networks (DNN) have been consistently 

developed and refined. Examples include convolutional 

neural networks (CNN) [30], graph convolution networks 

(GCN) [31], residual networks (ResNet) [32], and attention 

networks [33]. These models have found extensive 

application in predicting air pollution. Simultaneously, the 

remarkable advancements in graphics processing unit (GPU) 

computing power has enabled the training of intricate DNN 

models. Consequently, DNN's predictive capabilities have 

surpassed those of traditional statistical models [34], which 

can be attributed to two key factors. Firstly, the deep network 

architecture equips it with a robust capacity to simulate the 

evolution process from input to output. Secondly, the flexible 

combination of various network modules harnesses the 

strengths of different networks. 

 

For instance, a deep distributed fusion network has been 

established based on deep neural networks, demonstrating 

enhanced short-term and long-term air quality prediction in 

comparison to preceding online monitoring systems [35]. 

Furthermore, a deep convolutional neural network has been 

employed to rectify prediction errors within the CMAQ 

model, thus elevating the overall prediction performance of 

CMAQ [36]. Approaches like CNN-LSTM and GCN-LSTM 

amalgamate the benefits of CNN/GCN for spatial information 

extraction with LSTM for capturing temporal dependencies, 

showcasing advanced predictive capabilities [37], [38]. 

However, the intricate structure of deep networks makes 

model predictions challenging to interpret, rendering the 

understanding of model behaviour intricate. This complexity 

poses difficulties in formulating appropriate measures to 
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mitigate air pollution. Additionally, the intricate and 

fluctuating atmospheric conditions lead to the integration of 

air pollutant data with interwoven signals of varying 

frequencies, alongside assorted erroneous random noise. 

These factors collectively affect the accuracy of predictions. 

 

To address these constraints, this study proposes an optimized 

machine learning model based on an ensemble technique to 

predict air quality and pollution more effectively. 

 

2. Related Work  
 

Recent studies have shifted their focus towards advanced 

statistical learning algorithms for assessing air quality and 

predicting air pollution. [39] and [40] employed neural 

networks to develop models that forecast the levels of 

specific pollutants, such as particulate matter with a diameter 

of less than 10 microns (PM10).  

 

The study in [41] proposed a random forest-based model, 

RAQ, for categorizing Air Quality Index (AQI) levels. 

Following this, [35] utilized deep neural networks for AQI 

classification. In [40], artificial neural network (ANN) 

models were applied to predict PM10 concentrations inside a 

subway station, incorporating variables such as train 

frequency, outdoor PM10 levels, and ventilation system data. 

The ANN models exhibited strong predictive performance, 

with correlation values ranging from 0.18 to 0.63 when 

compared to experimental data. Depending on the structural 

configuration and depth of the subway platform, the model 

achieved an accuracy between 67% and 80%.  

 

Similarly, [42] explored various configurations to enhance 

AQI-level prediction beyond conventional machine learning 

methods such as k-nearest neighbor (k-NN), decision trees, 

and support vector machines (SVM). Their ANN-based 

approach achieved an accuracy of 92.3%, surpassing all other 

tested models. Forecasting air quality often relies on time 

series data analysis, where model selection and parameter 

optimization play a crucial role. Recent advancements have 

leveraged deep learning methodologies, as demonstrated in 

[43]. Likewise, [44] employed ANN models to estimate daily 

PM10 concentrations across different environmental settings, 

including regional and urban background areas.  

 

To improve the predictive accuracy of PM2.5 concentration 

modeling, [45] introduced an approach that integrates air 

mass trajectory analysis with wavelet transform, effectively 

identifying key transport pathways and mitigating 

fluctuations in PM2.5 levels. Additionally, [46] presented a 

hybrid forecasting framework that combines principal 

component analysis (PCA) with the least squares support 

vector machine (LSSVM), optimized using the cuckoo search 

algorithm for enhanced PM2.5 predictions.  

 

A deep learning-based air pollution monitoring and 

forecasting framework was developed in [47], while [48] 

introduced a selection model that utilizes cooperative data 

indices to determine the most suitable forecasting ensemble. 

In [49], an ANN-driven model was designed to predict 

pollutant concentrations (PM10, PM2.5, NO2, and O3) over 

both immediate and multi-day timeframes in heavily polluted 

regions. Meanwhile, [50] applied the American 

Meteorological Society/Environmental Policy Agency 

Regulatory Model (AERMOD) for short-term air quality 

forecasting, utilizing meteorological predictions from the 

Weather Research and Forecasting (WRF) model and 

providing a detailed emissions inventory for sources in 

Chembur, Mumbai. Additionally, [51] focused on vehicular 

pollution modeling by implementing AERMOD with WRF-

simulated meteorological data, revealing that peak NOx and 

PM levels corresponded with periods of high traffic 

congestion.  

 

For short-term PM2.5 forecasting, [52] introduced a deep 

learning model applied to the Beijing PM2.5 dataset. Liu et 

al. [53] proposed a wind-sensitive attention mechanism 

within a long short-term memory (LSTM) neural network to 

enhance PM2.5 predictions by incorporating wind pattern 

data. Furthermore, [54] developed an integrated air quality 

early warning system that encompasses estimation, 

forecasting, and assessment components, providing a 

comprehensive approach to air pollution management.  

 

The study in [55] developed a backpropagation neural 

network (BPNN) model to estimate daily PM10 concentration 

levels. The model incorporated various input features, 

including hourly pollutant concentrations, meteorological 

factors such as wind speed, rainfall, relative humidity, and 

temperature, as well as temporal variables such as the month, 

year, and day of the week. To optimize the network’s 

structure and weight parameters, the Genetic Algorithm (GA) 

was employed. The results demonstrated that the hybrid BP-

GA model, which integrates backpropagation with genetic 

optimization, achieved significantly higher predictive 

accuracy compared to standalone artificial neural network 

(ANN) models. 

 

Suleiman et al. [57] utilized ANN to forecast the upper 

threshold of PM10 concentrations stemming from roadside 

sources within an urban setting. The ANN model was 

designed using a combination of input factors, encompassing 

baseline PM10 levels, alongside roadside concentrations of 

SO2, NO2, and NOx, emission rates of PM10 from various 

vehicle categories, and a range of meteorological parameters, 

including solar radiation, precipitation, humidity, wind speed, 

barometric pressure, and wind direction. The results of the 

aforementioned research demonstrated that the ANN model 

effectively predicted the contributions of PM10 from road 

sources, achieving an impressive R-value of 0.85 and a Root 

Mean Square Error (RMSE) of 12.46 μg/m³, respectively. 

 

The primary drawback of the existing studies is the lack of 

exploration of ensemble approaches in air quality prediction. 

While individual AI models like neural networks and deep 

learning have shown promise, the absence of sophisticated 

ensemble frameworks that combine the strengths of various 

models is a significant gap. Although existing studies 

mentioned the integration of multiple models, it is often 
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superficial and does not delve into the development and 

deployment of comprehensive ensemble models. The existing 

studies primarily focus on comparing individual model 

performances rather than creating an intelligent ensemble 

model that leverages their collective predictive capacities to 

predict air pollutants. 

 

3. Methodology 

 

This research applies multiple machine learning algorithms to 

train an air quality prediction model based on a global air 

pollution dataset, as depicted in Figure 3.1. The methodology 

begins with data collection, with a focus on key pollutants 

such as Nitrogen Dioxide (NO2), Ozone (O3), and Particulate 

Matter (PM2.5). Following the data aggregation phase, the 

data was preprocessed to enhance data quality, while feature 

selection was conducted to identify the most relevant 

attributes, thereby optimizing computational efficiency and 

improving predictive performance. 

 

To address class imbalance within the dataset, the Synthetic 

Minority Oversampling Technique (SMOTE) is applied, 

ensuring a more balanced representation across class labels. 

Subsequently, eight machine learning algorithms including 

AdaBoost, CatBoost, Decision Tree, Extra Tree, Random 

Forest, Naïve Bayes, K-Nearest Neighbor, and Neural 

Network are used to construct predictive models for air 

quality and pollutant concentration levels. The final stage 

involves evaluating and comparing model performances, after 

which the four most effective models are integrated into an 

ensemble framework to enhance predictive accuracy. 

 

3.1 Proposed Model 

The proposed model in Figure 1 begins with data collection, 

including a global air pollution dataset. This dataset 

encompasses essential information regarding various 

pollutants and serves as the foundation for accurate 

predictions. It is a crucial starting point that ensures the 

system has access to the necessary data. Following data 

collection, the architecture involves data preprocessing and 

feature selection. Data preprocessing focuses on cleaning, 

transforming, and standardizing the dataset to ensure data 

quality and consistency. Feature selection is vital for selecting 

the most relevant attributes that will be used to train the 

model. These two stages collectively lay the groundwork for 

high-quality input data for the prediction models. To address 

the challenges of imbalanced data, the architecture 

incorporates the Synthetic Minority Oversampling Technique 

(SMOTE). SMOTE helps in achieving fair distributions 

within the dataset class labels, mitigating issues associated 

with class imbalance.  

 

The heart of the architecture lies in the implementation of 

eight diverse machine learning algorithms. These algorithms, 

including AdaBoost, CatBoost, Decision Tree, Extra Tree, 

Random Forest, Naïve Bayes, K-Nearest Neighbor, and 

Neural Network, serve as the predictive models for air quality 

and pollutant concentration. The proposed model architecture 

accounts for rigorous model evaluation and benchmarking. 

This stage ensures that the selected models are thoroughly 

assessed and compared using appropriate standard machine 

learning evaluation metrics such as accuracy, recall, 

precision, confusion matrix and F-1 score. It allows for the 

identification of the top-performing models based on their 

performance, accuracy, and suitability. The proposed 

architecture recognizes the value of combining the strengths 

of multiple models. The top four performing models are 

integrated into an ensemble model. This approach capitalizes 

on the diversity of these models, enhancing prediction 

accuracy and robustness.  

 

In parallel with model evaluation and comparison, 

hyperparameter tuning becomes an integral component of the 

architecture. This stage focuses on the systematic 

optimization of model hyperparameters, which are parameters 

not learned from the data but crucial for model performance. 

Hyperparameter tuning encompasses selecting 

hyperparameters for each model, defining search spaces for 

these hyperparameters, choosing a hyperparameter 

optimization algorithm, and cross-validating to assess 

performance robustness. The ultimate goal is to identify the 

best hyperparameters for each model, leading to improved 

model performance. 

 

Finally, the proposed model is trained using the Python 

programming language, which is known for its extensive 

libraries for data science and machine learning. The Django 

framework is employed to implement the air quality 

prediction web-based application, ensuring a user-friendly 

interface and efficient deployment. 

 

 

Figure 1.  Architecture of the proposed model 
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The process of the proposed architecture in Figure 1 includes: 

process of the proposed architecture in Figure 1 includes: 

1. Data Collection: The dataset contains a variety of air 

quality-related variables, including pollutant concentrations 

(e.g., NO2, O3, PM2.5), meteorological data, and temporal 

information (e.g., country, city). 

 

2. Data Preprocessing: After data collection, the raw 

dataset is processed and stored in a CSV file for subsequent 

analysis. This step involves addressing issues such as missing 

values, outliers, and inconsistencies within the data. Missing 

values are imputed using suitable techniques, outliers are 

identified and removed, and the data is normalized or 

standardized to ensure uniformity across variables. In air 

quality datasets, categorical variables may include factors like 

pollutant types (e.g., NO2, O3, PM2.5), monitoring station 

IDs, or geographic regions. These categorical variables must 

be converted into numerical values before they can be used in 

machine learning models. Methods such as one-hot encoding 

or ordinal encoding are employed to transform categorical 

variables into binary vectors or numerical codes, respectively, 

enabling their inclusion in the predictive model. 

 

3. Feature Engineering and Selection: Feature Engineering 

entails selecting, creating, or transforming features (variables) 

in a dataset to improve the model's predictive performance. 

This could entail extracting temporal features like the day of 

the week or time of day, creating lagged variables to capture 

temporal dependencies, or deriving new features from 

existing ones using mathematical transformations or domain 

knowledge. The goal of feature selection is to identify the 

most relevant subset of features that contribute to accurate air 

quality prediction. This reduces the dimensionality of the 

dataset and prevents overfitting. Correlation analysis, feature 

importance ranking, and model-based selection methods can 

be used to select the most informative features. 

 

4. Data Splitting: Following the preprocessing and feature 

engineering stages, the dataset is partitioned into two subsets: 

training and testing. The training set is used to develop the 

predictive model by optimizing its parameters based on the 

provided input data. The testing set provides an unbiased 

evaluation of the final model's performance on unseen data, 

which ensures an accurate evaluation of its predictive 

accuracy. 

 
5. Data Balancing: To address class imbalance issues 

within the dataset, the Synthetic Minority Oversampling 

Technique (SMOTE) was utilized. SMOTE ensures a 

balanced distribution of class labels across the dataset, 

enabling the model to make accurate predictions for both 

majority and minority classes in the air quality prediction 

dataset. 

 
6. Hyperparameter Tuning: To optimize model 

performance, the hyperparameters of the machine learning 

algorithms must be tuned after they have been chosen. 

Hyperparameter tuning entails systematically searching a set 

of hyperparameter values for the combination that produces 

the best results. Grid search and random search are two 

techniques for efficiently exploring the hyperparameter space 

and identifying the optimal settings for each model. Grid 

Search entails creating a grid of hyperparameter values for 

each hyperparameter in the model. For instance, when 

utilizing a Random Forest algorithm, hyperparameters such as 

the number of trees (n_estimators), the maximum depth of 

trees (max_depth), and the minimum number of samples 

required to split a node (min_samples_split) can be adjusted 

within a predefined range. Grid Search is employed to assess 

the model’s performance across all possible hyperparameter 

combinations within the specified grid. To ensure a reliable 

estimate of the model’s performance, cross-validation is 

incorporated into Grid Search. K-fold cross-validation is 

used, which divides the dataset into k equal-sized folds, 

training and evaluating the model k times, with each fold 

serving as the validation set once while the remaining folds 

are used for training. This approach helps reduce overfitting 

and provides a more robust estimate of the model’s ability to 

generalize. Grid Search subsequently evaluates the model's 

performance using selected evaluation metrics, such as mean 

squared error (MSE), root mean squared error (RMSE), or 

other relevant metrics for air quality prediction. The grid 

search algorithm finds the hyperparameter values that 

minimize or maximize the selected evaluation metric, 

depending on whether it represents error or accuracy. Grid 

Search is helpful because it systematically explores the entire 

hyperparameter space, ensuring that no hyperparameter 

combination goes unnoticed. It offers a computationally 

efficient and thorough method for hyperparameter tuning, 

making it appropriate for improving the performance of 

complex models such as those used in air quality prediction. 

Grid Search also provides a robust estimate of the model's 

performance by incorporating cross-validation, which 

improves its ability to generalize to new data sets. 

 

7. Model Training: During the training phase, the training 

dataset is fed into the predictive model to enable it to learn 

the relationships between the input features (predictors) and 

the target variable (air quality). The selected machine learning 

model learns to make predictions by iteratively adjusting its 

internal parameters through an optimization process. The goal 

of training is to minimize a loss function, which measures the 

difference between the predicted and actual air quality values. 

 

8. Model Evaluation: After training, the performance of 

each model was evaluated using the validation set. Standard 

machine learning evaluation metrics, such as accuracy, 

precision, recall, F1-score, and area under the ROC curve 

(AUC-ROC), are employed to assess the model's 

performance. This step helps in identifying models that 

generalize well to previously unseen air quality data and have 

robust predictive capabilities. 

 

9. Compare the Model Performance: Based on the 

evaluated results, the best-performing models are selected for 

further consideration. The criteria for selecting the best 

models include overall performance on the testing set, 

accuracy, precision, and suitability for the task at hand. The 
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selected models are then prioritized for implementing the 

ensemble model. 

 
10. Training the Ensemble Model: The ensemble model is 

implemented by combining the best machine learning models. 

This involves leveraging the strengths of multiple algorithms 

to improve the prediction accuracy and robustness. Each of 

these models adds unique insights and predictive capabilities 

to the ensemble model. By combining these diverse 

approaches, the ensemble model can effectively handle 

different aspects of air quality prediction, ranging from 

pollutant concentrations to overall air quality assessment. 

 
11. Prediction: Prediction is executed when the trained 

model predicts the Air Quality Index (AQI) classes (Good, 

Moderate, or Unhealthy) for each pollutant at a specific 

location and time. For example, predicting that air quality in 

Port Harcourt, Nigeria, will be "unhealthy" based on the AQI 

values of CO, Ozone, NO2, and PM2.5. 

 

3.2. Dataset Description 

The global air pollution dataset was collected from Kaggle. 

The dataset contains Air Quality Index (AQI) values for 

various pollutants and is sourced from cities across the globe. 

The dataset also provides geolocated data on the following 

pollutants: 

 

1. Nitrogen Dioxide (NO2):  NO2 is a type of nitrogen oxide 

that enters the atmosphere through natural processes, 

including stratospheric entry and lightning. At ground level, 

however, NO2 is primarily produced by emissions from 

automobiles, trucks, buses, power plants, and off-road 

vehicles. Short-term exposure to NO2 can exacerbate 

respiratory conditions, such as asthma, while prolonged 

exposure may contribute to the development of asthma and 

respiratory infections. Individuals with asthma, children, and 

the elderly are particularly susceptible to the health impacts 

of NO2.  
 

2. Carbon Monoxide (CO):  CO is a colourless and 

odourless gas primarily emitted into the atmosphere by 

vehicles, machinery, and equipment that run on fossil fuels. It 

is also released from sources such as kerosene and gas space 

heaters, as well as gas stoves, impacting indoor air quality. 

Inhalation of high concentrations of CO reduces the blood’s 

ability to transport oxygen to vital organs, including the heart 

and brain. At very high levels, which are uncommon in open 

spaces but may occur in confined environments, CO 

poisoning can lead to dizziness, confusion, unconsciousness, 

and, in severe cases, death. 
 

3. Particulate Matter (PM2.5): Atmospheric Particulate 

Matter, or atmospheric aerosol particles, consists of a 

complex mixture of tiny solid and liquid particles that are 

released into the atmosphere. Inhalation of these particles can 

lead to significant heart and lung issues. The International 

Agency for Research on Cancer (IARC) has classified PM2.5  

as a group 1 carcinogen. PM10 refers to particles with a 

diameter of 10 micrometres or less, while PM2.5 particles have 

a diameter of 2.5 micrometres or less. 

4. Ozone (O3): The O3 molecule, when not located in the 

ozone layer, poses a threat to outdoor air quality. At ground 

level, ozone is formed through chemical reactions between 

nitrogen oxides and volatile organic compounds (VOCs). In 

contrast to the beneficial ozone in the upper atmosphere, 

ground-level ozone can lead to a range of health issues, 

including chest pain, coughing, throat irritation, and airway 

inflammation. Additionally, it can impair lung function and 

exacerbate conditions such as bronchitis, emphysema, and 

asthma. Ozone also affects vegetation and ecosystems, with 

sensitive vegetation being particularly vulnerable during the 

growing season. 

 

4. Model Evaluation  

 

This section assesses the performance of the proposed model 

by employing standard machine learning evaluation metrics, 

including accuracy, precision, recall, specificity, and the F1-

score. The main goal is to compare the effectiveness of 

different algorithms. Although accuracy is a commonly used 

metric for evaluating model performance, it may not be 

sufficient on its own in this particular case. Therefore, it is 

essential to consider additional metrics, such as the area under 

the curve (AUC), alongside accuracy, to identify the most 

suitable model for detecting fraudulent transactions. 

 

1. Accuracy: Accuracy assesses the proportion of correct 

predictions made by the model regarding air quality 

prediction. This ratio is determined by dividing the total 

number of accurate predictions by the overall number of 

predictions. The accuracy calculation is illustrated in 

Equation 1. 

 

                               (1) 

 

In this context, FP (False Positive) represents the overall 

count of incorrect predictions that have been classified as 

positive. FN (False Negative) represents the total count of 

inaccurate predictions that have been classified as negative. 

TP (True Positive) refers to the total count of accurate 

predictions classified as positive. Lastly, TN (True Negative) 

indicates the total count of precise predictions classified as 

negative. 

 

2. Precision: Precision assesses the ratio of correctly 

predicted air pollutants (TP) to the total number of variables 

predicted as pollutants (TP + FP). Equation 2 illustrates the 

precision calculation. 

 

                                                    (2) 

 

3. Recall: Recall evaluates the proportion of accurately 

classified air pollutants (TP) in relation to the total number of 

air pollutants. The calculation for recall is expressed in 

Equation 3. 
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                                                      (3) 

 

4. Specificity: Specificity evaluates the ratio of correctly 

classified non-air pollutants (TN) to the total number of non-

air pollutants. The specificity calculation is illustrated in 

Equation 4. 

 

                (4) 

 

5. F1-Score: The F1-score metric computes the weighted 

average of precision and recall, with a value ranging between 

zero and one. A value closer to one indicates better 

performance. The F1-score is calculated using the formula 

given in Equation 5. 

 

                             (5) 

 

4.1. Benchmarking of the Models 

This section compares the performance of the selected 

algorithms used for air pollution prediction. It also provides a 

detailed discussion of how these algorithms can be combined 

into an ensemble model to enhance the overall prediction 

accuracy and robustness of the model. The result in Table 1 

summarizes the performance of all the algorithms evaluated 

to provide a clear comparison of their precision, recall, f1-

score, and accuracy across different air quality categories. 

 
Table 1. Summary of the Results Across Different Algorithms 

Algorithms Accuracy Precision Recall F1-score 

AdaBoost 0.83 0.71 0.83 0.76 

Decision Tree 1.00* 1.00* 1.00* 1.00* 

Extra Tree 1.00* 1.00* 0.99* 0.99* 

Random Forest 1.00* 1.00* 1.00* 1.00* 

Naïve Bayes 0.98 0.98 0.98 0.98 

KNearest 

Neighbor 

0.99 0.99 0.99 0.99 

Neural Network 1.00* 1.00* 0.97* 0.98* 

 

From the result in Table 1, it is evident that the Decision 

Tree, Extra Tree, Random Forest, and Neural Network 

algorithms consistently deliver near-perfect accuracy, recall, 

and precision. These algorithms perfectly or near-perfectly 

classify all categories, with minimal misclassifications. 

 
The Decision Tree and Random Forest models demonstrate 

perfect classification across all metrics, showing their 

robustness in predicting air quality levels accurately. 

However, the Decision Tree model may be prone to 

overfitting, which could limit its generalizability to unseen 

data. The Random Forest, being an ensemble of multiple 

decision trees, mitigates this risk through averaging, making 

it a more reliable choice for diverse real-world scenarios. 

Similar to the Random Forest, the Extra Tree model is 

effective, with nearly perfect scores. Its slight deviations from 

perfect accuracy are negligible and mainly confined to edge 

cases. The Neural Network model, while almost perfect, 

shows slight imperfections in recall for rare categories like 

"Hazardous," indicating that while it generalizes well, it may 

still miss some edge cases, especially in categories with fewer 

training samples. 

 

4.2. Result of the Ensemble Model 

Given the varied strengths and weaknesses of these 

algorithms, an ensemble model can be designed to leverage 

the strengths of multiple models while compensating for their 

shortcomings. An ensemble model is particularly effective in 

scenarios where no single algorithm excels across all 

categories, as is evident in air pollution prediction. 

 

In this study, the ensemble model can combine the strengths 

of the top four performing models (Decision Tree, Random 

Forest, Extra Trees and Neural Network models). These 

models are selected based on their high performance across 

different metrics and their complementary strengths. In this 

case, the Decision Tree model provides interpretability and 

high accuracy, especially for well-defined classes. The 

Random Forest model adds robustness and reduces 

overfitting while handling variability in the data. The Extra 

Tree is similar to the Random Forest. However, the Extra 

Tree model provides faster computation and slightly different 

decision boundaries. Hence, adding diversity to the ensemble 

model. Finally, the Neural Network model captures complex, 

non-linear relationships in the data, which is essential for 

efficient air pollution predictions. 

 
Table 2.  Classification Report of the Proposed Ensemble Model 

                   precision    recall  f1-score   support 

                     Hazardous              1.00           1.00      1.00        34 

                      Moderate               1.00           1.00      1.00      1815 

                     Unhealthy               1.00           1.00      1.00       426 

Unhealthy for Sensitive Groups  1.00           1.00      1.00       325 

                Very Unhealthy            1.00           1.00      1.00        51 

 

                      accuracy                             1.00      4693 

                     macro avg                1.00           1.00     1.00      4693 

                  weighted avg              1.00           1.00      1.00     4693 

 

The proposed ensemble model, as summarized in Table 2, 

demonstrates exceptional performance across all air quality 

categories, with perfect precision, recall, and f1-score of 1.00 

in each category. This indicates that the ensemble model 

accurately classified all instances of air quality levels without 

any misclassifications. 

 
The precision of 1.00 across all categories means that every 

predicted instance by the ensemble model was indeed correct. 

For example, all instances predicted as "Hazardous" were 

truly hazardous, ensuring that the model does not raise false 

alarms, which is an important feature when managing public 

health warnings. The recall score of 1.00 for all categories 

indicates that the ensemble model successfully identified all 

true instances of each air quality category in the test data. 

This is particularly important in ensuring that no actual 

instances of hazardous or unhealthy air quality are missed, 

thereby preventing potential public health risks. The f1-score, 



International Journal of Computer Sciences and Engineering                                                                           Vol.13(2), Feb. 2025 

© 2025, IJCSE All Rights Reserved                                                                                                                                             35 

which is the harmonic mean of precision and recall, is also 

perfect across all categories. This reflects a balanced model 

performance where the ensemble model is both accurate in its 

predictions (precision) and thorough in capturing all relevant 

instances (recall).  

 
The overall accuracy of 1.00 indicates that the ensemble 

model correctly classified all 4,693 test samples. This is a 

significant improvement over the individual models, 

particularly in more challenging categories like "Unhealthy," 

"Unhealthy for Sensitive Groups," and "Very Unhealthy," 

where some standalone models struggled. 

 
4.3. Result of the Ensemble Model 

The proposed ensemble model's perfect performance suggests 

it can be highly reliable in real-world air quality monitoring 

systems. This reliability is crucial for the timely and accurate 

dissemination of air quality information to the public and 

relevant authorities to enable effective responses to pollution 

events. The results validate the technique of integrating the 

strengths of the Decision Tree, Extra Tree, Random Forest, 

and Neural Network models. The combination of these 

algorithms ensured that the ensemble model mitigates the 

individual weaknesses of each model, leading to a robust 

system that excels in both accuracy and generalization. Given 

its high performance, the ensemble model is not only suitable 

for the current dataset but also adaptable to larger or more 

complex real-world datasets. It can also handle varying 

distributions and rare events effectively, which is often a 

challenge in environmental data analysis. The ability of the 

proposed ensemble model to accurately predict all levels of 

air quality, including critical and rare categories like 

"Hazardous" and "Very Unhealthy," the model could play a 

vital role in public health policy. It can support proactive 

measures to mitigate air pollution and protect vulnerable 

populations by providing reliable early warnings and detailed 

air quality assessments. 

 
This section also presents the web-based air pollution 

prediction interface and the various prediction outcomes 

based on different input scenarios. The user interface is 

designed to be intuitive, allowing users to easily input 

relevant air quality parameters and receive predictions on the 

air quality category. The different prediction interfaces reflect 

the system's response to varying levels of pollutants while 

providing clear and actionable feedback to the user. 

 
The screenshot in Figure 2 showcases the main interface of 

the air quality prediction model. The user is presented with a 

clean and straightforward form to enter various air quality 

parameters such as PM2.5, PM10, NO2, SO2, and O3 levels. 

The system processes the inputs through the underlying 

ensemble model and predicts the air quality category upon 

submission. The user-friendly interface has clearly labeled 

fields and a submit button that triggers the prediction process. 

 

 

Figure 2. Screenshot of the model prediction interface 

 

The screenshot in Figure 3 captures the interface displayed 

when the model predicts a "Hazardous" air quality category. 

In this scenario, the input values for pollutants are 

exceptionally high, leading the system to classify the air 

quality as extremely poor. The interface prominently displays 

the "Hazardous" warning, alerting users to the severe health 

risks associated with the current air conditions. 

 

 

Figure 3.  Screenshot of the hazardous prediction interface 

 

The "Unhealthy" prediction interface is depicted in Figure 4. 

In this scenario, the system has determined that the air quality 

is detrimental to health, particularly for the general 

population. The interface highlights the "Unhealthy" 

category, indicating that prolonged exposure could lead to 

adverse health effects.  

 

Figure 4. Screenshot of the unhealthy prediction interface 

 
The screenshot in Figure 5 illustrates the prediction interface 

when the model identifies air quality as "Unhealthy for 

Sensitive Groups." This category is critical for individuals 

with pre-existing health conditions, the elderly, and young 

children. The interface displays a warning that, while the 

general population may not be severely affected, sensitive 

groups should take preventive measures. The interface 

maintains a balance between warning the user and providing 

actionable advice tailored to those who are most at risk. 

 

 

Figure 5. Screenshot of the unhealthy for sensitive group prediction interface 

 

The screenshot in Figure 6 shows the interface when the 

model predicts "Moderate" air quality. In this scenario, the 
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pollution levels are above what is considered ideal but are not 

yet alarming. The "Moderate" prediction interface serves to 

inform users that while the air quality is not perfect, it is still 

relatively safe for the majority of the population. 

 

 

Figure 6. Screenshot of the moderate prediction interface 

 

The screenshot in Figure 7 depicts the  "Good" prediction 

interface. This is the most favourable outcome, where the air 

quality is excellent, and pollutant levels are well within safe 

limits.  

 

 

Figure 7. Screenshot of the good prediction interface 

 

5. Conclusion and Future Scope  
 

This study developed and evaluated a robust model for air 

pollution prediction by comparing several machine learning 

algorithms and integrating them into an ensemble model. The 

research explored the performance of AdaBoost, Decision 

Tree, Extra Tree, Random Forest, Naïve Bayes, K-Nearest 

Neighbor (KNN), and Neural Network algorithms on a 

dataset containing various air quality indicators. 

 

The results revealed that while individual models like 

Decision Tree, Random Forest, Extra Tree, and Neural 

Network exhibited exceptional performance, particularly in 

classification accuracy and f1-scores, other models such as 

AdaBoost and Naïve Bayes showed limitations, especially in 

handling less common air quality categories like "Unhealthy" 

and "Very Unhealthy."  

 

To address these limitations and enhance overall prediction 

accuracy, an ensemble model was proposed. This model 

combined the strengths of the Decision Tree, Extra Tree, 

Random Forest, and Neural Network algorithms. The 

ensemble model achieved perfect precision, recall, f1-scores, 

and accuracy across all air quality categories, significantly 

outperforming the individual models and demonstrating its 

potential as a reliable tool for air quality prediction. The 

findings demonstrated the potential of advanced machine 

learning techniques in environmental science, particularly in 

developing systems that can provide timely and accurate air 

quality predictions to protect public health and guide policy 

decisions.  

 

To further enhance the accuracy and timeliness of air 

pollution predictions, the ensemble model could be integrated 

with Internet of Things (IoT) devices that continuously 

monitor air quality indicators. This would allow for the real-

time collection of data. Hence, enabling the model to provide 

more frequent and accurate predictions. Future studies should 

explore the potential of other ensemble model configurations, 

potentially incorporating additional machine learning 

algorithms or even deep learning techniques.  
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