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Abstract: Air pollution presents substantial risks to public health and environmental sustainability, necessitating robust
predictive models capable of monitoring and forecasting air quality. This study aimed to design and evaluate a robust air
pollution prediction model by leveraging data-driven modeling techniques. The research employed a comprehensive
methodology that involved the aggregation of global air pollution datasets, followed by data preprocessing and transformation to
ensure the accuracy and relevance of the input data. This data-driven approach facilitated the analysis and interpretation of the
dataset using various machine learning algorithms. The study explored the performance of several machine learning algorithms,
including AdaBoost, Decision Tree, Extra Tree, Random Forest, Naive Bayes, K-Nearest Neighbor (KNN), and Neural
Network, to determine their effectiveness in predicting different levels of air quality. Each algorithm was evaluated based on
precision, recall, f1-score, and overall accuracy, with a particular focus on challenging air quality categories such as "Unhealthy"
and "Very Unhealthy." The results revealed that while some models like Decision Tree, Extra Tree, Random Forest, and Neural
Network achieved high accuracy and fl-scores, others such as AdaBoost and Naive Bayes displayed limitations in handling
certain air quality categories. To overcome these limitations and enhance the overall prediction accuracy, an ensemble model
was developed by combining the strengths of the top-performing algorithms. The ensemble model demonstrated exceptional
performance, achieving perfect precision, recall, f1-scores, and accuracy across all air quality categories, indicating its potential
as a highly reliable tool for real-time air quality monitoring and prediction. This study concludes that the ensemble model
represents a significant advancement in air pollution prediction. Hence, offering an efficient solution for environmental
monitoring systems. The study highlights the importance of integrating multiple machine learning algorithms to improve model
robustness and accuracy, providing valuable insights for public health management and policymaking. The study recommends
further exploration of ensemble models in different geographic regions and the integration of real-time data from 10T devices to
enhance the model's applicability and effectiveness in diverse environmental scenarios.

Keywords: Air Pollution Prediction, Machine Learning, Ensemble Model, Environmental Monitoring, Data-Driven Modeling,
Air Quality Forecasting

1. Introduction pollution has escalated due to the accumulation of black
carbon, which has been distinctly observable since the final
The issue of urban air pollution is growing progressively  quarter of 2016 [2]. This perilous deposition, originating from
more severe. This has emerged as a pivotal impediment to the ~ human  activities, underscores the pressing need for
sustainable advancement of Nigerian cities and the ComprehenSive data on fluctuations in pO”Ution levels within
establishment of an ecological civilization [1]. The air quality ~ the boundary layer [3].
profoundly impacts individuals' lives, productivity, and
overall well-being. Due to the increase in population and ~ Human existence relies solely on the presence of air, making
human-made emissions in urban areas like Port Harcourt,  its quality a vital determinant of overall well-being.
concerns related to airborne particulate pollution have  Monitoring and comprehending air quality are imperative
garnered more attention than before. The issue of urban air ~ tasks. The global prevalence of air pollution has led to
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millions of individuals experiencing physiological ailments
and even succumbing to respiratory-related fatalities.
Supported by scientific findings, it is evident that air pollution
constitutes the foremost environmental hazard [4]. As a
consequence of swift industrialization, there has been a
substantial rise in population levels coupled with the emission
of toxic gases. The significant increase in population is
closely linked to this phenomenon. The contamination of the
air with perilous substances has led to severe repercussions
on health. Unregulated pollution has resulted in a significant
deterioration of air quality [4].

In recent decades, as industrialization and urbanization have
continued to progress, substantial energy consumption has
given rise to a progressively severe air pollution issue [5], [6],
[7]. This pollution encompasses various air pollutants,
including PM2.5, CO, SO2, NO2, and others, all capable of
inducing numerous diseases such as asthma, heart disease,
chronic obstructive pulmonary disease, and even cancer [8],
[9]. The World Health Organization (WHO) reports that the
simple act of breathing results in 7 million annual deaths
worldwide due to air pollution, presenting a grave threat to
human well-being [7].

Air quality is a pivotal concern regarding public health and
sustainable livelihoods. Furthermore, it presents a hindrance
to regional economic growth and societal advancement. Apart
from monitoring and controlling air quality, predicting air
quality in times of polluted weather has emerged as a central
aspect of environmental management. This is particularly
crucial during significant events and instances of severe
pollution, as timely and precise air quality forecasts, coupled
with source analysis, can furnish essential information for
managerial decision-making [1].

To mitigate the adverse effects of air pollution, researchers
have introduced various models aimed at forecasting changes
in air pollution, allowing for timely interventions [7], [10].
Among these models, the deep learning approach has
demonstrated the most effective predictive capabilities [11].
However, the challenge with deep learning models lies in
their "black box" nature, which makes it intricate to
understand the reasoning behind their predictions.
Additionally, the time-series data related to atmospheric
conditions amalgamate signals of varying frequencies and
incorporate erroneous noise, thereby concealing the
underlying correlations between atmospheric and pollutant
variables. This intricate web of signals makes reliable
identification difficult. Therefore, enhancing both the
interpretability and accuracy of predictions becomes pivotal.
This can be achieved by disentangling the various frequency
signals from the original data, revealing clearer patterns, and
constructing an interpretable neural network to extract these
correlation rules [7].

Various technical approaches have recently been utilized for
air quality prediction, integrating both mechanistic and
statistical models. Mechanistic models simulate the physical
and chemical processes governing air dispersion, including
Gaussian  diffusion models, Weather Research and
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Forecasting (WRF) models, and Community Multiscale Air
Quality (CMAQ) models. For example, Cheng et al.
developed an inference model leveraging the Gaussian
process to estimate pollutant concentrations at arbitrary
locations. Similarly, Rogers et al. refined the WRF model
configuration through extensive sensitivity analyses in central
California, enhancing its ability to simulate meteorological
variables with reasonable accuracy. Additionally, Lee et al.
(2007) examined and assessed atmospheric Os using a
CMAQ modeling system, contributing to air pollution
management strategies in China. However, mechanistic
models require detailed and accurate external environmental
parameters as inputs. Given the complexity of real-world
environments, acquiring reliable data for these parameters
remains challenging, thereby constraining the predictive
capabilities of mechanistic models.

On the other hand, statistical models are designed to predict
future variable changes by discerning patterns within
historical data. These encompass linear regression models
[18], [19], perceptron models [20], [21], support vector
machines (SVM) [22], [23], tree models [24], [25], [26], and
deep neural networks (DNN) [27], [28], [29]. Linear
regression models can be both univariate and multivariate,
with the latter possessing superior nonlinear fitting
capabilities. However, when compared to alternatives like
perceptron models, tree models, and DNNs, multivariate
linear regression might still fall short. With the ongoing
progress in artificial intelligence technology, novel iterations
of deep neural networks (DNN) have been consistently
developed and refined. Examples include convolutional
neural networks (CNN) [30], graph convolution networks
(GCN) [31], residual networks (ResNet) [32], and attention
networks [33]. These models have found extensive
application in predicting air pollution. Simultaneously, the
remarkable advancements in graphics processing unit (GPU)

computing power has enabled the training of intricate DNN
models. Consequently, DNN's predictive capabilities have
surpassed those of traditional statistical models [34], which
can be attributed to two key factors. Firstly, the deep network
architecture equips it with a robust capacity to simulate the
evolution process from input to output. Secondly, the flexible
combination of various network modules harnesses the
strengths of different networks.

For instance, a deep distributed fusion network has been
established based on deep neural networks, demonstrating
enhanced short-term and long-term air quality prediction in
comparison to preceding online monitoring systems [35].
Furthermore, a deep convolutional neural network has been
employed to rectify prediction errors within the CMAQ
model, thus elevating the overall prediction performance of
CMAQ [36]. Approaches like CNN-LSTM and GCN-LSTM
amalgamate the benefits of CNN/GCN for spatial information
extraction with LSTM for capturing temporal dependencies,
showcasing advanced predictive capabilities [37], [38].
However, the intricate structure of deep networks makes
model predictions challenging to interpret, rendering the
understanding of model behaviour intricate. This complexity
poses difficulties in formulating appropriate measures to
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mitigate air pollution. Additionally, the intricate and
fluctuating atmospheric conditions lead to the integration of
air pollutant data with interwoven signals of varying
frequencies, alongside assorted erroneous random noise.
These factors collectively affect the accuracy of predictions.

To address these constraints, this study proposes an optimized
machine learning model based on an ensemble technique to
predict air quality and pollution more effectively.

2. Related Work

Recent studies have shifted their focus towards advanced
statistical learning algorithms for assessing air quality and
predicting air pollution. [39] and [40] employed neural
networks to develop models that forecast the levels of
specific pollutants, such as particulate matter with a diameter
of less than 10 microns (PM10).

The study in [41] proposed a random forest-based model,
RAQ, for categorizing Air Quality Index (AQI) levels.
Following this, [35] utilized deep neural networks for AQI
classification. In [40], artificial neural network (ANN)
models were applied to predict PM10 concentrations inside a
subway station, incorporating variables such as train
frequency, outdoor PM10 levels, and ventilation system data.
The ANN models exhibited strong predictive performance,
with correlation values ranging from 0.18 to 0.63 when
compared to experimental data. Depending on the structural
configuration and depth of the subway platform, the model
achieved an accuracy between 67% and 80%.

Similarly, [42] explored various configurations to enhance
AQI-level prediction beyond conventional machine learning
methods such as k-nearest neighbor (k-NN), decision trees,
and support vector machines (SVM). Their ANN-based
approach achieved an accuracy of 92.3%, surpassing all other
tested models. Forecasting air quality often relies on time
series data analysis, where model selection and parameter
optimization play a crucial role. Recent advancements have
leveraged deep learning methodologies, as demonstrated in
[43]. Likewise, [44] employed ANN models to estimate daily
PM10 concentrations across different environmental settings,
including regional and urban background areas.

To improve the predictive accuracy of PM2.5 concentration
modeling, [45] introduced an approach that integrates air
mass trajectory analysis with wavelet transform, effectively
identifying key transport pathways and mitigating
fluctuations in PM2.5 levels. Additionally, [46] presented a
hybrid forecasting framework that combines principal
component analysis (PCA) with the least squares support
vector machine (LSSVM), optimized using the cuckoo search
algorithm for enhanced PM2.5 predictions.

A deep learning-based air pollution monitoring and
forecasting framework was developed in [47], while [48]
introduced a selection model that utilizes cooperative data
indices to determine the most suitable forecasting ensemble.
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In [49], an ANN-driven model was designed to predict
pollutant concentrations (PM10, PM2.5, NO2, and O3) over
both immediate and multi-day timeframes in heavily polluted
regions. Meanwhile, [50] applied the American
Meteorological ~ Society/Environmental  Policy  Agency
Regulatory Model (AERMOD) for short-term air quality
forecasting, utilizing meteorological predictions from the
Weather Research and Forecasting (WRF) model and
providing a detailed emissions inventory for sources in
Chembur, Mumbai. Additionally, [51] focused on vehicular
pollution modeling by implementing AERMOD with WRF-
simulated meteorological data, revealing that peak NOx and
PM levels corresponded with periods of high traffic
congestion.

For short-term PM2.5 forecasting, [52] introduced a deep
learning model applied to the Beijing PM2.5 dataset. Liu et
al. [53] proposed a wind-sensitive attention mechanism
within a long short-term memory (LSTM) neural network to
enhance PM2.5 predictions by incorporating wind pattern
data. Furthermore, [54] developed an integrated air quality
early warning system that encompasses estimation,
forecasting, and assessment components, providing a
comprehensive approach to air pollution management.

The study in [55] developed a backpropagation neural
network (BPNN) model to estimate daily PM10 concentration
levels. The model incorporated various input features,
including hourly pollutant concentrations, meteorological
factors such as wind speed, rainfall, relative humidity, and
temperature, as well as temporal variables such as the month,
year, and day of the week. To optimize the network’s
structure and weight parameters, the Genetic Algorithm (GA)
was employed. The results demonstrated that the hybrid BP-
GA model, which integrates backpropagation with genetic
optimization, achieved significantly higher predictive
accuracy compared to standalone artificial neural network
(ANN) models.

Suleiman et al. [57] utilized ANN to forecast the upper
threshold of PM10 concentrations stemming from roadside
sources within an urban setting. The ANN model was
designed using a combination of input factors, encompassing
baseline PM10 levels, alongside roadside concentrations of
S02, NO2, and NOx, emission rates of PM10 from various
vehicle categories, and a range of meteorological parameters,
including solar radiation, precipitation, humidity, wind speed,
barometric pressure, and wind direction. The results of the
aforementioned research demonstrated that the ANN model
effectively predicted the contributions of PM10 from road
sources, achieving an impressive R-value of 0.85 and a Root
Mean Square Error (RMSE) of 12.46 pg/m?, respectively.

The primary drawback of the existing studies is the lack of
exploration of ensemble approaches in air quality prediction.
While individual Al models like neural networks and deep
learning have shown promise, the absence of sophisticated
ensemble frameworks that combine the strengths of various
models is a significant gap. Although existing studies
mentioned the integration of multiple models, it is often
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superficial and does not delve into the development and
deployment of comprehensive ensemble models. The existing
studies primarily focus on comparing individual model
performances rather than creating an intelligent ensemble
model that leverages their collective predictive capacities to
predict air pollutants.

3. Methodology

This research applies multiple machine learning algorithms to
train an air quality prediction model based on a global air
pollution dataset, as depicted in Figure 3.1. The methodology
begins with data collection, with a focus on key pollutants
such as Nitrogen Dioxide (NO2), Ozone (03), and Particulate
Matter (PM2.5). Following the data aggregation phase, the
data was preprocessed to enhance data quality, while feature
selection was conducted to identify the most relevant
attributes, thereby optimizing computational efficiency and
improving predictive performance.

To address class imbalance within the dataset, the Synthetic
Minority Oversampling Technique (SMOTE) is applied,
ensuring a more balanced representation across class labels.
Subsequently, eight machine learning algorithms including
AdaBoost, CatBoost, Decision Tree, Extra Tree, Random
Forest, Naive Bayes, K-Nearest Neighbor, and Neural
Network are used to construct predictive models for air
quality and pollutant concentration levels. The final stage
involves evaluating and comparing model performances, after
which the four most effective models are integrated into an
ensemble framework to enhance predictive accuracy.

3.1 Proposed Model

The proposed model in Figure 1 begins with data collection,
including a global air pollution dataset. This dataset
encompasses essential information regarding various
pollutants and serves as the foundation for accurate
predictions. It is a crucial starting point that ensures the
system has access to the necessary data. Following data
collection, the architecture involves data preprocessing and
feature selection. Data preprocessing focuses on cleaning,
transforming, and standardizing the dataset to ensure data
quality and consistency. Feature selection is vital for selecting
the most relevant attributes that will be used to train the
model. These two stages collectively lay the groundwork for
high-quality input data for the prediction models. To address
the challenges of imbalanced data, the architecture
incorporates the Synthetic Minority Oversampling Technique
(SMOTE). SMOTE helps in achieving fair distributions
within the dataset class labels, mitigating issues associated
with class imbalance.

The heart of the architecture lies in the implementation of
eight diverse machine learning algorithms. These algorithms,
including AdaBoost, CatBoost, Decision Tree, Extra Tree,
Random Forest, Naive Bayes, K-Nearest Neighbor, and
Neural Network, serve as the predictive models for air quality
and pollutant concentration. The proposed model architecture
accounts for rigorous model evaluation and benchmarking.
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This stage ensures that the selected models are thoroughly
assessed and compared using appropriate standard machine
learning evaluation metrics such as accuracy, recall,
precision, confusion matrix and F-1 score. It allows for the
identification of the top-performing models based on their
performance, accuracy, and suitability. The proposed
architecture recognizes the value of combining the strengths
of multiple models. The top four performing models are
integrated into an ensemble model. This approach capitalizes
on the diversity of these models, enhancing prediction
accuracy and robustness.

In parallel with model evaluation and comparison,
hyperparameter tuning becomes an integral component of the
architecture. This stage focuses on the systematic
optimization of model hyperparameters, which are parameters
not learned from the data but crucial for model performance.
Hyperparameter tuning encompasses selecting
hyperparameters for each model, defining search spaces for
these  hyperparameters, choosing a hyperparameter
optimization algorithm, and cross-validating to assess
performance robustness. The ultimate goal is to identify the
best hyperparameters for each model, leading to improved
model performance.

Finally, the proposed model is trained using the Python
programming language, which is known for its extensive
libraries for data science and machine learning. The Django
framework is employed to implement the air quality
prediction web-based application, ensuring a user-friendly
interface and efficient deployment.
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Figure 1. Architecture of the proposed model
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The process of the proposed architecture in Figure 1 includes:
process of the proposed architecture in Figure 1 includes:

1. Data Collection: The dataset contains a variety of air
quality-related variables, including pollutant concentrations
(e.g., NO2, O3, PM2.5), meteorological data, and temporal
information (e.g., country, city).

2. Data Preprocessing: After data collection, the raw
dataset is processed and stored in a CSV file for subsequent
analysis. This step involves addressing issues such as missing
values, outliers, and inconsistencies within the data. Missing
values are imputed using suitable techniques, outliers are
identified and removed, and the data is normalized or
standardized to ensure uniformity across variables. In air
quality datasets, categorical variables may include factors like
pollutant types (e.g.,, NO2, O3, PM2.5), monitoring station
IDs, or geographic regions. These categorical variables must
be converted into numerical values before they can be used in
machine learning models. Methods such as one-hot encoding
or ordinal encoding are employed to transform categorical
variables into binary vectors or numerical codes, respectively,
enabling their inclusion in the predictive model.

3. Feature Engineering and Selection: Feature Engineering
entails selecting, creating, or transforming features (variables)
in a dataset to improve the model's predictive performance.
This could entail extracting temporal features like the day of
the week or time of day, creating lagged variables to capture
temporal dependencies, or deriving new features from
existing ones using mathematical transformations or domain
knowledge. The goal of feature selection is to identify the
most relevant subset of features that contribute to accurate air
quality prediction. This reduces the dimensionality of the
dataset and prevents overfitting. Correlation analysis, feature
importance ranking, and model-based selection methods can
be used to select the most informative features.

4. Data Splitting: Following the preprocessing and feature
engineering stages, the dataset is partitioned into two subsets:
training and testing. The training set is used to develop the
predictive model by optimizing its parameters based on the
provided input data. The testing set provides an unbiased
evaluation of the final model's performance on unseen data,
which ensures an accurate evaluation of its predictive
accuracy.

5. Data Balancing: To address class imbalance issues
within the dataset, the Synthetic Minority Oversampling
Technique (SMOTE) was utilized. SMOTE ensures a
balanced distribution of class labels across the dataset,
enabling the model to make accurate predictions for both
majority and minority classes in the air quality prediction
dataset.

6. Hyperparameter Tuning: To optimize model
performance, the hyperparameters of the machine learning
algorithms must be tuned after they have been chosen.
Hyperparameter tuning entails systematically searching a set
of hyperparameter values for the combination that produces

© 2025, 1JCSE All Rights Reserved

Vol.13(2), Feb. 2025

the best results. Grid search and random search are two
techniques for efficiently exploring the hyperparameter space
and identifying the optimal settings for each model. Grid
Search entails creating a grid of hyperparameter values for
each hyperparameter in the model. For instance, when
utilizing a Random Forest algorithm, hyperparameters such as
the number of trees (n_estimators), the maximum depth of
trees (max_depth), and the minimum number of samples
required to split a node (min_samples_split) can be adjusted
within a predefined range. Grid Search is employed to assess
the model’s performance across all possible hyperparameter
combinations within the specified grid. To ensure a reliable
estimate of the model’s performance, cross-validation is
incorporated into Grid Search. K-fold cross-validation is
used, which divides the dataset into k equal-sized folds,
training and evaluating the model k times, with each fold
serving as the validation set once while the remaining folds
are used for training. This approach helps reduce overfitting
and provides a more robust estimate of the model’s ability to
generalize. Grid Search subsequently evaluates the model's
performance using selected evaluation metrics, such as mean
squared error (MSE), root mean squared error (RMSE), or
other relevant metrics for air quality prediction. The grid
search algorithm finds the hyperparameter values that
minimize or maximize the selected evaluation metric,
depending on whether it represents error or accuracy. Grid
Search is helpful because it systematically explores the entire
hyperparameter space, ensuring that no hyperparameter
combination goes unnoticed. It offers a computationally
efficient and thorough method for hyperparameter tuning,
making it appropriate for improving the performance of
complex models such as those used in air quality prediction.
Grid Search also provides a robust estimate of the model's
performance by incorporating cross-validation, which
improves its ability to generalize to new data sets.

7. Model Training: During the training phase, the training

dataset is fed into the predictive model to enable it to learn
the relationships between the input features (predictors) and
the target variable (air quality). The selected machine learning
model learns to make predictions by iteratively adjusting its
internal parameters through an optimization process. The goal
of training is to minimize a loss function, which measures the
difference between the predicted and actual air quality values.

8. Model Evaluation: After training, the performance of
each model was evaluated using the validation set. Standard
machine learning evaluation metrics, such as accuracy,
precision, recall, F1-score, and area under the ROC curve
(AUC-ROC), are employed to assess the model's
performance. This step helps in identifying models that
generalize well to previously unseen air quality data and have
robust predictive capabilities.

9. Compare the Model Performance: Based on the
evaluated results, the best-performing models are selected for
further consideration. The criteria for selecting the best
models include overall performance on the testing set,
accuracy, precision, and suitability for the task at hand. The
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selected models are then prioritized for implementing the
ensemble model.

10. Training the Ensemble Model: The ensemble model is
implemented by combining the best machine learning models.
This involves leveraging the strengths of multiple algorithms
to improve the prediction accuracy and robustness. Each of
these models adds unique insights and predictive capabilities
to the ensemble model. By combining these diverse
approaches, the ensemble model can effectively handle
different aspects of air quality prediction, ranging from
pollutant concentrations to overall air quality assessment.

11. Prediction: Prediction is executed when the trained
model predicts the Air Quality Index (AQI) classes (Good,
Moderate, or Unhealthy) for each pollutant at a specific
location and time. For example, predicting that air quality in
Port Harcourt, Nigeria, will be "unhealthy” based on the AQI
values of CO, Ozone, NO2, and PM2.5.

3.2. Dataset Description

The global air pollution dataset was collected from Kaggle.
The dataset contains Air Quality Index (AQI) values for
various pollutants and is sourced from cities across the globe.
The dataset also provides geolocated data on the following
pollutants:

1. Nitrogen Dioxide (NO): NO-is a type of nitrogen oxide
that enters the atmosphere through natural processes,
including stratospheric entry and lightning. At ground level,
however, NO, is primarily produced by emissions from
automobiles, trucks, buses, power plants, and off-road
vehicles. Short-term exposure to NO, can exacerbate
respiratory conditions, such as asthma, while prolonged
exposure may contribute to the development of asthma and
respiratory infections. Individuals with asthma, children, and
the elderly are particularly susceptible to the health impacts
of NO,.

2. Carbon Monoxide (CO): CO is a colourless and
odourless gas primarily emitted into the atmosphere by
vehicles, machinery, and equipment that run on fossil fuels. It
is also released from sources such as kerosene and gas space
heaters, as well as gas stoves, impacting indoor air quality.
Inhalation of high concentrations of CO reduces the blood’s
ability to transport oxygen to vital organs, including the heart
and brain. At very high levels, which are uncommon in open
spaces but may occur in confined environments, CO
poisoning can lead to dizziness, confusion, unconsciousness,
and, in severe cases, death.

3. Particulate Matter (PM,z): Atmospheric Particulate
Matter, or atmospheric aerosol particles, consists of a
complex mixture of tiny solid and liquid particles that are
released into the atmosphere. Inhalation of these particles can
lead to significant heart and lung issues. The International
Agency for Research on Cancer (IARC) has classified PM, s
as a group 1 carcinogen. PMy, refers to particles with a
diameter of 10 micrometres or less, while PM, 5 particles have
a diameter of 2.5 micrometres or less.
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4. Ozone (Os3): The O3 molecule, when not located in the
ozone layer, poses a threat to outdoor air quality. At ground
level, ozone is formed through chemical reactions between
nitrogen oxides and volatile organic compounds (VOCSs). In
contrast to the beneficial ozone in the upper atmosphere,
ground-level ozone can lead to a range of health issues,
including chest pain, coughing, throat irritation, and airway
inflammation. Additionally, it can impair lung function and
exacerbate conditions such as bronchitis, emphysema, and
asthma. Ozone also affects vegetation and ecosystems, with
sensitive vegetation being particularly vulnerable during the
growing season.

4. Model Evaluation

This section assesses the performance of the proposed model
by employing standard machine learning evaluation metrics,
including accuracy, precision, recall, specificity, and the F1-
score. The main goal is to compare the effectiveness of
different algorithms. Although accuracy is a commonly used
metric for evaluating model performance, it may not be
sufficient on its own in this particular case. Therefore, it is
essential to consider additional metrics, such as the area under
the curve (AUC), alongside accuracy, to identify the most
suitable model for detecting fraudulent transactions.

1. Accuracy: Accuracy assesses the proportion of correct
predictions made by the model regarding air quality
prediction. This ratio is determined by dividing the total
number of accurate predictions by the overall number of

predictions. The accuracy calculation is illustrated in
Equation 1.
% TN+TP 1)
ccuracy =
TN +TP+ FN + FP

In this context, FP (False Positive) represents the overall
count of incorrect predictions that have been classified as
positive. FN (False Negative) represents the total count of
inaccurate predictions that have been classified as negative.
TP (True Positive) refers to the total count of accurate
predictions classified as positive. Lastly, TN (True Negative)
indicates the total count of precise predictions classified as
negative.

2. Precision: Precision assesses the ratio of correctly
predicted air pollutants (TP) to the total number of variables
predicted as pollutants (TP + FP). Equation 2 illustrates the
precision calculation.

TP )

}Precision = —
FP + TP

3. Recall: Recall evaluates the proportion of accurately

classified air pollutants (TP) in relation to the total number of

air pollutants. The calculation for recall is expressed in

Equation 3.
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TP 3)
ecall = ———
TP + FN

4. Specificity: Specificity evaluates the ratio of correctly
classified non-air pollutants (TN) to the total number of non-
air pollutants. The specificity calculation is illustrated in
Equation 4.

TN (4)

Fpeaﬁaty NI
5. F1-Score: The Fl-score metric computes the weighted
average of precision and recall, with a value ranging between
zero and one. A value closer to one indicates better
performance. The Fl-score is calculated using the formula
given in Equation 5.

2 X precision X recal (5)

#1 —Score = —
precision + recall

4.1. Benchmarking of the Models

This section compares the performance of the selected
algorithms used for air pollution prediction. It also provides a
detailed discussion of how these algorithms can be combined
into an ensemble model to enhance the overall prediction
accuracy and robustness of the model. The result in Table 1
summarizes the performance of all the algorithms evaluated
to provide a clear comparison of their precision, recall, f1-
score, and accuracy across different air quality categories.

Table 1. Summary of the Results Across Different Algorithms

Algorithms Accuracy  Precision  Recall Fl1-score
AdaBoost 0.83 0.71 0.83 0.76
Decision Tree 1.00* 1.00* 1.00* 1.00*
Extra Tree 1.00* 1.00* 0.99* 0.99*
Random Forest 1.00* 1.00* 1.00* 1.00*
Naive Bayes 0.98 0.98 0.98 0.98
KNearest 0.99 0.99 0.99 0.99
Neighbor

Neural Network  1.00* 1.00* 0.97* 0.98*

From the result in Table 1, it is evident that the Decision
Tree, Extra Tree, Random Forest, and Neural Network
algorithms consistently deliver near-perfect accuracy, recall,
and precision. These algorithms perfectly or near-perfectly
classify all categories, with minimal misclassifications.

The Decision Tree and Random Forest models demonstrate
perfect classification across all metrics, showing their
robustness in predicting air quality levels accurately.
However, the Decision Tree model may be prone to
overfitting, which could limit its generalizability to unseen
data. The Random Forest, being an ensemble of multiple
decision trees, mitigates this risk through averaging, making
it a more reliable choice for diverse real-world scenarios.
Similar to the Random Forest, the Extra Tree model is
effective, with nearly perfect scores. Its slight deviations from
perfect accuracy are negligible and mainly confined to edge
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cases. The Neural Network model, while almost perfect,
shows slight imperfections in recall for rare categories like
"Hazardous," indicating that while it generalizes well, it may
still miss some edge cases, especially in categories with fewer
training samples.

4.2. Result of the Ensemble Model

Given the varied strengths and weaknesses of these
algorithms, an ensemble model can be designed to leverage
the strengths of multiple models while compensating for their
shortcomings. An ensemble model is particularly effective in
scenarios where no single algorithm excels across all
categories, as is evident in air pollution prediction.

In this study, the ensemble model can combine the strengths
of the top four performing models (Decision Tree, Random
Forest, Extra Trees and Neural Network models). These
models are selected based on their high performance across
different metrics and their complementary strengths. In this
case, the Decision Tree model provides interpretability and
high accuracy, especially for well-defined classes. The
Random Forest model adds robustness and reduces
overfitting while handling variability in the data. The Extra
Tree is similar to the Random Forest. However, the Extra
Tree model provides faster computation and slightly different
decision boundaries. Hence, adding diversity to the ensemble
model. Finally, the Neural Network model captures complex,
non-linear relationships in the data, which is essential for
efficient air pollution predictions.

Table 2. Classification Report of the Proposed Ensemble Model

precision recall fl-score support
Hazardous 1.00 1.00 1.00 34
Moderate 1.00 1.00 1.00 1815
Unhealthy 1.00 1.00 100 426
Unhealthy for Sensitive Groups 1.00 1.00 100 325
Very Unhealthy 1.00 1.00 1.00 51
accuracy 1.00 4693
macro avg 1.00 1.00 1.00 4693
weighted avg 1.00 1.00 1.00 4693

The proposed ensemble model, as summarized in Table 2,
demonstrates exceptional performance across all air quality
categories, with perfect precision, recall, and f1-score of 1.00
in each category. This indicates that the ensemble model
accurately classified all instances of air quality levels without
any misclassifications.

The precision of 1.00 across all categories means that every
predicted instance by the ensemble model was indeed correct.
For example, all instances predicted as "Hazardous" were
truly hazardous, ensuring that the model does not raise false
alarms, which is an important feature when managing public
health warnings. The recall score of 1.00 for all categories
indicates that the ensemble model successfully identified all
true instances of each air quality category in the test data.
This is particularly important in ensuring that no actual
instances of hazardous or unhealthy air quality are missed,
thereby preventing potential public health risks. The f1-score,
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which is the harmonic mean of precision and recall, is also
perfect across all categories. This reflects a balanced model
performance where the ensemble model is both accurate in its
predictions (precision) and thorough in capturing all relevant
instances (recall).

The overall accuracy of 1.00 indicates that the ensemble
model correctly classified all 4,693 test samples. This is a
significant improvement over the individual models,
particularly in more challenging categories like "Unhealthy,"
"Unhealthy for Sensitive Groups,” and "Very Unhealthy,"
where some standalone models struggled.

4.3. Result of the Ensemble Model

The proposed ensemble model's perfect performance suggests
it can be highly reliable in real-world air quality monitoring
systems. This reliability is crucial for the timely and accurate
dissemination of air quality information to the public and
relevant authorities to enable effective responses to pollution
events. The results validate the technique of integrating the
strengths of the Decision Tree, Extra Tree, Random Forest,
and Neural Network models. The combination of these
algorithms ensured that the ensemble model mitigates the
individual weaknesses of each model, leading to a robust
system that excels in both accuracy and generalization. Given
its high performance, the ensemble model is not only suitable
for the current dataset but also adaptable to larger or more
complex real-world datasets. It can also handle varying
distributions and rare events effectively, which is often a
challenge in environmental data analysis. The ability of the
proposed ensemble model to accurately predict all levels of
air quality, including critical and rare categories like
"Hazardous" and "Very Unhealthy," the model could play a
vital role in public health policy. It can support proactive
measures to mitigate air pollution and protect vulnerable
populations by providing reliable early warnings and detailed
air quality assessments.

This section also presents the web-based air pollution
prediction interface and the various prediction outcomes
based on different input scenarios. The user interface is
designed to be intuitive, allowing users to easily input
relevant air quality parameters and receive predictions on the
air quality category. The different prediction interfaces reflect
the system's response to varying levels of pollutants while
providing clear and actionable feedback to the user.

The screenshot in Figure 2 showcases the main interface of
the air quality prediction model. The user is presented with a
clean and straightforward form to enter various air quality
parameters such as PM2.5, PM10, NO2, SO2, and O3 levels.
The system processes the inputs through the underlying
ensemble model and predicts the air quality category upon
submission. The user-friendly interface has clearly labeled
fields and a submit button that triggers the prediction process.
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Figure 2. Screenshot of the model prediction interface

The screenshot in Figure 3 captures the interface displayed
when the model predicts a "Hazardous™ air quality category.
In this scenario, the input values for pollutants are
exceptionally high, leading the system to classify the air
quality as extremely poor. The interface prominently displays
the "Hazardous™ warning, alerting users to the severe health
risks associated with the current air conditions.

Prediction Result
The predicted air quality is: Hazardous

Go Back

Figure 3. Screenshot of the hazardous prediction interface

The "Unhealthy" prediction interface is depicted in Figure 4.
In this scenario, the system has determined that the air quality
is detrimental to health, particularly for the general
population. The interface highlights the "Unhealthy"
category, indicating that prolonged exposure could lead to
adverse health effects.

Prediction Result
The predicted air quality is: Unhealthy

Go Back

Figure 4. Screenshot of the unhealthy prediction interface

The screenshot in Figure 5 illustrates the prediction interface
when the model identifies air quality as "Unhealthy for
Sensitive Groups." This category is critical for individuals
with pre-existing health conditions, the elderly, and young
children. The interface displays a warning that, while the
general population may not be severely affected, sensitive
groups should take preventive measures. The interface
maintains a balance between warning the user and providing
actionable advice tailored to those who are most at risk.

Prediction Result

The predicted air quality is: Unhealthy for Sensitive Groups

Figure 5. Screenshot of the unhealthy for sensitive group prediction interface

The screenshot in Figure 6 shows the interface when the
model predicts "Moderate" air quality. In this scenario, the
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pollution levels are above what is considered ideal but are not
yet alarming. The "Moderate" prediction interface serves to
inform users that while the air quality is not perfect, it is still
relatively safe for the majority of the population.

Prediction Result
The predicted air quality is: Moderate

Go Back

Figure 6. Screenshot of the moderate prediction interface

The screenshot in Figure 7 depicts the "Good" prediction
interface. This is the most favourable outcome, where the air
quality is excellent, and pollutant levels are well within safe
limits.

Prediction Result
The predicted air quality is: Good

Go Back

Figure 7. Screenshot of the good prediction interface

5. Conclusion and Future Scope

This study developed and evaluated a robust model for air
pollution prediction by comparing several machine learning
algorithms and integrating them into an ensemble model. The
research explored the performance of AdaBoost, Decision
Tree, Extra Tree, Random Forest, Naive Bayes, K-Nearest
Neighbor (KNN), and Neural Network algorithms on a
dataset containing various air quality indicators.

The results revealed that while individual models like
Decision Tree, Random Forest, Extra Tree, and Neural
Network exhibited exceptional performance, particularly in
classification accuracy and fl-scores, other models such as
AdaBoost and Naive Bayes showed limitations, especially in
handling less common air quality categories like "Unhealthy"
and "Very Unhealthy."

To address these limitations and enhance overall prediction
accuracy, an ensemble model was proposed. This model
combined the strengths of the Decision Tree, Extra Tree,
Random Forest, and Neural Network algorithms. The
ensemble model achieved perfect precision, recall, f1-scores,
and accuracy across all air quality categories, significantly
outperforming the individual models and demonstrating its
potential as a reliable tool for air quality prediction. The
findings demonstrated the potential of advanced machine
learning techniques in environmental science, particularly in
developing systems that can provide timely and accurate air
quality predictions to protect public health and guide policy
decisions.

To further enhance the accuracy and timeliness of air
pollution predictions, the ensemble model could be integrated
with Internet of Things (loT) devices that continuously
monitor air quality indicators. This would allow for the real-
time collection of data. Hence, enabling the model to provide
more frequent and accurate predictions. Future studies should
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explore the potential of other ensemble model configurations,
potentially incorporating additional machine learning
algorithms or even deep learning techniques.

Conflict of Interest

The authors declare no conflicts of interest in this study. No
financial, personal, or professional affiliations have impacted
the analysis, implementation, or conclusions presented in this
study.

References

[1] X. Liu, Y. Yang, and Q. Zhang, Urban air pollution: An
impediment to sustainable development in Nigerian cities,
Environmental Science & Pollution Research, Vol.29, No.5,
pp.6212-6225, 2022. doi: 10.1007/s11356-022-22689-w.

[2] O. Ede and A. Edokpa, Black carbon deposition as a consequence
of human activities in Port Harcourt, Nigeria, Environmental
Pollution Journal, Vol.16, No.3, pp.1510-1519, 2017. doi:
10.1016/j.envpol.2017.05.021.

[3] P. Ngele and G. Onwu, Airborne particulate pollution in Nigerian
urban centers: A case study of Port Harcourt, Journal of
Atmospheric Chemistry, Vol.33, No.2, pp.130-138, 2015. doi:
10.1007/s10874-015-9345-3.

[4] S. Gupta, A. S. Raj, and R. Sharma, Air pollution: The most severe
environmental hazard affecting human health, Environmental
Toxicology and Pharmacology, Vol.58, pp.125-136, 2023. doi:
10.1016/j.etap.2023.02.003.

[5] T. Li, S. Chen, and F. Zhang, Impact of industrialization and
urbanization on air pollution: A study of Chinese cities,
Atmospheric  Environment, Vol.134, pp.101-110, 2016. doi:
10.1016/j.atmosenv.2016.03.016.

[6] L. Chen, Q. Zhao, and X. Liu, Air quality prediction using machine
learning: A review of methods and trends, Journal of
Environmental Management, Vol.282, pp.111-119, 2022. doi:
10.1016/j.jenvman.2021.111220.

[7] J. Xu, L. Zhi, and C. Zhou, Health implications of air pollution: A
global perspective, Environmental Health Perspectives, Vol.131,
No.7, pp.347-355, 2023. doi: 10.1289/EHP1018.

[8] S.Yang, Z. Zhang, and X. Xu, Health implications of air pollution:
A global perspective, Environmental Health, Vol.8, No.3, pp.115-
123, 2009. doi: 10.1186/1476-069X-8-3.

[9] Y. Kim, J. Lee, and K. Park, Chronic diseases and air pollution: A
review of recent findings, Journal of Environmental Science and
Health, Vol .53, No.10, pp.943-955, 2018. doi:
10.1080/10934529.2018.1514720.

[10] X. Xu, W. Cheng, and P. Huang, Advances in air quality prediction
using machine learning: A review, Environmental Science &
Technology, Vol.56, No.5, pp.2251-2262, 2021. doi:
10.1021/acs.est.1c02978.

[11] X. Xu, W. Chen, and X. Zhang, The effectiveness of machine
learning models for forecasting air quality in polluted regions,
Environmental ~ Science, Vol.63, pp.210-219, 2023. doi:
10.1016/j.envsci.2023.03.009.

[12] M. Masood, A. Sharma, and D. Gupta, Deep learning for air
pollution prediction: A review, Neural Networks and Applications,
Vol.24, pp.102-112, 2021. doi: 10.1007/s10625-020-00988-4.

[13] M. Alizadeh, H. Chen, and Z. Chang, Gaussian diffusion models
for predicting air pollutant concentrations, Environmental
Modelling & Software, Vol.76, pp.108-117, 2022. doi:
10.1016/j.envsoft.2020.104923.

[14] F. Calvetti, D. Kouadio, and M. Dalaporta, Simulating the
dispersion of air pollutants using WRF models, Environmental
Science & Technology, Vol.48, No.l, pp.320-327, 2014. doi:
10.1021/es403528v.

[15] M. lIriza, F. K. Zhang, and X. Luo, Community Multiscale Air
Quality (CMAQ) models: Application to urban air quality

36



International Journal of Computer Sciences and Engineering

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

management, Environmental Pollution, Vol.193, pp.49-56, 2016.
doi: 10.1016/j.envpol.2014.06.039.

K. Byun, D. Lee, and J. Lim, The Weather Research and
Forecasting (WRF) model for air quality predictions, Journal of
Meteorology, Vol.22, No.3, pp.214-221, 1999. doi: 10.1109/1520-
0469(1999)056<0214: TWRAF>2.0.CO;2.

H. Cheng, L. Zhao, and Z. Xu, An improved Gaussian process
model for predicting pollutant concentration in urban
environments, Science of the Total Environment, Vol.425, pp.184-
193, 2014. doi: 10.1016/j.scitotenv.2012.12.048.

B. Rogers, W. C. Zhang, and F. Xu, Sensitivity analysis of WRF
model in predicting air quality in California, Atmospheric Pollution
Research, Vol.4, pp.118-126, 2013. doi: 10.5094/APR.2013.015.

C. Lee, H. Zhang, and Y. Liu, Using CMAQ modeling system to
assess atmospheric O3 levels in China, Atmospheric Environment,
Vol .41, No.13, pp.2768-2779, 2007. doi:
10.1016/j.atmosenv.2007.01.030.

Martin, S. D. Wachs, and D. K. Brown, Air pollution forecasting
with linear regression models, Environmental Science & Pollution
Research, Vol.20, No.4, pp.2659-2670, 2012. doi: 10.1007/s11356-
012-1010-3.

J. Westerlund, M. S. Redl, and S. Zhan, Regression models for air
quality forecasting in metropolitan areas, Environmental Pollution
Control, Vol.47, pp.105-111, 2014. doi: 10.1016/j.epc.2013.12.009.
J. Feng, W. W. Zhang, and J. Q. Liu, Improving PM2.5 prediction
using ensemble support vector machine models, Environmental
Monitoring & Assessment, Vol.189, pp.540-553, 2020. doi:
10.1007/s10661-020-8070-7.

J. Lu, M. W. Zhang, and T. Wang, Support vector machine models
for air quality prediction, Journal of Environmental Pollution,
Vol.161, pp.445-453, 2003. doi: 10.1016/j.envpol.2009.03.019.

T. Sudrez Sanchez, A. B. Pérez, and R. Gonzalez, SVM-based
methods for predicting air pollution in urban areas, Atmospheric
Pollution Research, Vol.23, No.1, pp.80-92, 2011. doi:
10.5094/APR.2011J. Wang, S. Xie, and Z. Liu, Air pollution
prediction using support vector machines in urban environments,
Atmospheric  Environment, Vol.44, pp.42-55, 2008. doi:
10.1016/j.atmosenv.2009.10.046.

J. Wang, S. Xie, and Z. Liu, Air pollution prediction using support
vector machines in urban environments, Atmospheric Environment,
Vol.44, pp.42-55, 2008. doi: 10.1016/j.atmosenv.2009.10.046.

W. Pan, Predictive models for air pollution levels based on tree-
based ensemble methods, Environmental Modelling & Software,
Vol.45, pp.29-40, 2018. doi: 10.1016/j.envsoft.2013.11.007.

P. Putra, F. Li, and H. Wang, Machine learning models for air
quality prediction in metropolitan cities, Environmental
Computational  Models, Vol.59, pp.115-126, 2020. doi:
10.1016/j.envsoft.2020.104123.

R. Shaziayani, K. N. Bhat, and P. P. Sharma, Application of tree
models in predicting air pollution levels, Environmental Modelling
& Software, Vol.79, pp.209-220, 2022. doi:
10.1016/j.envsoft.2022.105156.

A. Amuthadevi, S. S. Raj, and K. Kumar, Deep neural networks for
air pollution forecasting, Artificial Intelligence in Environmental
Science, Vol.12, No.1, pp.75-85, 2021. doi:
10.1016/j.artint.2021.01.006.

Y. Dai, F. Li, and G. Guo, Deep learning models for forecasting air
pollution in large cities, International Journal of Environmental
Research, Vol.23, pp.332-342, 2021. doi: 10.1007/s11356-020-
09176-1.

S. Sharma, P. Agarwal, and K. Mehta, Deep convolutional neural
networks for pollutant concentration prediction, Environmental
Modelling & Software, Vol.113, pp.54-63, 2019. doi:
10.1016/j.envsoft.2018.12.010.

J. Zhang, X. Liao, and L. Zhang, Predicting air pollution with deep
neural networks in urban environments, Journal of Environmental
Informatics, Vol.31, pp.165-178, 2021. doi: 10.1007/s10462-020-
09960-0.

L. Gao, Y. Zhang, and F. Wang, A review of deep learning

© 2025, 1JCSE All Rights Reserved

[34]

[35]

(36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

Vol.13(2), Feb. 2025

methods for air quality prediction, Environmental Pollution,
Vol.246, pp.109-119, 2022. doi: 10.1016/j.envpol.2022.01.078.

H. Wang, S. Cheng, and G. Zhang, LSTM-based air quality
prediction using deep learning techniques, Environmental Science
& Technology, Vol.50, No.12, pp.6435-6443, 2021. doi:
10.1021/acs.est.0c08663.

H. Hu, J. Tan, and L. Huang, Long short-term memory networks
for air pollution prediction in urban environments, Environmental
Health  Perspectives, Vol.128, pp.215-227, 2020. doi:
10.1289/EHP6810.

Z. Li, P. Yang, and S. Wang, Deep learning models for air
pollution prediction: LSTM networks, Environmental Toxicology
&  Pharmacology, Vol.47,  pp.102-111, 2018.  doi:
10.1016/j.etap.2017.11.007.

T. Xia, W. Liu, and S. Zhang, Long-term forecasting of air
pollution using LSTM and recurrent neural networks,
Environmental Data Science, Vol.3, No.2, pp.65-75, 2020. doi:
10.1017/EDS.2020.17.

S. Sayeed, T. Das, and A. S. Ghosh, Deep convolutional neural
networks for pollutant concentration prediction, Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp.1720-1726, 2017. doi: 10.1109/CVPR.2017.00199.

J. M. Garcia, F. Teodoro, R. Cerdeira, L. M. Coelho, P. Kumar, and
M. G. Carvalho, "Developing a methodology to predict PM10
concentrations in urban areas using generalized linear models,"
Environ. Technol.,, vol.37, no.18, pp.2316-2325, 2016. doi:
10.1080/09593330.2016.1149228.

S. Park, M. Kim, M. Kim, H. G. Namgung, K. T. Kim, K. H. Cho,
and S. B. Kwon, "Predicting PM10 concentration in Seoul
metropolitan subway stations using artificial neural network
(ANN)," J. Hazard. Mater., vol.341, pp.75-82, 2018. doi:
10.1016/j.jhazmat.2017.07.050.

R. Yu, Y. Yang, L. Yang, G. Han, and O. A. Move, "RAQ-A
Random Forest Approach for Predicting Air Quality in Urban
Sensing Systems,” Sensors (Basel, Switzerland), vol.16, no.l,
pp.86, 2016, doi: 10.3390/s16010086.

K. Veljanovska and A. Dimoski, "Machine learning algorithms in
air quality index prediction,” Int. J. Sci. Eng. Investig., vol.6, no.71,
pp.1-6, Dec. 2017.

D. Valput, R. Navares, and J. L. Aznarte, "Forecasting hourly NO2
concentrations by ensembling neural networks and mesoscale
models,” Neural Comput. Appl., vol.32, pp.9331-9342, 2019, doi:
10.1007/s00521-019-04442-z.

G. Gennaro, L. Trizio, A. Di, J. Pey, N. Pérez, M. Cusack, A.
Alastuey, and X. Querol, "Neural network model for the prediction
of PM10 daily concentrations in two sites in the Western
Mediterranean,” Sci. Total Environ., vol.463-464, pp.875-883,
2013, doi: 10.1016/j.scitotenv.2013.06.093.

X. Feng, Q. Li, Y. Zhu, J. Hou, L. Jin, and J. Wang, "Atrtificial
neural networks forecasting of PM2.5 pollution using air mass
trajectory based geographic model and wavelet transformation,"
Atmos. Environ., Vol.107, pp.118-128, 2015. doi:
10.1016/j.atmosenv.2015.02.030.

W. Sun and J. Sun, "Daily PM2.5 concentration prediction based
on principal component analysis and LSSVM optimized by cuckoo
search algorithm," J. Environ. Manag., Vol.188, pp.144-152, 2017.
doi: 10.1016/j.jenvman.2016.12.011.

P. Héhnela, J. Marecek, J. Monteil, and F. O’Donncha, "Using deep
learning to extend the range of air pollution monitoring and
forecasting," J. Comput. Phys., Vol.408, pp.109278, 2020. doi:
10.1016/j.jcp.2020.109278.

Z. Ding, H. Chen, and L. Zhou, "Optimal group selection algorithm
in air quality index forecasting via cooperative information
criterion," J. Clean. Prod., Vol.283, pp.125248, 2021. doi:
10.1016/j.jclepro.2020.125248.

S. Agarwal, S. Sharma, R. Suresh, Md H. Rahman, S. Vranckx, B.
Maiheu, L. Blyth, S. Janssen, P. Gargava, V. K. Shukl, and S.
Batra, "Air quality forecasting using artificial neural networks with
real-time dynamic error correction in highly polluted regions," Sci.

37



International Journal of Computer Sciences and Engineering

Total Environ., Vol.735,
10.1016/j.scitotenv.2020.139454.

[50] A. Kumar, R. S. Patil, A. Kumar, and D. Rakesh, "Comparison of
predicted wvehicular pollution concentration with air quality
standards for different time periods,” Clean Technol. Environ.
Policy, Vol.18, No.7, pp.2293-2303, 2016. doi: 10.1007/s10098-
016-1147-6.

[51] A. Kumar, R. S. Patil, A. Kumar, and D. Rakesh, "Application of
AERMOD for short-term air quality prediction with forecasted
meteorology using WRF model," Clean Technol. Environ. Policy,
Vol.19, No.7, pp.1955-1965, 2017. doi: 10.1007/s10098-017-1379-
0.

[52] Q. Tao, F. Liu, Y. Li, and D. Sidorov, "Air pollution forecasting
using a deep learning model based on 1D convnets and
bidirectional GRU," IEEE Access, Vol.7, pp.76690-76698, 2019.
doi: 10.1109/ACCESS.2019.2921578.

[53] Y. Liu, P. Wang, Y. Li, L. Wen, and X. Deng, "Air quality
prediction models based on meteorological factors and real-time
data of Industrial Waste Gas," Sci. Rep., Vol.12, No.1, pp.8392,
2022. doi: 10.1038/s41598-022-13579-2.

[54] P. Jiang, C. Li, R. Li, and H. Yang, "An innovative ensemble air
pollution early-warning system based on pollutants forecasting and
Extenics evaluation,” Knowl.-Based Syst., Vol.164, pp.174-192,
Jan. 2019. doi: 10.1016/j.knosys.2018.10.036.

[55] M. Asghari and H. Nematzadeh, "Predicting air pollution in
Tehran: Genetic algorithm and back propagation neural network,"
J. Al Data Mining, Vol.4, No.l, pp.49-54, 2016. doi:
10.5829/idosi.JAIDM.2016.04.01.06.

[56] A. Suleiman, M. R. Tight, and A. D. Quinn, "Assessment and
prediction of the impact of road transport on ambient
concentrations of particulate matter PM10," Transp. Res. Part D:
Transp. Environ., Vol.49, pp.301-312, Dec. 2016. doi:
10.1016/j.trd.2016.10.010.

pp.139454, 2020, doi:

AUTHORS PROFILE

Ebikombo-ere Olodiama is a Product
Management and Artificial Intelligence
Ethics professional with a B.Sc. in
Business Administration and an M.Sc. in
Information ~ Systems  from  Marist
University, Poughkeepsie, NY.. She has
over five years of experience in product
management, leading Al-driven solutions

and technology innovation across civil engineering, oil and
gas, and Edtech industries. A recognized thought leader, she
won 1st place in the 2019 Mid-Hudson Regional Business
Plan Competition and 2nd place in the New York Business
Plan Competition under the Energy and Environment
category respectively, demonstrating her ability to translate
cutting-edge technology into real-world impact. As a former
NYSC-SDG Leader for Bayelsa State, she has championed
initiatives at the intersection of technology, sustainability, and
business growth. Passionate about responsible Al governance
and ethical Al deployment, she explores how artificial
intelligence can shape global economies while ensuring
fairness, accountability, and transparency.

© 2025, 1JCSE All Rights Reserved

Vol.13(2), Feb. 2025

Ogheneromesuo Afisi earned his B. Sc.
in  Accounting from Niger Delta
University, Yenagoa and MBA from
York St John University, United
Kingdom in 2012 and 2023 respectively.
He is a seasoned Product Manager with a
diverse career spanning civil
engineering, startups, and edtech. He has i
successfully led product development, digital transformation,
and strategic initiatives across multiple industries. His
expertise lies in bridging the gap between technology and
business, driving innovation, and delivering impactful
solutions.

Passionate about Artificial Intelligence and Large Language
Models (LLMs), he is deeply engaged in exploring their
transformative potential in product management, automation,
and decision intelligence. His thought leadership in Al,
Web3, and fintech positions him as a professional in
technological advancements, where he actively contributes to
shaping the future of intelligent systems and digital
economies.

Beyond his professional work, he is committed to continuous
learning, industry engagement, and leveraging Al to drive
strategic growth and competitive advantage.

Moses Peter Moses Peter, holds his ND
in Software Engineering from Highland
College of Technology, Nigeria, 2012,
B.Sc. in Computer Science from Kwame
Nkrumah University of Science &
Technology, Ghana, 2016, and M.Sc. in
Al and Big Data Analytics at the
University of Bradford, UK in 2022. He
is currently a Lead Software Engineer (Backend) at Nixplay
UK Limited and is responsible for architectural update, Al
implementations, and scalable cloud architecture. Moses has
10 years of industry experience and has led some of the most
important initiatives such as shifting monolithic applications
to microservices, optimizing Al-driven content generation
services, and implementing development environments on
Kubernetes. His technical background spans backend
development, distributed systems design and implementation,
to applied Al and Machine Learning. He is also an open-
source code contributor, including the "lyasunday" NPM
package, which provides reusable utilities for Node.js
developers. Moses has delivered impactful solutions in
edTech, fintech, e-commerce, supply chain and logistics
sectors, collaborating with teams in the UK, Nigeria, Turkey,
and Belgium for enhanced system performance, scalability,
and business outcomes.

38



