

Research Paper**To Enhance the RPS Game using Open CV & CV Zone by using Python Platform****Harshdeep Singh Sabharwal^{1*}, Tushar Kanti Majumdar², Shashank Saroop³, Lokesh Meena⁴**

1,2,3,4 Dept. of Computer Science & Engineering, Dr. Akhilesh Das Gupta Institute of Technology and Management, New Delhi, India

Corresponding Author: mailto:satwant.harsh@gmail.com*Received:** 09/Nov/2023; **Accepted:** 11/Dec/2023; **Published:** 31/Dec/2023. **DOI:** <https://doi.org/10.26438/ijcse/v11i12.4652>

Abstract: The paper involves the development of a rock- paper-scissors game using computer vision techniques, specifically gesture recognition. The game aims to provide an engaging and interactive user experience by allowing players to use hand gestures to play the game against a computer opponent. The user interface was designed for optimal user experience, incorporating visual feedback to effectively engage the player. The accuracy of gesture recognition was evaluated using quantitative metrics, measuring the precision of identifying rock, paper, and scissor gestures. The paper serves as an educational tool to demonstrate the practical applications of computer vision in gaming scenarios, potentially inspiring interest in STEM fields. It sets the foundation for future advancements in computer vision applications, with potential enhancements including multi- player functionality, improved gesture recognition using deep learning models, and integration into augmented or virtual reality environments.

While the rock-paper-scissors game using OpenCV and CV Zone has several merits, there are also a few demerits to consider, indicating areas for further improvement. Overall, the paper contributes to the practical understanding of gesture recognition and image processing within the context of an interactive gaming application.

Keywords: Rock-Paper-Scissors (RPS) Game, Computer Vision, OpenCV, CVZone, Python Programming, Gesture Recognition, Image Processing, Object Detection

1. Introduction

The introduction of the paper focuses on the development of a Rock Paper Scissors game using OpenCV and CV Zone in Python. Rock Paper Scissors (RPS) is a classic hand game that involves forming one of three shapes with an outstretched hand: "rock" (a closed fist), "scissors" (a fist with the index and middle fingers extended), and "paper" (a flat hand). The game has three possible outcomes - a win, a loss, or a draw - with specific rules determining the winner, such as rock beating scissors, scissors beating paper, and paper beating rock.

The paper utilizes OpenCV, a popular open-source computer vision library, and CV Zone, a Python library that provides a simple interface for hand tracking and gesture recognition. The user interface was designed to optimize the user experience, integrating visual feedback to engage the player effectively. The game's development is seen as an interactive computer vision application, demonstrating the potential of computer vision in creating immersive and interactive experiences.

The paper's conclusion emphasizes the significance of the developed game and sets the foundation for exploring further

advancements in computer vision applications, such as multi-player functionality, improved gesture recognition using deep learning models, and integration into augmented or virtual reality environments. The conclusion also discusses the achievements, limitations, and key findings, highlighting and managing computational resources, and emphasizing the need for future enhancements and refinements to improve gesture recognition algorithms, optimize computational efficiency, and expand the game's features for a more comprehensive user experience.

For developing a rock-paper-scissors game using OpenCV and CV Zone is multifaceted. It's engaging, educational, challenging, and impactful, providing personal satisfaction and room for creative expression. The paper offers the opportunity to learn new skills in computer vision and Python programming, with potential for future applications in the field. Moreover, it presents avenues for computational optimization, integration with IoT and wearable devices, educational modules, and inclusive features. Continuous research and innovation in computer vision and human-computer interaction fields further contribute to the motivation, promising advancements in interactive gaming experiences and new technologies.

2. Literature Survey

The development of a Rock-Paper-Scissors (RPS) game utilizing computer vision technology through OpenCV and CVZone in Python integrates principles from various domains, spanning computer vision, machine learning, game development, and Python programming. This literature survey aims to comprehensively investigate the foundational concepts, methodologies, and prior research pertinent to the fusion of computer vision, gaming, and Python-based libraries for implementing such in a research work.

2.1 Computer Vision in Gaming:

Understanding the part of computer vision in gaming is vital. Previous studies interpret the integration of computer vision ways to produce interactive gaming ways similar as object discovery, image processing, and gesture recognition form the core of this crossroad.

Computer vision-grounded gesture recognition enables players to control the game using natural hand and body movements. By interpreting gestures similar as signaling, pointing, or grabbing, games can give a more intuitive and immersive control scheme, barring the need for complex button combinations.

2.2 Rock-Paper-Scissors Algorithm:

Exploring algorithms for detecting and recognizing hand gestures and shapes involved in the RPS game is essential. Literature covers different approaches, including but not limited to Convolutional Neural Networks (CNNs), Haar Cascades, and contour-based methods, highlighting their advantages and limitations in gesture recognition.

2.3 OpenCV and CVZone:

Compared to languages like C/C++, Python is slower. That said, Python can be fluently extended with C/ C++, which allows us to write computationally ferocious law in C/ C and produce Python wrappers that can be used as Python modules. This gives us two advantages first, the law is as presto as the original C/C law (since it's the factual C law working in background) and second, it's easier to decode in Python than C/ C. OpenCV- Python is a Python wrapper for the original OpenCV C perpetration.(2)

Open CV-Python makes use ofNumpy, which is a largely optimized library for numerical operations with a MATLAB-style syntax.

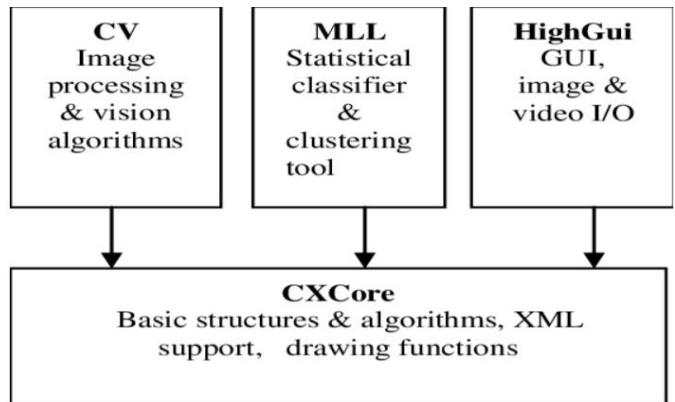
Al the OpenCV array structures are converted to and from Numpy arrays. This also makes it easier to integrate with other libraries that use Numpy similar as SciPy and Matplotlib. CVZone is a Computer vision package that makes it easy its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe libraries. (3)

A detailed disquisition into OpenCV and its colorful functionalities applicable to image processing, object discovery, and videotape analysis is pivotal. Also exploring CVZone, a high-position wrapper_erected on OpenCV for

easier operation, can give perceptivity into simplifying complex computer vision tasks.

2.4 Python as a Development Language:

Python is an interpreted, object- acquainted, high- position programming language with dynamic semantics. Its high- position erected in data structures, combined with dynamic typing and dynamic list, make it veritably seductive for Rapid Application Development, as well as for use as a scripting or cement language to connect being factors together. Python's simple, easy to learn syntax emphasizes readability and thus reduces the cost of program conservation. Python supports modules and packages, which encourages program modularity and law exercise. The Python practitioner and the expansive standard library are available in source or double form without charge for all major platforms, and can be freely distributed.(4)


Examining Python's significance in the realm of computer vision and game development is vital. Understanding Python's libraries and fabrics' capabilities in confluence with OpenCV for real-time image processing and game development is pivotal for this exploration.

3. Methodology

The methodology for the development of the rock-paper-scissors game using OpenCV and CV Zone in Python includes the following software & system requirements:

1. **Hardware and Software Requirements:** The project requires minimal hardware, consisting of a computer with a webcam, and specific software requirements such as Python 3.8 or higher, OpenCV 4.x or higher, and CV Zone 1.x or higher.
2. **System Design:** The system design comprises three primary components: Hand Tracking, Gesture Recognition, and Game Logic. Hand Tracking uses OpenCV's capabilities to identify and track the player's hand in the webcam feed, Gesture

Recognition classifies the player's hand gesture into rock, paper, or scissors using CV Zone, and Game Logic orchestrates the overall gameplay.

Figure 1 : Basis structure of Open CV. It contains image processing, image structure analysis, motion & tracking, patern recognition etc. CXCore contains data structure, matrix algebra, error handling, drawing etc. It works for dynamic loading of code [1].

The implementation involves integrating the components into a cohesive system, including initializing OpenCV's MediaPipe Hand tracking.

Additionally, it includes aspects such as dataset collection, gesture recognition model development, game development, accuracy and performance metrics, and user experience evaluation.

3.1 Designing the Rock Paper Scissors Game

The design process for the Rock Paper Scissors game involved a systematic approach to conceptualizing, environment setup, and coding structure. The initial phase, conceptualization, focused on outlining the game dynamics, rules, and user interactions. This phase set the foundation for the research paper, ensuring a clear understanding of the game's requirements and objectives. It also involved designing the flow of user interactions, which was crucial in creating an engaging and intuitive user experience.

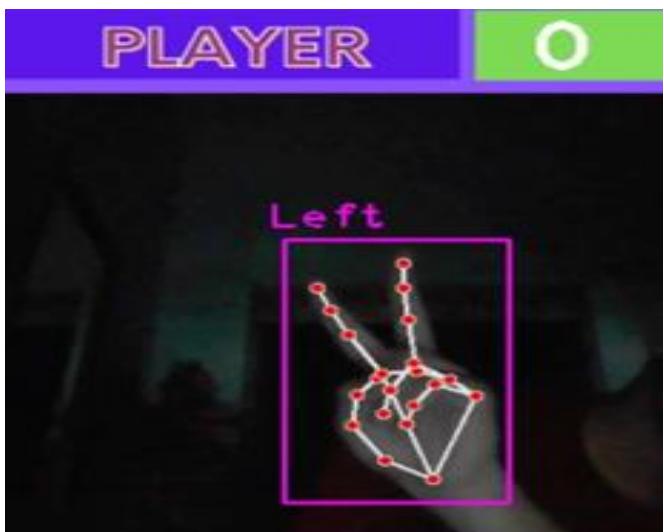
Following conceptualization, the environment setup was vital in ensuring seamless integration and functionality of the primary technologies - Python, OpenCV, and CV Zone.

The installation and configuration of these libraries were essential to support the game's development, enabling the utilization of computer vision for gesture recognition and image processing. This phase laid the groundwork for the technical aspects of the paper, setting the stage for the implementation of the game.

The coding structure of the game was developed with a modular approach, employing classes and functions to organize different aspects such as capturing camera input, gesture recognition, and game logic. This modular design facilitated the management of various components, promoting code reusability and maintainability. By structuring the code in a modular fashion, the development process was streamlined, allowing for efficient implementation and easier debugging.

Throughout the design process, the primary objective was to create an engaging and interactive user experience while leveraging computer vision for gesture recognition. By utilizing OpenCV and CV Zone, the game aimed to showcase the practical applications of computer vision in a gaming scenario, potentially inspiring interest in STEM fields. Additionally, the design process focused on addressing potential demerits, such as the demand for substantial computational resources, to ensure the game's performance on a wide range of devices.

Overall, the design process of the Rock Paper Scissors game was a comprehensive endeavor that involved conceptualization, technical setup, and modular coding. It aimed to deliver an engaging user experience while also serving as an educational tool and demonstrating the practical applications of computer vision. The process also presented challenges and opportunities for future refinement, highlighting the complexities of real-time image processing and the potential for enhancing gesture recognition algorithms and computational efficiency.


Figure 3.1: Hand gestures of "rock" – a **Figure 3.1:** closed fist, "scissors" - (a fist with the index and middle fingers extended), and "paper" - (a flat hand)

3.2 GESTURE RECOGNITION

Gesture recognition is a critical component of various computer vision applications, including game development and human-computer interaction. In the context of the rock paper scissor game, accurate gesture recognition is essential for enabling players to interact with the game using hand gestures. The success of the game heavily relies on the precision and responsiveness of the gesture recognition system.

In the development of the rock paper scissor game, the CV Zone library, which is an extension of the widely used OpenCV computer vision library, was utilized for hand tracking and gesture recognition. CV Zone provides tools and functions for image and video analysis, making it suitable for implementing gesture recognition in real-time. The hand tracking feature of CV Zone was employed to detect and track hand gestures accurately, allowing players to make gestures corresponding to rock, paper, and scissor signs.

The process of gesture recognition involves multiple stages, including image preprocessing, feature extraction, and classification methods. These stages are crucial for identifying and tracking hand gestures with high accuracy. Additionally, the development of an accurate gesture recognition model is crucial for the success of the game. This entails the selection of appropriate machine learning algorithms, the creation of a training and testing dataset, and the training process to ensure the model can accurately classify and respond to the recognized gestures.

Figure 3.2: Player showing gestures by hand index and middle fingers

The accuracy of gesture recognition was evaluated through quantitative metrics, measuring the precision of identifying rock, paper, and scissor gestures. This evaluation involved

assessing the robustness of the implemented model using metrics such as precision, recall, and F1 score. Furthermore, the user interface was designed to provide visual feedback, such as highlighting recognized gestures and displaying outcomes, to engage the player respectively.

Overall, gesture recognition in the context of the rock paper scissor game involves the use of computer vision techniques, machine learning algorithms, and user interface design to ensure accurate and responsive interaction between the player's hand gestures and the game. The successful implementation of gesture recognition enhances the user experience and contributes to the overall game play and enjoyment of the rock paper scissor game.

4. Results and Discussion

4.1 Performance

Performance evaluation for the rock paper scissor game was conducted through a comprehensive analysis of accuracy metrics and user experience. The accuracy of gesture recognition, a critical component of the game, was rigorously assessed using quantitative metrics. Precision, recall, and the F1 score were used to measure the robustness of the implemented model. The success of the game heavily relied on the accuracy of hand gesture recognition, and the CV Zone library's hand tracking feature was utilized for this purpose. The algorithm underwent multiple rounds of testing and refinement to ensure precise recognition of rock, paper, and scissor gestures, with adjustments made to enhance accuracy and responsiveness.

The accuracy metrics were designed to measure the precision of identifying rock, paper, and scissor gestures, ensuring that the game effectively recognized and responded to the players' hand gestures. Visual feedback, such as highlighting recognized gestures and displaying game outcomes, was integrated to engage the player effectively, contributing to the overall user experience and interface design. The game provided an engaging and interactive experience, leveraging computer vision to allow users to play Rock Paper Scissors using hand gestures, enhancing user involvement and enjoyment.

In addition to accuracy metrics, user experience evaluation was a key aspect of performance evaluation. This included gathering user feedback and observations to highlight any issues encountered during gameplay and to gather suggestions for improvement. The game was designed to serve as an educational tool, demonstrating the practical applications of computer vision in gaming scenarios and potentially inspiring interest in STEM fields.

Overall, the performance evaluation of the rock paper scissor game encompassed both the technical accuracy of gesture recognition and the user experience, ensuring that the game was not only robust in its functionality but also engaging and enjoyable for the players. The combination of quantitative accuracy metrics and user feedback provided a comprehensive understanding of the game's performance.

Figure 4.1: User playing RPS game which the (AI) Computer wins the first match as “Scissor Beats Paper”

4.2 ACCURACY

CV Zone is a computer vision package that provides a variety of tools for detecting and tracking hands in real-time video streams. One of the most popular applications of this package is hand gesture recognition, which allows users to control devices or software using hand movements.

The package provides a pre-trained model for hand detection, which can be used to detect the presence of one or more hands in a video stream. Once the hands are detected, the package provides tools for tracking the hands and extracting features such as the position, orientation, and shape of the hands.

To recognize hand gestures, the package provides a machine learning model that can classify different hand gestures based on the extracted features. The model can be trained on a dataset of hand gesture images to learn the patterns associated with each gesture.

The CV Zone package also provides tools for creating custom hand gesture recognition models, which can be trained on a user-defined dataset of hand gesture images. This allows users to create models that are tailored to their specific use case.

CV Zone provides a comprehensive set of tools for detecting and recognizing hand gestures in real-time video streams. The package is easy to use and provides pre-trained models for hand detection and gesture recognition, as well as tools for creating custom models. With these tools, users can create a wide range of applications that use hand gestures for device or software control.

The accuracy of the rock paper scissor game's hand gesture recognition was a critical aspect of the game. In the development process, the team utilized accuracy metrics such as precision, recall, and F1 score to assess the robustness of the implemented model. The success of the game heavily relied on the accuracy of hand gesture recognition, as the CV Zone library's hand tracking feature was utilized to detect and track hand gestures.

To evaluate the accuracy of gesture recognition, quantitative metrics were employed to measure the precision of identifying rock, paper, and scissor gestures. Multiple rounds of testing and refinement were conducted to ensure precise recognition of gestures, and the algorithm underwent adjustments to enhance accuracy and responsiveness.

However, several factors influenced the accuracy of the gesture recognition. The hardware requirements were noted as a significant factor, as the game's real-time gesture recognition relied on a computer system capable of running OpenCV and CV Zone efficiently. Users with older or slower computers may experience lag or decreased performance while playing the game. Lighting conditions also played a crucial role, as the accuracy of hand gesture recognition heavily depended on ambient lighting conditions. Low light environments shadows may lead to inaccurate gesture detection, impacting the game play experience.

Additionally, there was a possibility of false positive gesture recognition, where unintended hand movements or objects may be misinterpreted as valid gestures, occasionally leading to incorrect game play outcomes. Despite efforts to refine the algorithm, occasional misinterpretation of gestures led to inaccuracies in game play, impacting the overall user experience. The computational intensity of the game, due to its reliance on real-time image processing, also demanded lower-end devices.

The accuracy of the rock paper scissor game's hand gesture recognition was evaluated using quantitative metrics, and while efforts were made to refine the algorithm, various factors such as hardware requirements, lighting conditions, false positives, and computational intensity influenced the accuracy and overall user experience.

The accuracy metrics for the rock paper scissor game were crucial for evaluating the performance of the hand gesture recognition system. This was achieved through quantitative metrics, precision, recall, and F1 score, to assess the robustness of the model. The accuracy of the gesture recognition was measured by evaluating the precision of identifying rock, paper, and scissor gestures, ensuring that the game could effectively recognize and respond to the player's gestures. Multiple rounds of testing and refinement were conducted to enhance the accuracy and responsiveness of the algorithm, ensuring optimal user experience and engagement.

		Predicted		Specificity = $TN/(TN+FP)$
		0	1	
Actual	0	TN	FP Type I error	Recall or Sensitivity = $TP/(TP+FN)$
	1	FN Type II error	TP	
		Negative Rate = $TN/(FN+TN)$		Precision = $TP/(TP+FP)$
		$\text{Accuracy} = \frac{TP+TN}{TP+FP+TN+FN}$ $F1 - \text{Score} = \frac{2 * \text{Recall} * \text{Precision}}{\text{Recall} + \text{Precision}}$		

Figure 4.2: Accuracy metrics to measure accuracy (between actual and predicted gestures)

5. Merits and De-Merits

5.1 Merits

The Rock Paper Scissor game developed using OpenCV and CV Zone in Python offers several notable merits, making it a valuable project. First and foremost, it boasts a user-friendly interface, providing an enjoyable gaming experience and allowing players to interact with the computer seamlessly. This user-friendliness enhances the overall engagement and satisfaction of the gaming experience.

Moreover, the paper leverages the capabilities of OpenCV and CV Zone to detect and recognize hand gestures in real-time, offering real-time gesture recognition. This feature ensures that the gameplay is smooth and responsive, enhancing the overall user experience.

Another significant merit of the game is its customizability. Users could modify the game's graphics, sound effects, and even add new gestures, allowing for a personalized experience and potentially catering to specific branding requirements.

Furthermore, playing the Rock Paper Scissor game can lead to skill development. This includes improvements in hand-eye coordination, reflexes, and decision-making abilities, making it an excellent tool for skill enhancement.

In addition, the paper serves as an educational tool, providing hands-on learning of computer vision techniques and libraries like OpenCV and CV Zone. This practical understanding of gesture recognition and image processing can potentially inspire interest in STEM fields.

The game also provides an engaging and interactive experience, leveraging computer vision to allow users to play Rock Paper Scissors using hand gestures, enhancing user involvement and enjoyment.

Overall, the Rock Paper Scissor game developed using OpenCV and CV Zone in Python offers a range of merits, including a user-friendly interface, real-time gesture recognition, customizability, skill development opportunities, interactive learning, and an engaging user experience. These merits collectively contribute to the project's value and versatility.

5.2 De-Merits

The Rock Paper Scissor game using OpenCV and CV Zone in Python has a few demerits to consider.

Firstly, it has hardware requirements, which may limit accessibility for some users. Additionally, the game is sensitive to lighting conditions, potentially affecting the accuracy of gesture recognition.

Another demerit is the possibility of false positives, where the system incorrectly identifies a gesture. These demerits can impact the overall user experience and game play reliability. Despite these limitations, the project's versatility and value in entertainment, education, rehabilitation, and brand promotion make it a valuable endeavor.

6. Conclusion and Future Scope

In conclusion, the development of the rock paper scissor game using OpenCV and CV Zone has been a significant achievement in the field of computer vision and interactive gaming. The paper successfully harnessed the power of computer vision to create an engaging and interactive experience for users. By allowing players use hand gestures to play the game, it not only enhanced user involvement and enjoyment but also served as an educational tool, showcasing the practical applications of computer vision in gaming scenarios. This has the potential to inspire interest in STEM fields, making it a valuable contribution to the educational landscape.

The user interface was meticulously designed to optimize the user experience, with visual feedback integrated to engage the player effectively. The game's performance was evaluated using accuracy metrics, which measured the precision of identifying rock, paper, and scissor gestures. This quantitative evaluation provided valuable insights into the accuracy of gesture recognition, highlighting areas for improvement.

Despite the paper's successes, several challenges emerged during its development. Notably, refining gesture recognition accuracy and managing computational resources posed significant hurdles. However, these challenges provided valuable insights into the complexities of real-time image processing and user interface design, contributing to the team's learning and growth throughout the paper.

Looking to the future, the project opens numerous opportunities for enhancement and refinement. Future iterations could focus on improving gesture recognition algorithms, optimizing computational efficiency, and expanding the game's features for a more comprehensive user experience. The potential for multi-player functionality, improved gesture recognition using deep learning models, and integration into augmented or virtual reality environments presents exciting possibilities for future advancements in computer vision applications.

The rock paper scissor game using OpenCV and CV Zone has not only demonstrated the potential of computer vision in creating immersive and interactive experiences but has also laid the foundation for further advancements in the field. With a focus on continued improvement and expansion, this project has the potential to make a lasting impact on the world of interactive gaming and computer vision applications.

FUTURE SCOPE

The future scope of the paper encompasses a wide array of potential advancements and enhancements in the realm of computer vision applications, particularly in the context of the developed rock paper scissors game. The paper's conclusion and future scope section, as well as the subsequent details, shed light on various areas for improvement and expansion.

1. Advanced Gesture Recognition: One of the primary areas of future development lies in the integration of machine

learning algorithms for more robust and accurate gesture recognition. By training models on larger datasets, the system's ability to distinguish between subtle hand movements can be improved, thereby enhancing game play accuracy.

2. User Interface Refinement: Enhancing the user interface through the incorporation of visual feedback mechanisms, such as augmented reality elements or animated interactions, holds the potential to enrich the gaming experience and make it more visually engaging.

3. Computational Optimization: Optimizing the system to reduce computational overhead while maintaining accuracy remains a crucial area for improvement. This could involve implementing efficient algorithms and exploring hardware acceleration enhance the game's performance on various devices.

4. Integration with IoT and Wearable Devices: Exploring integration with IoT devices or wearables could extend the game's reach and broaden its accessibility and versatility. Utilizing sensors or smart devices to capture gestures could open up new possibilities for user interaction.

5. Educational Modules and Gamified Learning: Leveraging the paper as an educational tool by integrating tutorials, quizzes, or explanations about computer vision concepts within the game could transform it into a gamified learning platform for students and enthusiasts.

6. Accessibility and Inclusivity Features: Implementing features to accommodate users with diverse abilities, such as voice commands or alternative input methods, could enhance accessibility and inclusivity, making the game more widely accessible.

7. Continued Research and Innovation: The paper emphasizes the potential for continuous research and innovation in computer vision, machine learning, and human-computer interaction fields. This offers immense potential for further advancements in interactive gaming experiences, paving the way for new applications and technologies.

The future scope of the is expansive, encompassing advanced gesture recognition, multiplayer functionality, user interface refinement, computational optimization, integration with IoT and wearable devices, educational modules, accessibility features, and continued research and innovation. These potential advancements hold the promise of creating more immersive, engaging, and inclusive gaming experiences while pushing the boundaries of computer vision applications.

Conflict of Interest

We do not have any conflict of interest.

Funding Source

None

Authors' Contributions

Author-1 researched literature and conceived the study and had decent knowledge about Python and Open CV.

Author-2 involved in protocol development, gaining ethical approval, patient recruitment, and data analysis. Along with this he has knowledge about CV Zone and took overall responsibility of GUI.

Author-3 and Author-4 are our mentors and they guided us how to enhance our project, helped us lot in drafting of the manuscript. All authors reviewed and edited the manuscript and approved the final version of the manuscript.

Acknowledgements

All acknowledgments (if any) should be included at the very end of the manuscript before the references. Anyone who made a contribution to the research or manuscript, but who is not a listed author, should be acknowledged (with their permission).

References

- [1]Khobragade, Kavita. "A Comparative study of Converting Coloured Image to Gray-scale Image using Different Technologies", In the Proceedings of the 2012 National Conference on Recent Trends in Information Technology At: JSPM Pune Maharashtra India, pp.1-3, 2012.
- [2]CV Zone Library Documentation. 2023.
- [3]What is Python? Executive Summary | Python.org. 2022.
- [4]Bradski, G., & Kaehler, "Learning OpenCV", O'Reilly Media, Inc. Publisher, USA, pp.1-30, 2008.
- [5]Python 3.12.1 documentation, 2023.
- [6]Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu, Matti Pietikäinen, "Deep Learning for Generic Object Detection: A Survey", International Journal of Computer Vision, Vol.4, Issue.9, pp.1-19, 2019. <https://doi.org/10.1007/s11263-019-01247-4>
- [7]Hasrshdeep Singh Sabharwal, Tushar Kanti Maujumdar, Shashank Saroop, Lokesh Meena, "To Enhance the RPS Game using Open CV & CV Zone by using Python Platform", *International Journal of Computer Sciences and Engineering*, Vol.11, Issue.12, pp.1-8, 2023. <https://doi.org/10.26438/ijcse/v11i12.14>

AUTHORS PROFILE

Harshdeep Singh Sabharwal pursuing B.Tech. from Dr. Akhilesh Das Gupta Institute of Technology and Management (G.G.S.I.P.U). He is final year student of C.S.E. branch. He is having decent knowledge about Python, Java, HTML and Data Base Management.

Tushar Kanti Majumdar pursuing B. Tech. from Dr. Akhilesh Das Gupta Institute of Technology And Management (G.G.S.I.P.U). He is final year student of C.S.E. branch. He is having decent knowledge about Python, Java, HTML, CSS and Data Base Management (My SQL, SQL & MongoDB).

Shashank Saroop, working as a Assistant Professor in CSE Department. Completed B.Tech from UPTU in 2009, M.Tech from NSUT (East Campus) in 2011 and Pursuing Ph.D from Amity University. Research Area Interests: IOT, Information Security, Blockchain Technology, Artificial Intelligence and Machine Learning

Lokesh Meena, working as a Assistant Professor in CSE Department. Completed B.Tech from Delhi University in 2017, M.Tech from PDM University in 2022. Research Area Interest: Artificial Intelligence