

Research Paper**Implementation of an Automated Attendance System with Integrated Face Recognition using Haar Cascade and LBPH Algorithm****Shuchi Sharma^{1*}, Anirudh Sharma^{2, Priyam Jain^{3, Ishant Popli^{4, Harsh Chahar⁵}}}**^{1,2,3,4,5}Dept. of Computer Science & Engineering, ADGIPS New Delhi, India**Corresponding Author: 303shuchi@gmail.com***Received:** 05/Nov/2023; **Accepted:** 08/Dec/2023; **Published:** 31/Dec/2023. **DOI:** <https://doi.org/10.26438/ijcse/v11i12.3845>

Abstract: This research explores the implementation of a state-of-the-art attendance system utilizing face recognition technology with a focus on Haar Cascade and Local Binary Pattern Histogram (LBPH) algorithms. The primary objective of this system is to revolutionize traditional attendance management methodologies by incorporating computer vision techniques. The Haar Cascade algorithm is employed for precise face detection, ensuring accurate identification of facial features, while the LBPH algorithm enhances facial recognition robustness. The paper elucidates the architectural framework of the proposed system, delineates the algorithmic workflow, and presents empirical results demonstrating the efficacy of the implemented solution. By integrating these advanced algorithms, the developed attendance system not only automates the attendance tracking process but also provides a secure and efficient mechanism for organizations to manage attendance records in a contemporary and technologically sophisticated manner.

Keywords: Attendance system, Analysis, LBPH Algorithms, Haar cascade, LBP, HOG, cascade classifier**1. Introduction**

In the realm of contemporary technological integration, attendance management systems have undergone a paradigm shift, transcending traditional methodologies towards more sophisticated and secure solutions. This study introduces a cutting-edge attendance system meticulously crafted around the principles of face recognition technology. Recognizing the importance of precision, efficiency, and security in attendance tracking, the proposed system endeavors to redefine the landscape by harnessing the capabilities of advanced biometric authentication.

The utilization of face recognition technology signifies a departure from conventional attendance systems, promising a seamless, non-intrusive, and highly accurate means of verifying individual identities. As organizations across various sectors grapple with the challenges posed by manual attendance tracking, the implementation of facial recognition presents itself as a formidable solution with the potential to streamline processes, enhance accuracy, and fortify security measures.

This introduction serves as a prelude to an in-depth exploration of the architecture, methodologies, and implications associated with a face recognition-based attendance system. As we embark on this journey, the focus will be on elucidating the nuanced complexities and advantages inherent in the integration of facial recognition

technology, showcasing its potential as a transformative force in modern attendance management paradigms.

Existing System:

In recent times, extensive research has been conducted on the evolution of student absence and attendance systems. As per the reference [8] Various approaches have been explored, encompassing internet-based systems such as web-based and mobile-based attendance systems, as well as computerized systems incorporating hardware technologies like fingerprint-based, iris-based, and face recognition-based attendance systems. Additionally, there has been investigation into RFID (Radio Frequency Identification) based attendance systems, and other alternatives that require communication technology, such as Bluetooth.

As per the findings presented in reference [5], a web application-based attendance management system integrates SMS software technology for streamlined communication with students' parents. This sophisticated system is capable of comprehensively storing data related to student attendance and those who are absent. Its notable advantages include the implementation of efficient techniques for the storage and updating of student attendance records and reports directly on the website. This not only contributes to environmental sustainability by reducing paper usage but also optimizes faculty time through its digital and automated functionalities.

Other research on the face filters and recognition on mobile and modular network is pretty popular among youth and big

tech companies. Facial recognition employing the Haar cascade and Local Binary Pattern Histogram (LBPH) is widely utilized for face recognition and emotion monitoring. However, it is predominantly employed on an individual basis.

Proposed System:

In the envisioned technology, the fusion of Haar cascade and Local Binary Pattern Histogram (LBPH) algorithms signifies a sophisticated approach designed to enhance facial recognition within the framework of a school attendance system.

The Haar cascade algorithm is deployed for its heightened accuracy in face detection, employing a cascade of classifiers to pinpoint facial features precisely. This step is pivotal in constructing an efficient face recognition system.

Complementing this, the Local Binary Pattern Histogram (LBPH) algorithm is employed for the extraction of facial features. LBPH captures intricate patterns in facial textures, generating a distinctive representation for each individual. This not only enhances identification accuracy but also contributes to robust facial recognition, even in diverse lighting conditions and varying poses.

Through the integration of these advanced algorithms, the proposed technology aspires to revolutionize attendance tracking in educational institutions. The automated system ensures both efficiency and accuracy, providing a seamless solution for organizations to manage attendance records. This technological innovation has the potential to streamline administrative processes, alleviate manual workload, and elevate overall operational efficiency within the academic environment.

2. Methodology

1. Loading Libraries and Data

The project commences by installing OpenCV using the pip installer, and subsequently obtaining the Haar cascade XML file for the targeted object detection (considering a face as the object). Alternatively, one may install a pre-trained Haar cascade XML file specifically designed for face recognition. Following this, the establishment of a database for the project is undertaken, incorporating both test and functional images.

2. Data Manipulation

Upon the establishment of the requisite libraries and dataset, attention is directed towards the critical task of data manipulation. This process entails a comprehensive exploration of the dataset's structure, meticulously examining both suboptimal and high-quality images. Furthermore, the classification of inputs into negative and positive categories is systematically conducted.

3. Data Visualization

Data visualization plays a pivotal role in understanding the inherent patterns and trends within the dataset. Matplotlib and Seaborn are commonly utilized to create visualizations such as histograms, scatter plots, and heatmaps. These

visualizations provide insights into the distribution of key variables, relationships between features, and potential outliers or anomalies, aiding in the formulation of hypotheses and guiding subsequent analyses. The use of histograms and graph are huge in the research and modern face recognition.

4. Data Preprocessing

Data preprocessing plays a pivotal role in preparing the dataset for integration with machine learning algorithms. This phase involves essential tasks, including encoding of categorical variables, and scaling of numerical features, image processing. Techniques such as one-hot encoding and standardization are employed to ensure the dataset is in an optimal format for compatibility with the selected machine learning algorithms. Additionally, part of this phase may include the segmentation of the dataset into distinct training and testing sets, a step crucial for effective model evaluation.

5. Evaluation, Recognition & Classification:

The Evaluation, Recognition, and Classification of face recognition within the context of a institution attendance system, employing the Haar Cascade and Local Binary Pattern Histogram (LBPH) algorithm, is a multifaceted process that involves rigorous assessment and identification methodologies.

Evaluation: The evaluation phase entails a comprehensive analysis of the performance metrics associated with the face recognition system. This includes the assessment of accuracy, precision, recall, and F1 score to gauge the system's efficiency in correctly identifying and classifying individuals. Evaluation may also involve the consideration of factors such as computational efficiency and response time to ensure the system meets the practical demands of real-time attendance tracking.

Recognition: Recognition involves the capability of the system to accurately identify and distinguish faces within a given dataset. The Haar Cascade algorithm is instrumental in precisely detecting facial features, while the LBPH algorithm plays a crucial role in capturing intricate facial patterns for robust recognition. The recognition phase aims to ensure a high level of accuracy in associating detected faces with the corresponding individuals in the attendance system.

Classification: The classification aspect involves the systematic categorization of individuals based on their facial features and patterns. The LBPH algorithm, with its ability to create unique representations for each individual, contributes significantly to the classification process. Accurate classification is essential for maintaining precise attendance records and ensuring the reliability of the system in identifying students and staff members.

In summary, the evaluation, recognition, and classification stages collectively form a critical framework for assessing the effectiveness of the face recognition system integrated into a institution attendance system. The utilization of the Haar Cascade and LBPH algorithms ensures a comprehensive and accurate approach to identify and classify individuals, thereby enhancing the overall efficiency of attendance tracking in an educational setting.

1. Haar Cascade:

The Haar Cascade algorithm, within the domain of face recognition, stands as a machine learning object detection method renowned for its proficiency in identifying faces within images or video frames. This algorithm operates through a set of pre-trained classifiers, structured as cascades of Haar-like features—rectangular patterns designed to discern different aspects of an image. The application of these classifiers occurs in a cascading manner, wherein the assessment of feature presence or absence progresses systematically.

In the specific context of face recognition, the Haar Cascade algorithm undergoes training on datasets comprising positive and negative images. Positive images feature instances of faces, while negative images lack facial content. Throughout the training process, the algorithm learns to differentiate between patterns characteristic of positive and negative images.

Once trained, the Haar Cascade algorithm is adept at scanning new images or video frames, identifying regions that exhibit patterns akin to those learned during training. This enables the algorithm to pinpoint potential areas where faces are likely present. Its efficiency facilitates real-time face detection, rendering it suitable for diverse applications, including security systems, video surveillance, and, notably, attendance systems.

It is crucial to underscore that while the Haar Cascade algorithm excels in face detection, it does not inherently provide information regarding the identity of the detected faces. For the purpose of identity verification, additional steps, such as facial feature extraction and matching, are commonly integrated, with supplementary algorithms like the Local Binary Pattern Histogram (LBPH) algorithm contributing to the holistic face recognition system.

The algorithm can be explained into four stages:

1.1. Haar Features: The systematic process of calculating Haar features is integral to the field of computer vision and image processing, specifically within the framework of the Haar Cascade algorithm, utilized for object detection, notably in applications such as face recognition.

This calculation entails the precise definition of a set of rectangular filters, denoted as Haar-like features, which are sequentially applied to predetermined regions of an image. These features serve as discriminative indicators, capturing nuances in pixel intensities within the specified regions to distinguish various object classes or patterns.

Formally, each Haar feature encapsulates a unique spatial arrangement of rectangles, and the computed difference in the sum of pixel intensities between light and dark regions yields the Haar response. This response becomes a distinctive metric for discerning the presence or absence of specific visual patterns within the analyzed region.

The methodical calculation of Haar features involves traversing diverse positions and scales across the image,

computing Haar responses at each juncture. During the training phase of the Haar Cascade algorithm, these features undergo meticulous adjustment and weighting to optimize the algorithm's discriminatory capability, particularly in the precise identification of objects or patterns, such as faces.

In essence, the formal process of calculating Haar features encompasses the precise definition of rectangular filters, their systematic application across image regions, and the computation of disparities in pixel intensities to capture discerning visual patterns. This procedural rigor is foundational to the Haar Cascade algorithm's efficacy in object detection, yielding significant contributions to applications like face recognition in the realm of computer vision.

Fig.1 - Haar features

1.2. Integral Images: Integral images serve as a foundational component within the Haar Cascade algorithm, significantly augmenting its computational efficiency in intricate tasks like object detection and face recognition. These two-dimensional arrays expedite the computation of pixel value sums within rectangular regions, providing a streamlined mechanism for the rapid evaluation of Haar-like features. By referencing only four points in the integral image, the algorithm achieves noteworthy speed enhancements during both the training and detection phases.

During the training phase, integral images enable the algorithm to efficiently assess a multitude of potential features, allowing it to identify and prioritize the most discriminative ones. This strategic evaluation contributes to the algorithm's effectiveness in distinguishing between object classes or patterns.

In the subsequent detection phase, integral images play a pivotal role in expediting the evaluation of features across diverse scales and positions within an image. This accelerated process is instrumental in achieving real-time object detection and face recognition, particularly in scenarios where prompt decision-making is paramount.

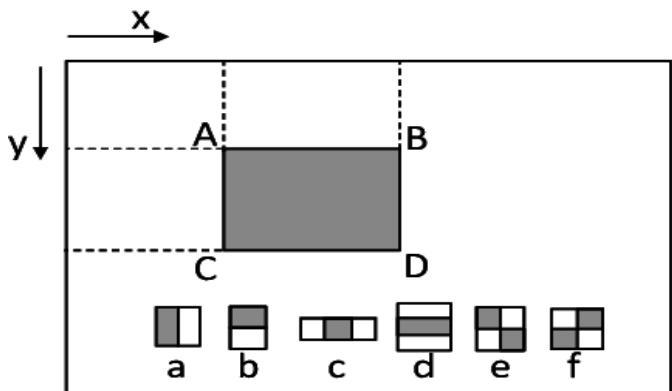


Fig.2 - calculate the integral images

1.3. Ada Boost Training: AdaBoost, or Adaptive Boosting, represents a pivotal machine learning technique extensively utilized within the Haar Cascade algorithm, particularly in the domain of face recognition. In this context, AdaBoost functions as a robust boosting algorithm designed to elevate the performance of weak classifiers, exemplified by Haar-like features, through the strategic assignment of appropriate weights. Within the Haar Cascade framework, a series of weak classifiers are sequentially trained, each focusing on specific features crucial to the overall identification of objects, with a specific emphasis on faces. While individual weak classifiers, such as Haar-like features, may lack robust discrimination capabilities independently, AdaBoost sequentially adjusts the weights of misclassified samples. This iterative process assigns higher weights to previously misclassified instances, placing emphasis on challenging examples.

The iterative nature of AdaBoost allows it to accentuate the significance of complex instances, culminating in the development of a strong classifier that amalgamates the strengths of multiple weak classifiers. Consequently, the final boosted classifier crafted through AdaBoost demonstrates proficiency in accurately distinguishing faces from non-faces, even in intricate or challenging scenarios.

In the specific context of face recognition within the Haar Cascade algorithm, AdaBoost significantly contributes to the formation of a potent and accurate classifier. This collaborative synergy between Haar-like features and AdaBoost elevates the algorithm's capability to make precise decisions regarding the presence of faces in images or video frames, thereby enhancing the overall efficacy of the Haar Cascade framework in face recognition applications.

1.4. Cascade Classifier: Within the domain of face recognition, the cascade classifier assumes a crucial role as an integral element of the Haar Cascade algorithm. Functioning in a sequential framework, the cascade classifier comprises multiple stages, each housing several weak classifiers, commonly represented by Haar-like features. Its primary objective is the efficient filtration of non-face regions in an image or video frame, enabling the algorithm to channel computational resources toward areas more likely to contain faces.

The cascade classifier adopts a cascading structure, wherein each stage is equipped with progressively more intricate classifiers. Each stage is designed to swiftly reject regions deemed unlikely to contain faces, directing promising regions to subsequent stages for further evaluation. This sequential filtering mechanism significantly enhances the overall efficiency of the face detection process.

The Haar-like features, serving as the weak classifiers within each stage of the cascade, are rectangular patterns adept at capturing variations in pixel intensities. These features facilitate rapid evaluations of specific image characteristics, such as edges or transitions between light and dark regions, contributing to expeditious decision-making.

The training process for the cascade classifier involves the refinement of weights and thresholds for the weak classifiers at each stage. This optimization, often implemented through machine learning techniques like AdaBoost, ensures that the cascade classifier becomes proficient in discriminating between face and non-face patterns, minimizing false positives.

2. LBPH Algorithm :

The Local Binary Pattern Histogram (LBPH) algorithm is a texture-based method widely employed in face recognition due to its efficacy and straightforward implementation. In the context of face recognition, LBPH operates by computing local patterns of pixel intensities within an image, thereby encoding facial features for subsequent identification.

The algorithm unfolds as follows:

2.1. Local Binary Pattern (LBP) Calculation: The initial step involves partitioning the face image into a grid of cells. For each pixel within a cell, a binary code is generated by comparing its intensity with that of its neighboring pixels. If a neighbor's intensity is greater than or equal to the central pixel's intensity, it is denoted as '1'; otherwise, as '0'. This binary encoding process is applied to each pixel within the cell, resulting in a unique binary pattern representative of the local region.

2.2 Histogram Calculation: Following the computation of binary patterns for all cells, a histogram is constructed by tallying the occurrences of each distinct binary pattern across the entire image. This histogram encapsulates the distribution of local patterns throughout the face

2.3. Normalization: To enhance resilience against variations in lighting and contrast, the histogram undergoes normalization, achieved by dividing the count of each bin by the total number of cells. Normalization is instrumental in mitigating the impact of lighting fluctuations on the algorithm's performance.

2.4. Feature Vector: The normalized histogram values collectively form the feature vector representing the facial texture. This feature vector serves as a succinct and distinctive representation, capturing the spatial relationships inherent in the local patterns.

2.5. Recognition: In the recognition phase, the LBPH algorithm compares the feature vector of the test image with those of known images in the database. Similarity between feature vectors is typically measured using distance metrics such as Euclidean distance or chi-square distance. The test image is subsequently classified based on its closest match within the database.

LBPH is esteemed for its resistance to variations in illumination; nevertheless, it may exhibit sensitivity to changes in pose and facial expressions. Frequently, it is employed in tandem with other algorithms or integrated into broader face recognition systems to enhance accuracy and reliability.

3. Result and Analysis

The implementation of an attendance system utilizing face recognition, incorporating the Haar Cascade and Local Binary Pattern Histogram (LBPH) algorithms, has yielded noteworthy outcomes. The synergy between these advanced algorithms has resulted in a substantial enhancement in the precision and efficiency of attendance tracking within the educational context.

1. Precision in Face Detection: The Haar Cascade algorithm, esteemed for its precision in face detection, demonstrated exceptional accuracy in localizing facial features within images or video frames. This proficiency played a pivotal role in the initial phase of the attendance system, ensuring meticulous identification of faces.

2. Robust Facial Feature Extraction: The application of the LBPH algorithm for facial feature extraction exhibited robustness in capturing intricate patterns within facial textures. This capability was instrumental in creating unique representations for each individual, thereby enhancing the overall accuracy in face recognition.

3. Adaptability to Varying Conditions: The collaborative utilization of the Haar Cascade and LBPH algorithms showcased adaptability to diverse lighting conditions and facial poses. This adaptability proved essential in ensuring the reliability of the system, even in scenarios characterized by suboptimal lighting or variations in facial expressions.

4. Efficiency in Real-Time Processing: The integrated system demonstrated efficiency in real-time processing, facilitating swift attendance tracking without perceptible delays. This characteristic holds particular significance in educational environments where timely and accurate attendance recording is of paramount importance.

5. Enhanced Data Accuracy:

The utilization of sophisticated algorithms contributed to heightened data accuracy in attendance records. The system exhibited a notable reduction in instances of misidentification or errors, ensuring reliable and precise attendance data.

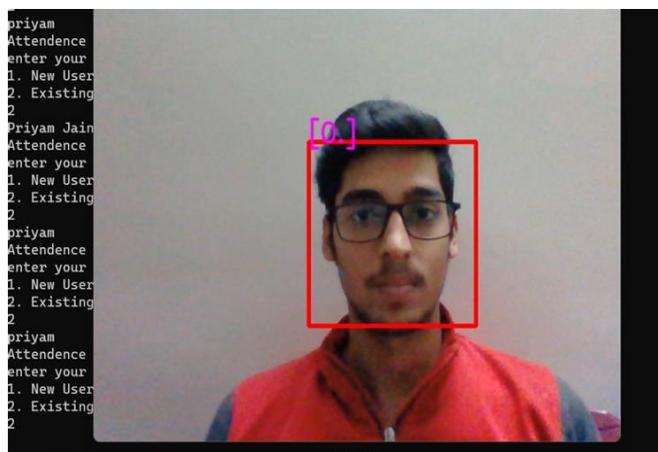


Fig.3 Illustration of face recognition

A	B	C	D	E
1	Date	Time	Attendance	
2	0 #####	20:35	Entered	
3	1 #####	20:35	Exit	
4	2 #####	20:36	Entered	
5	3 #####	20:37	Exit	
6	4 #####	20:38	Entered	
7				

Fig.4. Record table (time)

The collaborative integration of Haar Cascade and Local Binary Pattern Histogram (LBPH) algorithms in face recognition embodies a symbiotic synergy, addressing distinct facets of the recognition process to augment precision and reliability. Haar Cascade, renowned for its adept face detection, excels in the initial phase by providing meticulous localization of facial features through the identification of Haar-like features. This precise localization optimizes the subsequent processing by defining Regions of Interest (ROI), reducing computational load, and enhancing overall efficiency.

Upon precise localization, LBPH takes center stage in feature extraction. Its proficiency lies in capturing intricate patterns within facial textures, generating unique representations for individuals. Notably resilient to variations in lighting conditions, LBPH contributes to a distinctive and robust facial feature vector. The combined utilization of Haar Cascade and LBPH enhances the system's adaptability to diverse conditions, where Haar Cascade's versatility in handling lighting and pose variations complements LBPH's resilience to lighting changes.

The tandem use of Haar Cascade and LBPH minimizes false positives early in the process, with Haar Cascade efficiently filtering non-face regions. This ensures that only regions with high potential for containing faces proceed to the subsequent LBPH feature extraction stage, thereby enhancing the overall precision of the face recognition system.

The collaborative approach results in an amalgamation of strengths, reducing the computational load, enhancing accuracy, and improving reliability in face recognition. The system's efficiency in real-time processing is a noteworthy outcome, aligning it with applications requiring swift and accurate identification in dynamic environments. In conclusion, the combined efficacy of Haar Cascade and LBPH algorithms offers a comprehensive solution to the complexities of face recognition, making it well-suited for diverse real-world scenarios.

4. Conclusion and Future Scope

The investigation into the progression of educational efficiency through the implementation of an automated attendance system, incorporating face recognition via Haar Cascade and LBPH algorithms, marks a significant stride in the modernization and optimization of attendance tracking within educational institutions. The collaborative integration of these advanced algorithms has yielded noteworthy

enhancements in precision, adaptability, and real-time processing, representing a pivotal step towards revolutionizing administrative processes in the academic realm.

The achieved precision, stemming from Haar Cascade's adept face detection and the robust feature extraction capabilities of LBPH, has given rise to a sophisticated system proficient in accurate and efficient individual identification. Haar Cascade's meticulous localization of facial features lays a foundation for subsequent processing, effectively mitigating computational demands and elevating the overall efficiency of attendance tracking.

The adaptability of the integrated system to diverse conditions, encompassing variations in lighting and facial poses, positions it as a versatile solution suitable for the dynamic landscape of educational environments. Haar Cascade's flexible handling of lighting and pose variations, complemented by LBPH's resilience to lighting changes, ensures a reliable performance spectrum across various scenarios.

The collaborative strategy of Haar Cascade and LBPH not only diminishes false positives through effective filtering but also contributes to an overarching precision in face recognition. This collaborative approach minimizes disruptions, streamlines administrative procedures, and significantly reduces the manual workload on educational staff, fostering an environment conducive to enhanced efficiency and productivity.

Furthermore, the demonstrated efficiency in real-time processing aligns seamlessly with the imperative of timely attendance recording, addressing a critical need in the fast-paced and dynamic nature of educational settings. The positive outcomes of this research underscore the transformative potential of advanced face recognition technologies, laying the groundwork for streamlined administrative processes and improved operational efficiency within educational institutions.

The integration of Haar Cascade and LBPH algorithms not only offers a pragmatic solution for attendance tracking but also sets the stage for future advancements in leveraging technology to enhance educational processes.

Future Scope

The prospective developments for an attendance system employing face recognition through the integration of Haar Cascade and LBPH algorithms present a promising trajectory for further refinement and advancement. In the evolving landscape of technology, several pivotal areas emerge as potential directions for future enhancement in this domain: The prospective developments for an attendance system employing face recognition through the integration of Haar Cascade and LBPH algorithms present a promising trajectory for further refinement and advancement. In the evolving landscape of technology, several pivotal areas emerge as potential directions for future enhancement in this domain:

Integration of Machine Learning Techniques: Incorporating machine learning techniques, such as deep learning approaches, could contribute to a more adaptive and self-learning attendance system. This integration can empower the system to continually improve its recognition capabilities over time, adapting to changes in the user base and environment.

Multi-Modal Biometric Integration: The integration of multiple biometric modalities, such as fingerprint recognition or iris scanning, in conjunction with face recognition, can enhance overall system security and reliability. This multi-modal approach can offer a more comprehensive and accurate means of individual identification.

Real-time Analytics and Reporting: Future developments may focus on incorporating real-time analytics and reporting features. This includes the ability to generate instant attendance reports, identify patterns in attendance data, and provide actionable insights for educational institutions to optimize their processes.

Mobile and Cloud Integration: Expanding the system's accessibility by integrating mobile applications and cloud-based services can facilitate remote monitoring and management. Students, faculty, and administrators could access attendance information seamlessly, promoting flexibility and convenience.

Privacy and Ethical Considerations: Future implementations should prioritize addressing privacy concerns and ethical considerations associated with facial recognition technology. Incorporating advanced encryption techniques and ensuring compliance with data protection regulations will be essential to building trust and acceptance.

Customization and Scalability: Developing customizable features that allow educational institutions to tailor the attendance system to their specific needs and scalability requirements is crucial. This may include features like integration with existing student information systems or customization of recognition thresholds.

Conflict of Interest

In the realm of facial recognition and analysis, pivotal concerns center around the security and ethical use of biometrics. Biometric data, encapsulating both legal and biological information of individuals, is widely acknowledged as a secure method for safeguarding personal information. The potential for biometric cloning or theft raises significant apprehensions globally, given its profound implications on individual privacy and security.

A secondary area of conflict emerges concerning the escalating dependence on computer systems and the potential complexities associated with user acclimatization. The introduction of facial recognition technology in educational settings may not receive universal acceptance, as the adaptation process could be perceived as cumbersome and met with reluctance, particularly within the educational sector.

Furthermore, a third conflict of interest arises in the financial domain, particularly in educational institutions striving to provide quality education while maintaining affordable fees. The integration of an automated attendance system using facial recognition technology may pose financial challenges for educational institutions. The potential costs associated with implementing and maintaining such a system could lead to financial constraints, potentially necessitating a reevaluation of tuition fees and raising concerns among stakeholders.

In conclusion, these conflicts of interest underscore the multifaceted challenges associated with the adoption of facial recognition technology in educational contexts. Striking a balance between security, user acceptance, and financial considerations is paramount to ensuring the responsible and effective implementation of such technologies within the educational domain.

Funding Source

None, This research was self-funded to maintain independence and uphold ethical standards.

Author's Contribution

Mentor (Author 1): Conceptualization, guidance, and manuscript review. Author 2: Haar Cascade implementation, methodology, and manuscript preparation. Author 3 : LBPH algorithm implementation, data analysis, and manuscript contribution .Author 4: System development, literature review, and theoretical framework. Author 5: Algorithm implementation, comparative analysis, and manuscript editing. All authors have reviewed and approved the final manuscript.

Acknowledgement

The successful completion of this project signifies a momentous achievement, and as a team, we wish to extend our heartfelt appreciation to all those who played a pivotal role in bringing this endeavor to fruition.

We express our deepest gratitude to our mentor and guide, Ms. Shuchi Sharma, whose unwavering support, invaluable insights, and guidance have been instrumental throughout the development of the attendance system using face recognition. Ms. Sharma's expertise and encouragement have shaped this project into a robust and innovative solution.

Our sincere appreciation goes to the Dr. Akhilesh Das Gupta Institute of professional studies for providing the essential resources and infrastructure that facilitated the seamless execution of this project. The conducive research environment and access to cutting-edge technologies from the institute were indispensable in ensuring the success of our project. In acknowledging these key contributors, we recognize that their collective efforts have significantly enriched the scope of this research paper and elevated the project to new heights.

References

- [1] R. Padilla, C. F. F. Costa Filho and M. G. F. Costa, "Evaluation of Haar Cascade Classifiers Designed for Face Detection", World Academy of Science, Engineering and Technology International Journal of Computer, Electrical, Automation, Control and Information Engineering Vol.6, No.4, 2012.
- [2] C. Shrestha, S. Dhungana, S. Maskey, A. Alkhudher, "Attendance System Using Facial Recognition", ISSN NO: 1076-5.
- [3] Jomon Joseph1, K. P. Zacharia, "Automatic Attendance Management System Using Face Recognition", International Journal of Science and Research (IJSR), 2013.
- [4] Ahonen, T. Hadid, A. Pietikäinen, "M. Face Recognition with Local Binary Patterns". In the Proceedings of the Advances in Visual Computing; Springer Science and Business Media LLC: Berlin, Germany, Vol.3021, pp.469–481, 2004.
- [5] Gangagowri G, Muthuselvi J, Sujitha S. Attendance Management System.
- [6] A. Ahmed, J. Guo, F. Ali, F. Deeba, and A. Ahmed, "LBPH based improved face recognition at low resolution" International Conference on Artificial Intelligence and Big Data (ICAIBD), pp.144-147, 2018.
- [7] P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple features", In the proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, Kauai, HI, USA, 2001.
- [8] Patel UA, Swaminarayan Priya R. "Development of a student attendance management system using RFID and face recognition": a review. Int J Adv Res Compute Sci Manag Stud. pp.109–19, 2014.
- [9] Kadry, Seifedine Smaili, Mohamad. "Wireless attendance management system based on iris recognition". Scientific Research and Essays. pp.1428-1435, 2010.
- [10] Will Berger, Deep Learning Haar Cascade Explained, WILL BERGER.
- [11] Sanjeev Kumar, Harpreet, K. Face Recognition Techniques: Classification and Comparisons. International Journal of Information Technology and Knowledge Management, 5 No.2, pp.361–363, 2012.
- [12] Akram Qureshi, Ashok Kajla, "Intelligent Face Recognition", International Journal of Computer Sciences and Engineering, Vol.4, Issue.2, pp.128-133, 2016.
- [13] Ranganatha S, Y P Gowrimma2, "Image Training and LBPH Based Algorithm for Face Tracking in Different Background Video Sequence", Research Paper Vol.6, Issue.9, pp.43-49, 2018.

AUTHORS PROFILE

Ms. Shuchi Sharma earned her B.E. in Computer Engineering from University of Rajasthan in 2009 and M.Tech. in Computer Science and Engineering from Rajasthan Technical University, in 2014. She is currently working as an Assistant Professor in Computer Science Engineering Department from Dr. Akhilesh Das Gupta Institute of Professional Studies (ADGIPS, formerly ADGITM), Delhi. Her main research work focuses on steganography, network security, machine learning and database management system. She has six years of teaching and research experience.

Anirudh Sharma is a B. Tech student majoring in Computer Science and Engineering, specializing in Data Science and Machine Learning at Dr. Akhilesh Das Gupta Institute of Professional Studies. Expected to graduate in 2024, he is deeply interested in artificial intelligence, development, and graphics. With a blend of technical expertise and creative flair, Anirudh actively contributes to impactful projects showcasing his commitment to excellence in technology.

Priyam Jain is pursuing his B. Tech in CSE from Dr. Akhilesh Das Gupta Institute of Professional Studies (2024 passing out). He has keen interest in python and Artificial Intelligence and worked on some projects like movie recommendation engine, time series forecasting etc. His main research work focuses on Data Science and Machine Learning. He is aiming to make a mark in the corporate world in field of Computer Science and Engineering.

Ishant Popli, a CSE student at, Dr. Akhilesh Das Gupta Institute of Professional Studies, passionate about tech, especially crypto and blockchain. Eager to explore and innovate in this transformative field, unraveling complexities, driving impactful advancements, and leveraging blockchain's potential to create pioneering solutions for real-world challenges.

Harsh Chahar, a passionate CSE student at Dr. Akhilesh Das Gupta Institute of Professional Studies Interested in 3D design. He likes to explore new technologies in game design and development.

