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Abstract: From and practical fault attacks have been published that pose a serious threat to most of the crypto-algorithms the
time of announcement of new cryptanalytic attack called fault attack proposed by Bellcore in Sep 1996, multiple theoretical.
Fault attacks circumvent the intricate mathematics of ciphers and swiftly extract the cipher's secret key. This is achieved by
disrupting the system’'s normal behaviour, inducing faults that result in its faulty operation. The efficiency of these attacks has
been improved over a period of time in making them more practical. Because of this, multiple techniques to counter the attacks
are also published, that increase the complexity of attacks with the goal of making them impossible in the future. This paper
covers the various fault attacks & countermeasures on symmetric, asymmetric and Post-Quantum crypto (PQC) algorithms
along with various ways of resistance evaluation &their rating.
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1. Introduction

Cryptography plays major role in security of devices and the
data stored in them by resisting attackers/hackers trying for
unauthorized access of private and confidential data. Thanks
to cryptanalysis techniques, for helping these crypto-
algorithms to evolve into much stronger versions. As
technology progresses, several new/modified attacks will
come forth. One such attack is fault attack.

Faults may occur accidently or can be intentional. Accidental
faults are natural like anomalies happening in electronic
equipment’s, alpha particle effects on semiconductor
electronics, etc. But in fault attacks, faults are of intentional
in nature and induced by adversary to get internal information
of the system.

A fault attack belongs to the category of side-channel attacks,
wherein a deliberate fault is introduced into a cryptographic
implementation to expose the secret key utilized by the cipher
as shown in figure 1. By examining the differential
characteristics of nonlinear operations within the algorithm,
the secret key can be deduced when provided with cipher
texts from both correct and faulty implementations.
Typically, a faulty ciphertext is discovered by applying
external influences to a device that incorporates the
algorithm, such as introducing voltage variations, glitches,
lacerations, and more. Remarkably, even tamper-resistant
devices remain susceptible to fault attacks.
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The resilience of cryptographic systems is seriously
threatened by side-channel fault attacks. Conventional
security solutions that just concentrate on algorithmic
strength are no longer enough since attackers can take
advantage of the implementation's physical features. It is
essential to comprehend the particular issues brought about
by these attacks in order to create effective countermeasures.
To protect systems from these hidden risks, issues including
information leakage, non-invasive data extraction, and the
possible compromise of cryptographic keys need to be closely
examined.

Nowadays, side-channel fault attacks are very important to
understand in cyber security. Strong defenses against these
sneaky threats are required since embedded systems are
widely used in commonplace products like smart cards,
secure communication protocols and Internet of Things (1oT)
devices. Side-channel fault attacks can compromise sensitive
information, such as financial transactions or national security
data. For this reason, it is imperative to resolve these
vulnerabilities as soon as possible.

The necessity to compile information and insights about side-
channel fault attacks at one place is what spurred this survey.
This survey seeks to provide academics, practitioners, and
policymakers with the necessary knowledge to strengthen
cryptographic systems against these emerging dangers by
offering a current state of research, practical implications, and
proposed mitigations. Maintaining the integrity of our digital
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infrastructure and staying ahead of prospective adversaries
need a proactive understanding of side-channel fault attacks,
which is becoming increasingly important as the cyber
security landscape changes.
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Figure 1: General Fault attack model

This paper describes, various fault attacks and their respective
counter measures so far in the literature. Crypto research can
be pictured as a cycle of attacks & countermeasures. Most of
the countermeasures doesn’t stop the attacks but increase the
complexity in mounting the attacks. So, evaluation of the
resistance of crypto devices is also vital. Hence, this paper
also includes a discussion on evaluation and parameters for
rating them

From this point, the content is structured in the following
manner. Section-2 covers fault models and projects light into
various parameters involved in it. Section-3 briefly describes
various fault analysis methods. Section-4 shows fault attacks
on various categories of algorithms and Section-5 puts light
on various countermeasures. Section-6 gives evaluation
techniques and various parameters used for rating the crypto
algorithms. Conclusion follows in section-7.

1.1 Fault Models

Generally, fault attacks intend to break the security of
functionality of a system by forcing it to an unintended
behaviour. For this to happen, attacker injects concentrated
hardware fault by purposely disturbing the operation of the
system, exploits the effect of fault and break the system
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security. Origin of vulnerability will be at hardware level
while exploitation will be at software level.

In this attack scenario, the attacker is unable to directly
modify the structure of the chip or program’s binary but can
control the operating condition of the processor at hardware
level. The attacker may also give input to the intended code
and keep track of effects of unusual operation at software
level through its output.

The more the model is constrained, the attack will be
proportionally easier but it becomes proportionally more
difficult in practical scenarios.

1.1.1  Modelling with abstract levels
Fault attack can be modelled in various abstract levels in both
the major parts of the attack as mentioned below:

In the process of fault Injection, the abstract levels are

e Transistor level

e Logic level (targets can be gates and flip-flops)

e RTL level (targets can be ALU, REG’s, MEM)
And while exploiting the fault, the abstract levels are

e  Arithmetic level (as shown in figure 2)

e Cryptographic primitives’ level

e Protocol level

1.1.2  Modelling with parameters
Fault attacks can also be modelled using following
parameters of the fault being injected into the system.

1.1.2.1 Granularity of the fault

It can be explained as either number of bits affected by
injection of fault which can be flipping a particular bit,
random bit, stuck-at zero, stuck-at one, etc or as an impact on
the target system ranged from single bit to few bits (up to a
word). It can be non-invasive (like no physical damage to
device, modify working conditions, etc.), semi-invasive (like
chip de-capsulation, milling, etching, cleaning, etc.) or
invasive (like to establish electrical contact to chip,
modification, destruction, etc.) in nature. Non-invasive may
require moderate knowledge of equipment, semi-invasive can
be done with affordable equipment and invasive may require
expensive equipment.

Round
1

Round
1

Round n-1 { Fault
induced,Skipped)

Faulty Operation

Round n-
1

Mormal Operation
Figure 2: Example of fault injection into cryptographic implementation
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1.1.2.2 Type of fault

The attackers can induce fault which can be input-output type
(where fault can be directly induced at input) or can induce at
positions which allows malfunction in memory, clock circuit,
etc. The fault on hardware can be of instruction level, micro
architecture level, circuit level or in side-channels like
temperature, circuit voltage, EM radiation, etc.

1.1.2.3 Source of fault

There are several sources to inject fault into the system. Some
of them are Clock glitch, Voltage glitch, Underfeeding,
Heating, EM pulse, Light pulse, Light radiation, Focused lon
beam, LASER beam, Localized EM pulse, etc.

1.1.2.4 Intensity of fault
It can be described as an amount of the strain induced on the
processor due to physical factors.

1.1.2.5 Efficiency of the fault
It can be explained as a precision in injecting fault which is
how precisely or loosely, attacker can choose the fault value.

1.1.2.6 Repeatability of the fault
It is ability where whether attacker can produce same or
similar fault in spatial or temporal domains of the system.

1.1.2.7 Feasibility of the fault

It refers to real-time aspects like budget& equipment required
for the setup, Expertise level required to operate the setup,
duration of the fault which can be permanent, transient or
destructive.

2. Fault attack techniques — Related Work

Fault attacks are attacks which use side channel for injecting
faults into devices to make them misbehave for certain
amount of time. These attacks are actively being studied since
1996 by the research communities. Skorobogatov and
Anderson executed the initial practical fault attack in 2001 in
which photo-flash is used to flip a bit in memory [1].

Later to above attack, various attacks have emerged in both
symmetric and public key crypto systems. Bao et al., mounted
a first attack on public key crypto system using transient
faults [2]. Fiat-Shamir and Schnorr, attacked RSA using
active fault attacks [3]. Marc J and Jean-Jacques Q, have
chosen to attack on signing key of RSA Montgomery instead
of message [4]. Joye & Quisqater and Klima & Rosa, have
also carried out successful fault attacks on RSA crypto
systems [5,6]. Voyiatzis and Serpares, mounted successful
attack on Fiat-Shamir schemes[7]. The inaugural practical
differential fault attack on symmetric key crypto system is
performed by Biham and Shamir, where attack was on DES
[8]. Jacob et al., have used fault attacks to extract secret data
from obfuscated ciphers [9]. Biehl et al., attackedElliptic
curve crypto system (ECC) using DFA [10]. ZhengY,
attacked random number generators using faults [11]. Even
though there are multiple fault attacks, some research works
defined fault attacks in general steps where each author took
different abstract levels.
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2.1 Implementation techniques of FA

According to Sayandeep Saha et al., fault attacks can be
implemented in broadly three steps; Distinguisher
Identification (wrong key guess moves the distinguisher to a
uniform distribution while correct key guess makes it a non-
uniform  distribution), Divide-and-Conquer(divide into
subparts which are independent in nature and can be
computed efficiently) and Estimating the Number of Possible
Key Candidates (If distinguisher reduces search space to a
sufficient level, then attack may be successful with less faults
and vice versa) [12].

According to Bilgiday yuce et al., fault attacks can be
implemented in broadly five steps which are Injection of
fault, Manifestation of fault, Propagation of Fault, Fault
observation&  Exploitation of Fault [13].  Their
implementation techniques are in the table-1.According to
Christophe Giraud et al., fault attacks can be categorized
according to the origin of the introduced fault [101]. The first
fault attack induced faulty behaviour in smart cards by glitch
attack, where glitch is non-invasively applied to one of the
chip contacts (Vcc pin, GND pin or Clock pin). The light
attacks, uses energy of a light as emission, (from materials
like flash camera, Laser, etc.) to disturb the silicon inside the
chip [1,25,102]. The memory cells or logical gates can be
easily disturbed by this photoelectric current and reciprocate
to it. The parameters to be considered are energy of the light
beam, light beam, light wave length, duration of emission and
location of the attack. Magnetic attack is a semi-invasive
attack, uses magnetic field on component to create local
current which may generate a transient fault [104]. The
parameters to be considered are power of magnetic field,
localization on the chip and its duration.

Table-1: Generalized Fault attack steps and their implementation

Generalized Implementation
FA steps

Hardware controlled fault injection techniques

e Tampering with clock pin [16].

e  Tampering with supply voltage pin [20].

e  Tampering with operating temperature [21].

e  Combination of temperature, frequency &
voltage [16].

. Optical fault injection [25].

. EM fault injection [30].

Fault injection

Software controlled fault injection techniques
e Manipulating the DVFS interface [31].

e Triggering memory disturbance errors [37].
Fault e Location of fault [38].
manifestation e  Size of fault [39].
. Effect of fault [39].
. Duration of fault [40].
Fault . I-Mem, I-fetch, I-Decode:
propagation o  Opcode part: another instruction

executed
o  Source operand addresses: they
will be retrieved from wrong
location.
. O-fetch: faulty address or value of destination
register, faulty update of flags
. Execute: faulty address or value of destination
register, faulty update of flags
. Store: faulty address or value of destination
register, faulty update of flags
. Register file: incorrect source operands being
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fetched from register file
. D-Mem & Conditional flags: absence of
impact.

Fault .
observation .

Faulty cipher text

Abrupt change in the consumption of power
in device [56].

. Micro architectural effects in performance
counter [41].

Fault e  Using fault models
exploitation o  Corruption in data flow of target
program (which can set, reset, flip
or random nature in bit, byte or
word) [39].
o Skipping an instruction execution
[44].
o Skipping multiple instruction [47].
o  replacing an instruction [20].
o altering the conditional branch
value [50].
o loop counters tampering [51].
e  Cryptanalysis using fault injection
o DFA[53,60].
o  Biased fault analysis [64,65].
o  Safe error analysis [66,68].
o Algorithm specific fault analysis
[71,72].
e Assisting SCA [73,77,80,88].
e  Fault enable logical attacks
[20,24,31,37,44,93,94].
e Assisting reverse engineering [96,97].

Vol.11(11), Nov 2023

2.3 Automated Frameworks of FA

Several efforts were made on automated frameworks for
evaluating effectiveness of fault attacks i.e., given a cipher,
attack prone areas will be analysed automatically. The first
step of cipher-level automation in fault analysis are made by
Fan Zhang et al. (requires manual effort in algebraic form
representation of cipher and then SAT solver identifies
vulnerabilities) [34]. Punit Khanna et al. (requires manual
efforts in identifying non-linear operations of cipher and then
identifies vulnerabilities using fault propagation patterns)

[35].

Table-2: Classification of Fault attacks

Sayandeep Saha et al., proposed a novel strategy called as
Fault Template Attack (FTA), which involves fault templets
to efficiently exploit fault characteristic from various
locations of fault occurrence through which distinguishable
fault patterns are constructed thereby recovering the key
[105]. Multiple fault locations are exploited for this attack
even though fault is given at a single location.

The effectiveness of the strategy is evident in its ability to
target the middle rounds of the cipher, all without requiring
complete access to the CT and its nature (whether it is correct
or faulty). The main observation is that the fault induced at
one AND gate input depends on other input value. In other
words, fault propagation depends on data being processed. By
this observation, attacks on masking schemes are performed
which is one area of countermeasures of fault attacks.

2.2 Classification of various FA

Anubhab Bakshi et al., broadly classified FA into three major
areas as given in table-2 [106]. In order to extract sensitive
information, Difference based Fault Analysis focuses on
purposefully introducing faults and monitoring the
differential effects on the output of the cryptographic system.
On the other side, collision-based fault analysis causes
collisions during computing in order to examine the patterns
that emerge, with the goal of exploiting these collisions to
undermine system security. By using statistical techniques,
Statistical Fault Analysis analyses the overall efficacy and
relevance of purposefully induced defects on cryptographic
algorithms. Each method provides distinct insights into
cryptographic systems vulnerabilities, giving analysts and
attackers a variety of options for compromising or assessing
the security of targeted systems.
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Category Fault attack Goal
Difference | Differential Fault Attack Observes the differences in the
based FA (DFA) [8]. output when correct & faulty
inputs are processed
Algebraic Fault Attack Focus on exploiting mathematical
(AFA) [14]. relationships in the cryptographic
algorithm that may be exposed
due to faults
Impossible Differential Exploits the concept of
Fault Attack (IDFA) "impossible differentials" in the
[15]. cryptographic algorithm
Linear Fault Attack Exploits linear relationships in
(LFA) / Integral Fault the cryptographic algorithm
Attack (IFA) [17].
Collision Collision Based Fault Create collisions and observes
based FA Attack (CFA) [18]. respective outputs to deduce
information about the internal
state of the system.
Internal Differential Creates differential effects in the
Fault Attack (InDFA) algorithm's internal state, leading
[113]. to observable differences in the
next computations
Safe error analysis to assess the resilience of a
(SEA)/Ineffective Fault cryptographic system against
Analysis (IFA) [66]. unintentional errors that may
occur during normal operation
Statistical Non-uniform error value Exploits the non-uniformity of
based FA attack (NUEVA) [26]. the errors to gain information
about the internal state of the
system.
Non-Uniform faulty Similar to NUEVA but focus
value attack (NUFVA) here is on the faults causing
[27]. specific values or patterns in the
system's computation
Fault sensitivity analysis Locates vulnerable points in the
(FSA) [28]. algorithm where faults are likely
to have a more impact on security
of the system.
Differential fault Understands the intensity of
intensity analysis faults leading to optimization of
(DFIA) [61]. the fault injection process for
maximum impact
Others Statistical Ineffective Attacker observes the areas
Fault Attack (SIFA) where faults do not have a
[29]. statistically significant impact on
the desired information.
Persistent fault attack The goal is to observe the
(PFA) [32]. cumulative effects of persistent
faults on the cryptographic
system.
Fault Intensity Map Creates a map that characterizes
Analysis (FIMA) [33]. the intensity or strength of faults
across different points in a
cryptographic algorithm

Some fully automated frameworks using machine learning

approaches are proposed in literature like:
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e Sayandeep Saha et al. used association rule mining
approach [12].

e Sayandeep Saha et al. used data mining approach [36].

e Sayandeep Saha et al. used random forest approach, etc
[42].

Work on software-level automation techniques is carried out
by Jakub Breier et al., which focuses on assembly level
implementation and reveals vulnerabilities hidden in cipher-
level approaches [43]. They stated an example that if
substation layer and permutation layer are combined as a
lookup table then cipher-level approaches may over look any
new vulnerability. Analysis of equations formed in these
techniques is performed by Xiaolu Hou et al., automatically
by using SMT solver [45].

Work on hardware-level automation techniques is performed
by Jan Burchard et al. and Mael Gay et al., where the cipher's
hardware specifications are utilized to generate a roster of
faults using an exploited fault model, which is then
represented in CNF (Conjunctive Normal Form) and
examined through a SAT solver [46,48].

Sayandeep Saha et al., developed for the first time, a
completely automated machine learning based framework
which exploits fault space characterization in block ciphers
[42]. When this machine learning framework is trained using
a range of exploitable fault instances within a cipher, it
becomes capable of predicting potential attacks on the same
cipher. It is evaluated on to standard LW-block ciphers (LED
and PRESENT) and obtained results showed training
accuracy between 85-93%. Later, they also proposed a
strategy which reduces misclassifying of exploitable faults
which successfully reduced false negatives by fully testing
around 20% of total fault samples. They also studied effect of
DFA on three structurally similar S-Boxes (PRESENT,
SERPENT and SKINNY) in which S-Box of SKINNY has
displayed more DFA resistance compared to remaining two
ciphers.

3. Algorithmic attacks

Fault attacks have bypassed security of several standard
crypto systems. Here we focus on popular algorithms
attacked by Fault Attacks and their attack complexities.

3.1 Symmetric crypto system:

Data Encryption Standard (DES) was first widely used
symmetric key modern cipher and Biham and Shamir
performed successful DFA where only 50-200 ciphertext
were required [8].

Advanced Encryption Standard (AES) has replaced DES in
year 2000 and being widely used till present and multiple
DFA attacks are published on AES. Giraud et al. performed
Bit attack using around 50 Ciphertext and Byte attack using
around 250 Ciphertext [57]. Dusart et al. performed four fault
models and 120bit key was retrieved with 10 ciphertexts [49].
Chien-Ning and Surg-Ming performed DFA which targets
KSA and retrieved 128-bit key in 6 ciphertexts and also
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performed Byte-attack of key schedule and retrieved 128bit
key in 22 ciphertexts [52]. Takahashi J et al. adopted new
rule-based approach and retrieved 80bit key in just 2
ciphertexts and extended this attack to retrieve 88bit key
effectively (Remaining keys 28bit & 20bit respectively are
brute-forced) [54].

3.2 Asymmetric crypto-system

RSA was first popular public key cryptosystem and first
famous fault attack was done by Boneh et al. [3]. And it is
shortly improved by Lenstra where factorization on modulus
N of CRT-RSA was performed with just one pair of correct-
faulty ciphertext [58].

Digital Signature algorithms (DSA) are primarily used for
message authentication and Bao et al., performed DFA attack
on it [2]. The secret key was gradually obtained by
sequentially toggling individual bits of the key. So, the
complete key was retrieved by using one correct & 160 faulty
signature on same unknown messages.

Elliptic Curve Cryptography (ECC) has fault attacks which
generally try to transfer the computations from a secure curve
to a less resilient curve by attacking curve parameters or the
scalar multiplications. Biehl et al., attacked scalar
multiplication where by inducing 1 bit fault, retrieved scalar
information [10]. This attack underwent enhancements by
Ciet and Joye [71]. Two types of SEA attacks are performed
on ECC which are Computational Safe-Error Attacks (which
inject a transient random computational fault in ALU) and
Memory Safe-Error Attacks (which injects a fault, inside a
memory location or a register) [70,114]. Sakamoto et al.,
performed fault attack using L opez-Dahab algorithm [55].
Dominguez-Oviedo et al, performed invalid-curve attack on
scalar multiplication of Montgomery ladder elliptic curve
[99].

ECDSA’s first fault attack was performed by Giraud and
Knudsen by retrieving secret key using 2300 faulty signatures
and it is an extended work of Dottax [59,62]. BI'omer et al.
introduced new method called Sign change attack where
attack will be more challenging to detect the attack as the
points will remain within the curve [63]. Schmidt et al.
performed a fault attack which retrieves subpart of ephemeral
key for various signatures (50 faulty signatures were used to
get 160 bits key) [67]. Jarvinen et al. elaborated upon
Giraud's fault attack targeting signature schemes which says
that the biased faults can make attack more efficient [69].

3.3 Post-Quantum cryptography

Campbell thinks that due to unexpected worldwide progress
and the secrecy surrounding secret research programs run by
organizations and governments throughout the world, existing
timetables to facilitate the development of quantum
computers with fault tolerance on a large scale are
overestimated [140]. Saki et al. mentioned that several insider
and outsider threat models, including fault injection, are
present for quantum computers [137]. And stated that,
hardware designs with 1000 qubits could appear quite soon,
enhancing device utilization &financial rewards in quantum
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clouds to achieve profitability through multi-tenant
computing while also potentially opening the door to a fault
injection assaults [138,139].

In a groundbreaking finding, Shor presented a method that,
with the assistance of a quantum computer, can efficiently
solve traditionally hypothesized challenging problems
involving factorization and discrete logarithm within
polynomial time [122]. The US NIST established a
standardization procedure for post-quantum cryptography
(PQC) in 2016, to help with the transition and to withstand
future attacks to this new technology. The research
community has recently shown multiple fault attacks on PQC
algo’s [108,109,111,112,116,117,118,119,121]. The
significant challenge lies in employing these attacks on PQC
schemes, given their substantial key sizes (kB), while the
attacks can only unveil a limited number of bits in each
attempt. Nonetheless, even a limited quantity of exposed key
bits could potentially lower the security level beneath the
threshold mandated by the PQC standard. Keita Xagawa et al.
examined each KEM candidates from NIST PQC Round 3
[136]. The importance lies in performing the equality test
through re-encryption during the process of decapsulation
since all KEM schemes employ different iterations of the
Fujisaki-Okamoto transformation. They demonstrated that
introducing a single instruction-skipping defect in the
decapsulation operations causes SABRE, NTRU, KYBER,
SIKE, and BIKE to practically bypass the equality test.

Various categories of post-quantum cryptographic algorithms
exist, including hash-based, lattice-based, code-based,
isogeny-based, and multivariate-based algorithms. Among
these, multivariate algorithms stand out for their efficiency on
resource-constrained devices; however, they do come with
the drawback of having significantly large key size while
Lattice-based schemes, on the other hand, have comparatively
smaller keys and perform well in the constrained
environments too.

3.3.1 Code-based cryptography

The foundation of code-based cryptography relies on the
difficulty of recovering a code word after applying a random
error correction code. Due to the size of their public keys,
code-based cryptosystems are not now widely used, but they
will be a viable option if the RSA/ECC cryptographic
framework is compromised by the development of quantum
computers. Due to their built-in capacity to repair errors,
code-based cryptographic cryptosystems are quite often
resilient to attacks based on faults.

3.3.2 Hash-based Cryptography

In Hash-based Cryptography, according to Eisenbarth et al.,
since unique one-time signature keys are preferably utilized
just once, there is a substantial leakage resistance against
DPA-like assaults [130]. A fault model is put out by Shoufan
that depends on toggling two control bits to lower the SHA-
512 algorithm's round number [135]. An attack was
performed on a keyed-hash message authentication code,
resulting in the extraction of its secret key.
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3.3.3 Lattice-based Cryptography

Lattice-based Cryptography is vulnerable to fault attacks in
NTRU cryptosystems used for digital signatures and
encryption. Countermeasures for these fault attacks were
presented in [113]. Leon Groot Bruinderink and Peter Pessl
demonstrated how DFA can be used against deterministic
lattice-based signature systems, how & when these systems
are susceptible to single random faults, and also demonstrated
how the reuse of nonce caused by a fault enables the
extraction of the secret key [118]. They also demonstrated
approaches that may quickly produce and then effectively
take advantage of a partial nonce-reuse. This situation results
in legitimate signatures and enables getting around several
common defensive systems.

3.3.4 Isogeny-based cryptography

As a work of Isogeny-based cryptography, Elise Tasso has
examined the viability of Ti's theoretical fault injection attack
[128]. Using electromagnetic fault injection on an ARM
Cortex A53 combined with the right and wrong public key
generation, they can decipher the secret. The significance of
this attack lies in the retrieval of the static key, a private key
that sees repeated usage over an extended duration.

3.3.5 Multivariate Cryptography

In Multivariate Cryptography, a side-channel attack against
the broken encryption system Sash was suggested by Okeya
et al. [134]. Furthermore, Hashimoto et al. demonstrated fault
attacks against MPKC schemes (both Big-Field type and
Stepwise Triangular System (STS) type) [131].

3.4 Miscellaneous attacks

Saad Islam et al. demonstrated that nonce randomization
mitigation is insufficient against fault attacks and proposed
the bit-tracing attack for the LUOV scheme and the Signature
Correction Attack for the Dilithium scheme [107]. In order to
accomplish the Row-hammer attack on several post-quantum
signature schemes, they utilized SPOILER, which can
identify contiguous memory in regular conditions and without
the need for any special privileges [110,112,114,115,123].
They have also used the Plundervolt attack to show
weaknesses in the Dilithium signature method. The attack
relies on software undervolting of CPU voltages.

Aymeric  Genét  demonstrated how  SPHINCS-type
architectures on embedded devices may be easily attacked by
low-cost fault injections (such as simple voltage glitch
injection on the targeted platform) enabling adversary to
quickly gather enough fake signatures to produce a universal
forgery [120].

Fault injection can be powerfully exploited using the Safe-
Error Attack (SEA), especially on constant-time
implementations like those suggested to the NIST
[125,126,127]. SEA is carried out by a separate work where
few lattice-based candidates are being decrypted in which
SEA assault concentrates on the error distribution. In the
study conducted by Luk Bettale, the security implications of
safe-error attacks on lattice-based cryptography algorithms
were evaluated including Dilithium, KYBER, SABRE, and
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NTRU [124]. This study suggests a novel method for carrying
out SEA that can be used with more schemes and suggested
possible defenses like moving things around and hiding the
distribution [119].

4, Countermeasures

Countermeasures play vital role in preventing attacks.
Bousselam et al. discussed about  sensor-based
countermeasures (checks for presence of light, voltage peaks,
etc.) and error detection-based countermeasures [74,75]
(checks for correctness of the algorithm output). First
countermeasures for fault attack on key scheduling of AES
algorithm is presented by Chen et al. in which three methods
are presented; Parity check, Generate round key only once
and Storing key in flash memory [76]. Mestiri et al. presented
new scheme for S-Box protection against fault attacks [78].
Barenghi et al. analyzed various software countermeasures
and stated that duplication or triplication of the instructions
belonging to vulnerable sections of algorithms can protect
AES from almost all of the fault attacks [79].

Fan et al. provided ECC with multiple defense strategies
against fault attacks, encompassing Point validation, which
assesses the point's adherence to the curve, Curve integrity
that identifies faults in curve parameters, Coherence check
ensuring result accuracy during computation against a pattern,
Combined curve that employs a reference curve to spot faults,
and Co-factor multiplication serving as a defense against
small subgroup attacks [81]. Prabu et al. gave insights into
Algorithm  based, Design based and noise based
countermeasures of ECC in [100].

Most of the fault attacks countermeasures are not applied at
cipher-level implementation i.e., analysis is done outside the
cipher and they use redundancy in some form to get
protection against fault attacks. Anubhab Baksi et al. broadly
classified fault attack countermeasures in general into classes
depending on their redundancy form as shown in table-3
[106]. Strategies such as algorithmic variety and
implementation subtleties provide layers of complexity at the
cipher level, thereby repelling potential assaults. Using
distinct or specialized devices—passive as well as active—
helps to isolate and protect, preventing the compromising of
critical functions. Detection-based, infective-based, and
preventive-based computation redundancy  strengthens
resilience against errors and manipulations, ensuring the
integrity of cryptographic operations. Additionally, the
overall security posture can be enhanced by using protocol
techniques including re-keying, tweak and tweak-in-plaintext
approaches, and masking plaintext in communication
channels. Cryptographic systems can build a strong
defense mechanism against a wide range of threats by
including these multifaceted countermeasures, making a more
secure environment for sensitive data.

Table-3: Various abstract levels of countermeasures of FA
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2 Using a separate or dedicated device Passive devices block or
shields ~ from  external
Passive devices | Active devices | interference while active
[83]. [84]. devices detect any potential
stress
3 Using redundancy in computation Duplicate the circuit
Detection Infective Preventive | partially or fully to detect
based based [90]. | based faults and detected faults
[85,86,87]. [91]. will be handled according to
predefined protocols
4 Using protocol techniques Tries to prevent fault
Re-Keying | Tweak and | Masking injections through
[92,95]. tweak-in- plaintext communication protocols.
plaintext [89].
[98].

Countermeasure based on various Remarks
abstract levels

1 Cipher level [82]. Solely depends on the virtue

of cipher design itself
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Some countermeasures were also given for PQC. Leon Groot
Bruinderink and Peter Pessl demonstrated three generic
countermeasures and their applicability & efficacy against the
fault attacks - Double computation, Verification-after-sign,
and additional randomness (like deterministic noise sampling)
[118]. Buffer qubits were suggested by the authors of to
prevent cross-talk induced fault injection [139]. Reference
[107] pointed that, PQC systems already offer mitigating
methods for fault attacks such as randomizing the nonce
values, requiring randomly generated vinegar's, and adding a
random salt to each message.

5. Evaluation and rating

The evaluation of fault attack resistance is required for any
individual product. Some of the certification procedures are:

e Common Criteria (CC) [23].

e EMVCo [103].

e FIPS 140-2 [22].

The most popular and widely followed procedure is common
criteria certification process which is termed as CC. CC is
brought up by global security certification community and
involves certification bodies (certifies the product after
evaluation), vendors (person with copyright on the product to
be certified) and labs (Evaluator who tests and reviews the
product) for rating the product. The aim of this consortium is
to give enough assurance for long (many years) working of
the product. This process is complex, takes more time (in
months) and also costly. Seven Evaluation Assurance Levels
(EALS) are available as shown in figure 3. You can be more
certain that the security functional requirements have been
satisfied the higher the level. One major drawback is that
security improvement done to the product will void the
certification and whole process have to be done again i.e.,
even minor improvements will take months to be certified.

EAL1

A Structurally Tested

EAL3

Functionally Tested

Methodically Tested and Checked
EAL4
EALS
EAL6

EAL7
Figure 3: CC-Evaluation Assurance Levels

Methodically Designed, Tested and Reviewed

Semi-Formally Designed and Tested

Semi-Formally Verified Design and Tested

Formally Verified Design and Tested
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Whatever might be the certification process, a white-box type
(only information related to design and implementation)
evaluation is done to the product. Bilgiday Yuce et al. stated
that the evaluation process will broadly consist of two steps;
Vulnerability Analysis (reviews and tests the vulnerability of
the product against possible threats) and Penetration testing
(tests and measures resistance of the product against all
possible attacks) [13]. And parameters considered for the
attack rating are product knowledge, equipment, expertise,
time, ability to configure target and number of target samples.

6. Conclusions

This paper covers most of the Side channel fault attacks on
various standard cryptosystems published in literature.
Various fault attack models of different abstract levels and
several fault attacks are also covered in this paper. The
countermeasures for fault attacks are mentioned in general
while also covered for standard algorithms. Resistance
evaluation & rating are also covered.

Fault attacks performance depends primarily on non-linear
functions of the crypto-algorithm and due to this; it is
possible to recover the key by parts instead of exponential
complexity. The common flow of the research on fault attacks
is a cycle of countermeasure following the attack which
further follows attack (improved version). This cycle may
continue unendingly with PQC too.

| second Mostafa Taha et.al. Statement that we are not yet
equipped to use any post-quantum cryptography strategy into
use in real-world embedded systems [129]. Before achieving
a reasonable level of security, a significant amount of study
still needs to be done.
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