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Abstract: From and practical fault attacks have been published that pose a serious threat to most of the crypto-algorithms the 

time of announcement of new cryptanalytic attack called fault attack proposed by Bellcore in Sep 1996, multiple theoretical. 

Fault attacks circumvent the intricate mathematics of ciphers and swiftly extract the cipher's secret key. This is achieved by 

disrupting the system's normal behaviour, inducing faults that result in its faulty operation. The efficiency of these attacks has 

been improved over a period of time in making them more practical. Because of this, multiple techniques to counter the attacks 

are also published, that increase the complexity of attacks with the goal of making them impossible in the future. This paper 

covers the various fault attacks & countermeasures on symmetric, asymmetric and Post-Quantum crypto (PQC) algorithms 

along with various ways of resistance evaluation &their rating. 

 

Keywords: SCA, Fault attacks, Symmetric, Asymmetric, PQC, Evaluation

 
 

1. Introduction  
 

Cryptography plays major role in security of devices and the 

data stored in them by resisting attackers/hackers trying for 

unauthorized access of private and confidential data. Thanks 

to cryptanalysis techniques, for helping these crypto-

algorithms to evolve into much stronger versions. As 

technology progresses, several new/modified attacks will 

come forth. One such attack is fault attack. 
 

Faults may occur accidently or can be intentional. Accidental 

faults are natural like anomalies happening in electronic 

equipment’s, alpha particle effects on semiconductor 

electronics, etc. But in fault attacks, faults are of intentional 

in nature and induced by adversary to get internal information 

of the system.  
 

A fault attack belongs to the category of side-channel attacks, 

wherein a deliberate fault is introduced into a cryptographic 

implementation to expose the secret key utilized by the cipher 

as shown in figure 1. By examining the differential 

characteristics of nonlinear operations within the algorithm, 

the secret key can be deduced when provided with cipher 

texts from both correct and faulty implementations. 

Typically, a faulty ciphertext is discovered by applying 

external influences to a device that incorporates the 

algorithm, such as introducing voltage variations, glitches, 

lacerations, and more. Remarkably, even tamper-resistant 

devices remain susceptible to fault attacks. 

The resilience of cryptographic systems is seriously 

threatened by side-channel fault attacks. Conventional 

security solutions that just concentrate on algorithmic 

strength are no longer enough since attackers can take 

advantage of the implementation's physical features. It is 

essential to comprehend the particular issues brought about 

by these attacks in order to create effective countermeasures. 

To protect systems from these hidden risks, issues including 

information leakage, non-invasive data extraction, and the 

possible compromise of cryptographic keys need to be closely 

examined. 
 

Nowadays, side-channel fault attacks are very important to 

understand in cyber security. Strong defenses against these 

sneaky threats are required since embedded systems are 

widely used in commonplace products like smart cards, 

secure communication protocols and Internet of Things (IoT) 

devices. Side-channel fault attacks can compromise sensitive 

information, such as financial transactions or national security 

data. For this reason, it is imperative to resolve these 

vulnerabilities as soon as possible. 
 

The necessity to compile information and insights about side-

channel fault attacks at one place is what spurred this survey. 

This survey seeks to provide academics, practitioners, and 

policymakers with the necessary knowledge to strengthen 

cryptographic systems against these emerging dangers by 

offering a current state of research, practical implications, and 

proposed mitigations. Maintaining the integrity of our digital 
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infrastructure and staying ahead of prospective adversaries 

need a proactive understanding of side-channel fault attacks, 

which is becoming increasingly important as the cyber 

security landscape changes. 

 

 
Figure 1: General Fault attack model 

 

This paper describes, various fault attacks and their respective 

counter measures so far in the literature. Crypto research can 

be pictured as a cycle of attacks & countermeasures. Most of 

the countermeasures doesn’t stop the attacks but increase the 

complexity in mounting the attacks. So, evaluation of the 

resistance of crypto devices is also vital. Hence, this paper 

also includes a discussion on evaluation and parameters for 

rating them  

 

From this point, the content is structured in the following 

manner. Section-2 covers fault models and projects light into 

various parameters involved in it. Section-3 briefly describes 

various fault analysis methods. Section-4 shows fault attacks 

on various categories of algorithms and Section-5 puts light 

on various countermeasures. Section-6 gives evaluation 

techniques and various parameters used for rating the crypto 

algorithms. Conclusion follows in section-7. 

 

1.1 Fault Models 

Generally, fault attacks intend to break the security of 

functionality of a system by forcing it to an unintended 

behaviour. For this to happen, attacker injects concentrated 

hardware fault by purposely disturbing the operation of the 

system, exploits the effect of fault and break the system 

security. Origin of vulnerability will be at hardware level 

while exploitation will be at software level. 

 

In this attack scenario, the attacker is unable to directly 

modify the structure of the chip or program’s binary but can 

control the operating condition of the processor at hardware 

level.  The attacker may also give input to the intended code 

and keep track of effects of unusual operation at software 

level through its output. 

 

The more the model is constrained, the attack will be 

proportionally easier but it becomes proportionally more 

difficult in practical scenarios. 

 

1.1.1 Modelling with abstract levels 

Fault attack can be modelled in various abstract levels in both 

the major parts of the attack as mentioned below: 

 

In the process of fault Injection, the abstract levels are 

 Transistor level 

 Logic level (targets can be gates and flip-flops) 
 RTL level (targets can be ALU, REG’s, MEM) 

And while exploiting the fault, the abstract levels are 

 Arithmetic level (as shown in figure 2) 

 Cryptographic primitives’ level 

 Protocol level 

 

1.1.2 Modelling with parameters 

Fault attacks can also be modelled using following 

parameters of the fault being injected into the system. 

 

1.1.2.1 Granularity of the fault 

It can be explained as either number of bits affected by 

injection of fault which can be flipping a particular bit, 

random bit, stuck-at zero, stuck-at one, etc or as an impact on 

the target system ranged from single bit to few bits (up to a 

word). It can be non-invasive (like no physical damage to 

device, modify working conditions, etc.), semi-invasive (like 

chip de-capsulation, milling, etching, cleaning, etc.) or 

invasive (like to establish electrical contact to chip, 

modification, destruction, etc.) in nature. Non-invasive may 

require moderate knowledge of equipment, semi-invasive can 

be done with affordable equipment and invasive may require 

expensive equipment. 

 

 
Figure 2: Example of fault injection into cryptographic implementation 
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1.1.2.2 Type of fault 

The attackers can induce fault which can be input-output type 

(where fault can be directly induced at input) or can induce at 

positions which allows malfunction in memory, clock circuit, 

etc. The fault on hardware can be of instruction level, micro 

architecture level, circuit level or in side-channels like 

temperature, circuit voltage, EM radiation, etc. 

 

1.1.2.3 Source of fault 

There are several sources to inject fault into the system. Some 

of them are Clock glitch, Voltage glitch, Underfeeding, 

Heating, EM pulse, Light pulse, Light radiation, Focused Ion 

beam, LASER beam, Localized EM pulse, etc. 

 

1.1.2.4 Intensity of fault 

It can be described as an amount of the strain induced on the 

processor due to physical factors. 

 

1.1.2.5 Efficiency of the fault 

It can be explained as a precision in injecting fault which is 

how precisely or loosely, attacker can choose the fault value. 

 

1.1.2.6 Repeatability of the fault 

It is ability where whether attacker can produce same or 

similar fault in spatial or temporal domains of the system. 

 

1.1.2.7 Feasibility of the fault 

It refers to real-time aspects like budget& equipment required 

for the setup, Expertise level required to operate the setup, 

duration of the fault which can be permanent, transient or 

destructive. 

 

2. Fault attack techniques – Related Work 
 

Fault attacks are attacks which use side channel for injecting 

faults into devices to make them misbehave for certain 

amount of time. These attacks are actively being studied since 

1996 by the research communities. Skorobogatov and 

Anderson executed the initial practical fault attack in 2001 in 

which photo-flash is used to flip a bit in memory [1].  

 

Later to above attack, various attacks have emerged in both 

symmetric and public key crypto systems. Bao et al., mounted 

a first attack on public key crypto system using transient 

faults [2]. Fiat-Shamir and Schnorr, attacked RSA using 

active fault attacks [3]. Marc J and Jean-Jacques Q, have 

chosen to attack on signing key of RSA Montgomery instead 

of message [4]. Joye & Quisqater and Klima & Rosa, have 

also carried out successful fault attacks on RSA crypto 

systems [5,6]. Voyiatzis and Serpares, mounted successful 

attack on Fiat-Shamir schemes[7]. The inaugural practical 

differential fault attack on symmetric key crypto system is 

performed by Biham and Shamir, where attack was on DES 

[8]. Jacob et al., have used fault attacks to extract secret data 

from obfuscated ciphers [9]. Biehl et al., attackedElliptic 

curve crypto system (ECC) using DFA [10]. ZhengY, 

attacked random number generators using faults [11]. Even 

though there are multiple fault attacks, some research works 

defined fault attacks in general steps where each author took 

different abstract levels. 

2.1 Implementation techniques of FA 

According to Sayandeep Saha et al., fault attacks can be 

implemented in broadly three steps; Distinguisher 

Identification (wrong key guess moves the distinguisher to a 

uniform distribution while correct key guess makes it a non-

uniform distribution), Divide-and-Conquer(divide into 

subparts which are independent in nature and can be 

computed efficiently) and Estimating the Number of Possible 

Key Candidates (If distinguisher reduces search space to a 

sufficient level, then attack may be successful with less faults 

and vice versa) [12]. 

 

According to Bilgiday yuce et al., fault attacks can be 

implemented in broadly five steps which are Injection of 

fault, Manifestation of fault, Propagation of Fault, Fault 

observation& Exploitation of Fault [13]. Their 

implementation techniques are in the table-1.According to 

Christophe Giraud et al., fault attacks can be categorized 

according to the origin of the introduced fault [101]. The first 

fault attack induced faulty behaviour in smart cards by glitch 

attack, where glitch is non-invasively applied to one of the 

chip contacts (Vcc pin, GND pin or Clock pin). The light 

attacks, uses energy of a light as emission, (from materials 

like flash camera, Laser, etc.) to disturb the silicon inside the 

chip [1,25,102]. The memory cells or logical gates can be 

easily disturbed by this photoelectric current and reciprocate 

to it. The parameters to be considered are energy of the light 

beam, light beam, light wave length, duration of emission and 

location of the attack. Magnetic attack is a semi-invasive 

attack, uses magnetic field on component to create local 

current which may generate a transient fault [104]. The 

parameters to be considered are power of magnetic field, 

localization on the chip and its duration. 

 
Table-1: Generalized Fault attack steps and their implementation 

Generalized 

FA steps 

Implementation 

Fault injection Hardware controlled fault injection techniques 

 Tampering with clock pin [16]. 

 Tampering with supply voltage pin [20]. 

 Tampering with operating temperature [21]. 

 Combination of temperature, frequency & 
voltage [16]. 

 Optical fault injection [25]. 

 EM fault injection [30]. 

Software controlled fault injection techniques 

 Manipulating the DVFS interface [31]. 

 Triggering memory disturbance errors [37]. 

Fault 

manifestation 
 Location of fault [38]. 

 Size of fault [39]. 

 Effect of fault [39]. 

 Duration of fault [40]. 

Fault 

propagation 
 I-Mem, I-fetch, I-Decode: 

o Opcode part: another instruction 
executed 

o Source operand addresses: they 

will be retrieved from wrong 
location. 

 O-fetch: faulty address or value of destination 

register, faulty update of flags 

 Execute: faulty address or value of destination 

register, faulty update of flags 

 Store: faulty address or value of destination 

register, faulty update of flags 

 Register file: incorrect source operands being 
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fetched from register file 

 D-Mem & Conditional flags: absence of 
impact. 

Fault 

observation 
 Faulty cipher text  

 Abrupt change in the consumption of power 
in device [56]. 

 Micro architectural effects in performance 
counter [41]. 

Fault 

exploitation 
 Using fault models 

o Corruption in data flow of target 
program (which can set, reset, flip 

or random nature in bit, byte or 

word) [39]. 
o Skipping an instruction execution 

[44]. 

o Skipping multiple instruction [47]. 
o replacing an instruction [20]. 

o altering the conditional branch 

value [50]. 
o loop counters tampering [51]. 

 Cryptanalysis using fault injection 
o DFA [53,60]. 

o Biased fault analysis [64,65]. 

o Safe error analysis [66,68]. 
o Algorithm specific fault analysis 

[71,72]. 

 Assisting SCA [73,77,80,88]. 

 Fault enable logical attacks 
[20,24,31,37,44,93,94]. 

 Assisting reverse engineering [96,97]. 

 

Sayandeep Saha et al., proposed a novel strategy called as 

Fault Template Attack (FTA), which involves fault templets 

to efficiently exploit fault characteristic from various 

locations of fault occurrence through which distinguishable 

fault patterns are constructed thereby recovering the key 

[105]. Multiple fault locations are exploited for this attack 

even though fault is given at a single location. 

  

The effectiveness of the strategy is evident in its ability to 

target the middle rounds of the cipher, all without requiring 

complete access to the CT and its nature (whether it is correct 

or faulty). The main observation is that the fault induced at 

one AND gate input depends on other input value. In other 

words, fault propagation depends on data being processed. By 

this observation, attacks on masking schemes are performed 

which is one area of countermeasures of fault attacks. 

 

2.2 Classification of various FA 

Anubhab Bakshi et al., broadly classified FA into three major 

areas as given in table-2 [106]. In order to extract sensitive 

information, Difference based Fault Analysis focuses on 

purposefully introducing faults and monitoring the 

differential effects on the output of the cryptographic system. 

On the other side, collision-based fault analysis causes 

collisions during computing in order to examine the patterns 

that emerge, with the goal of exploiting these collisions to 

undermine system security. By using statistical techniques, 

Statistical Fault Analysis analyses the overall efficacy and 

relevance of purposefully induced defects on cryptographic 

algorithms. Each method provides distinct insights into 

cryptographic systems vulnerabilities, giving analysts and 

attackers a variety of options for compromising or assessing 

the security of targeted systems. 

 

2.3 Automated Frameworks of FA 

Several efforts were made on automated frameworks for 

evaluating effectiveness of fault attacks i.e., given a cipher, 

attack prone areas will be analysed automatically. The first 

step of cipher-level automation in fault analysis are made by 

Fan Zhang et al. (requires manual effort in algebraic form 

representation of cipher and then SAT solver identifies 

vulnerabilities) [34]. Punit Khanna et al. (requires manual 

efforts in identifying non-linear operations of cipher and then 

identifies vulnerabilities using fault propagation patterns) 

[35]. 

 
Table-2: Classification of Fault attacks 

Category Fault attack Goal 

Difference 

based FA 

 

Differential Fault Attack 

(DFA) [8]. 

Observes the differences in the 

output when correct & faulty 

inputs are processed 

Algebraic Fault Attack 

(AFA) [14]. 

Focus on exploiting mathematical 

relationships in the cryptographic 

algorithm that may be exposed 
due to faults 

Impossible Differential 

Fault Attack (IDFA) 

[15]. 

Exploits the concept of 

"impossible differentials" in the 

cryptographic algorithm 

Linear Fault Attack 

(LFA) / Integral Fault 

Attack (IFA) [17]. 

Exploits linear relationships in 

the cryptographic algorithm 

Collision 
based FA 

 

Collision Based Fault 
Attack (CFA) [18]. 

Create collisions and observes 
respective outputs to deduce 

information about the internal 

state of the system. 

Internal Differential 

Fault Attack (InDFA) 

[113]. 

Creates differential effects in the 

algorithm's internal state, leading 

to observable differences in the 
next computations 

Safe error analysis 

(SEA)/Ineffective Fault 
Analysis (IFA) [66]. 

to assess the resilience of a 

cryptographic system against 
unintentional errors that may 

occur during normal operation 

Statistical 

based FA 

 

Non-uniform error value 

attack (NUEVA) [26]. 

Exploits the non-uniformity of 

the errors to gain information 
about the internal state of the 

system. 

Non-Uniform faulty 
value attack (NUFVA) 

[27]. 

Similar to NUEVA but focus 
here is on the faults causing 

specific values or patterns in the 

system's computation 

Fault sensitivity analysis 
(FSA) [28]. 

Locates vulnerable points in the 
algorithm where faults are likely 

to have a more impact on security 

of the system. 

Differential fault 

intensity analysis 

(DFIA) [61]. 

Understands the intensity of 

faults leading to optimization of  

the fault injection process for 
maximum impact 

Others 

 

Statistical Ineffective 

Fault Attack (SIFA) 
[29]. 

Attacker observes the areas 

where faults do not have a 
statistically significant impact on 

the desired information. 

Persistent fault attack 

(PFA) [32]. 

The goal is to observe the 

cumulative effects of persistent 
faults on the cryptographic 

system. 

Fault Intensity Map 

Analysis (FIMA) [33]. 

Creates a map that characterizes 

the intensity or strength of faults 

across different points in a 

cryptographic algorithm 

 

Some fully automated frameworks using machine learning 

approaches are proposed in literature like: 
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 Sayandeep Saha et al. used association rule mining 

approach [12].  

 Sayandeep Saha et al. used data mining approach [36]. 

 Sayandeep Saha et al. used random forest approach, etc 

[42]. 

 

Work on software-level automation techniques is carried out 

by Jakub Breier et al., which focuses on assembly level 

implementation and reveals vulnerabilities hidden in cipher-

level approaches [43]. They stated an example that if 

substation layer and permutation layer are combined as a 

lookup table then cipher-level approaches may over look any 

new vulnerability. Analysis of equations formed in these 

techniques is performed by Xiaolu Hou et al., automatically 

by using SMT solver [45]. 

 

Work on hardware-level automation techniques is performed 

by Jan Burchard et al. and Mael Gay et al., where the cipher's 

hardware specifications are utilized to generate a roster of 

faults using an exploited fault model, which is then 

represented in CNF (Conjunctive Normal Form) and 

examined through a SAT solver [46,48]. 

 

Sayandeep Saha et al., developed for the first time, a 

completely automated machine learning based framework 

which exploits fault space characterization in block ciphers 

[42]. When this machine learning framework is trained using 

a range of exploitable fault instances within a cipher, it 

becomes capable of predicting potential attacks on the same 

cipher. It is evaluated on to standard LW-block ciphers (LED 

and PRESENT) and obtained results showed training 

accuracy between 85-93%. Later, they also proposed a 

strategy which reduces misclassifying of exploitable faults 

which successfully reduced false negatives by fully testing 

around 20% of total fault samples. They also studied effect of 

DFA on three structurally similar S-Boxes (PRESENT, 

SERPENT and SKINNY) in which S-Box of SKINNY has 

displayed more DFA resistance compared to remaining two 

ciphers. 

 

3. Algorithmic attacks 
 

Fault attacks have bypassed security of several standard 

crypto systems. Here we focus on popular algorithms 

attacked by Fault Attacks and their attack complexities.  

 

3.1 Symmetric crypto system:  

Data Encryption Standard (DES) was first widely used 

symmetric key modern cipher and Biham and Shamir 

performed successful DFA where only 50-200 ciphertext 

were required [8]. 

 

Advanced Encryption Standard (AES) has replaced DES in 

year 2000 and being widely used till present and multiple 

DFA attacks are published on AES. Giraud et al. performed 

Bit attack using around 50 Ciphertext and Byte attack using 

around 250 Ciphertext [57]. Dusart et al. performed four fault 

models and 120bit key was retrieved with 10 ciphertexts [49]. 

Chien-Ning and Surg-Ming performed DFA which targets 

KSA and retrieved 128-bit key in 6 ciphertexts and also 

performed Byte-attack of key schedule and retrieved 128bit 

key in 22 ciphertexts [52]. Takahashi J et al. adopted new 

rule-based approach and retrieved 80bit key in just 2 

ciphertexts and extended this attack to retrieve 88bit key 

effectively (Remaining keys 28bit & 20bit respectively are 

brute-forced) [54]. 

 

3.2 Asymmetric crypto-system 

RSA was first popular public key cryptosystem and first 

famous fault attack was done by Boneh et al. [3]. And it is 

shortly improved by Lenstra where factorization on modulus 

N of CRT-RSA was performed with just one pair of correct-

faulty ciphertext [58]. 

 

Digital Signature algorithms (DSA) are primarily used for 

message authentication and Bao et al., performed DFA attack 

on it [2]. The secret key was gradually obtained by 

sequentially toggling individual bits of the key. So, the 

complete key was retrieved by using one correct & 160 faulty 

signature on same unknown messages. 

 

Elliptic Curve Cryptography (ECC) has fault attacks which 

generally try to transfer the computations from a secure curve 

to a less resilient curve by attacking curve parameters or the 

scalar multiplications. Biehl et al., attacked scalar 

multiplication where by inducing 1 bit fault, retrieved scalar 

information [10]. This attack underwent enhancements by 

Ciet and Joye [71]. Two types of SEA attacks are performed 

on ECC which are Computational Safe-Error Attacks (which 

inject a transient random computational fault in ALU) and 

Memory Safe-Error Attacks (which injects a fault, inside a 

memory location or a register) [70,114]. Sakamoto et al., 

performed fault attack using L´opez-Dahab algorithm [55]. 

Dominguez-Oviedo et al, performed invalid-curve attack on 

scalar multiplication of Montgomery ladder elliptic curve 

[99]. 

 

ECDSA’s first fault attack was  performed by Giraud and 

Knudsen by retrieving secret key using 2300 faulty signatures 

and it is an extended work of Dottax [59,62]. Bl¨omer et al. 

introduced new method called Sign change attack where 

attack will be more challenging to detect the attack as the 

points will remain within the curve [63]. Schmidt et al. 

performed a fault attack which retrieves subpart of ephemeral 

key for various signatures (50 faulty signatures were used to 

get 160 bits key) [67]. Jarvinen et al. elaborated upon 

Giraud's fault attack targeting signature schemes which says 

that the biased faults can make attack more efficient [69]. 

 

3.3 Post-Quantum cryptography 

Campbell thinks that due to unexpected worldwide progress 

and the secrecy surrounding secret research programs run by 

organizations and governments throughout the world, existing 

timetables to facilitate the development of quantum 

computers with fault tolerance on a large scale are 

overestimated [140]. Saki et al. mentioned that several insider 

and outsider threat models, including fault injection, are 

present for quantum computers [137]. And stated that, 

hardware designs with 1000 qubits could appear quite soon, 

enhancing device utilization &financial rewards in quantum 
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clouds to achieve profitability through multi-tenant 

computing while also potentially opening the door to a fault 

injection assaults [138,139]. 

 

In a groundbreaking finding, Shor presented a method that, 

with the assistance of a quantum computer, can efficiently 

solve traditionally hypothesized challenging problems 

involving factorization and discrete logarithm within 

polynomial time [122]. The US NIST established a 

standardization procedure for post-quantum cryptography 

(PQC) in 2016, to help with the transition and to withstand 

future attacks to this new technology. The research 

community has recently shown multiple fault attacks on PQC 

algo’s [108,109,111,112,116,117,118,119,121]. The 

significant challenge lies in employing these attacks on PQC 

schemes, given their substantial key sizes (kB), while the 

attacks can only unveil a limited number of bits in each 

attempt. Nonetheless, even a limited quantity of exposed key 

bits could potentially lower the security level beneath the 

threshold mandated by the PQC standard. Keita Xagawa et al. 

examined each KEM candidates from NIST PQC Round 3 

[136]. The importance lies in performing the equality test 

through re-encryption during the process of decapsulation 

since all KEM schemes employ different iterations of the 

Fujisaki-Okamoto transformation. They demonstrated that 

introducing a single instruction-skipping defect in the 

decapsulation operations causes SABRE, NTRU, KYBER, 

SIKE, and BIKE to practically bypass the equality test. 

 

Various categories of post-quantum cryptographic algorithms 

exist, including hash-based, lattice-based, code-based, 

isogeny-based, and multivariate-based algorithms. Among 

these, multivariate algorithms stand out for their efficiency on 

resource-constrained devices; however, they do come with 

the drawback of having significantly large key size while 

Lattice-based schemes, on the other hand, have comparatively 

smaller keys and perform well in the constrained 

environments too. 

 

3.3.1 Code-based cryptography 

The foundation of code-based cryptography relies on the 

difficulty of recovering a code word after applying a random 

error correction code. Due to the size of their public keys, 

code-based cryptosystems are not now widely used, but they 

will be a viable option if the RSA/ECC cryptographic 

framework is compromised by the development of quantum 

computers. Due to their built-in capacity to repair errors, 

code-based cryptographic cryptosystems are quite often 

resilient to attacks based on faults. 

 

3.3.2 Hash-based Cryptography 

In Hash-based Cryptography, according to Eisenbarth et al., 

since unique one-time signature keys are preferably utilized 

just once, there is a substantial leakage resistance against 

DPA-like assaults [130].  A fault model is put out by Shoufan 

that depends on toggling two control bits to lower the SHA-

512 algorithm's round number [135]. An attack was 

performed on a keyed-hash message authentication code, 

resulting in the extraction of its secret key. 

 

3.3.3 Lattice-based Cryptography 

Lattice-based Cryptography is vulnerable to fault attacks in 

NTRU cryptosystems used for digital signatures and 

encryption. Countermeasures for these fault attacks were 

presented in [113]. Leon Groot Bruinderink and Peter Pessl 

demonstrated how DFA can be used against deterministic 

lattice-based signature systems, how & when these systems 

are susceptible to single random faults, and also demonstrated 

how the reuse of nonce caused by a fault enables the 

extraction of the secret key [118]. They also demonstrated 

approaches that may quickly produce and then effectively 

take advantage of a partial nonce-reuse. This situation results 

in legitimate signatures and enables getting around several 

common defensive systems. 

 

3.3.4 Isogeny-based cryptography 

As a work of Isogeny-based cryptography, Élise Tasso has 

examined the viability of Ti's theoretical fault injection attack 

[128]. Using electromagnetic fault injection on an ARM 

Cortex A53 combined with the right and wrong public key 

generation, they can decipher the secret. The significance of 

this attack lies in the retrieval of the static key, a private key 

that sees repeated usage over an extended duration. 

 

3.3.5 Multivariate Cryptography 

In Multivariate Cryptography, a side-channel attack against 

the broken encryption system Sash was suggested by Okeya 

et al. [134]. Furthermore, Hashimoto et al. demonstrated fault 

attacks against MPKC schemes (both Big-Field type and 

Stepwise Triangular System (STS) type) [131]. 

 

3.4 Miscellaneous attacks 

Saad Islam et al. demonstrated that nonce randomization 

mitigation is insufficient against fault attacks and proposed 

the bit-tracing attack for the LUOV scheme and the Signature 

Correction Attack for the Dilithium scheme [107]. In order to 

accomplish the Row-hammer attack on several post-quantum 

signature schemes, they utilized SPOILER, which can 

identify contiguous memory in regular conditions and without 

the need for any special privileges [110,112,114,115,123]. 

They have also used the Plundervolt attack to show 

weaknesses in the Dilithium signature method. The attack 

relies on software undervolting of CPU voltages. 

 

Aymeric Genêt demonstrated how SPHINCS-type 

architectures on embedded devices may be easily attacked by 

low-cost fault injections (such as simple voltage glitch 

injection on the targeted platform) enabling adversary to 

quickly gather enough fake signatures to produce a universal 

forgery [120]. 

 

Fault injection can be powerfully exploited using the Safe-

Error Attack (SEA), especially on constant-time 

implementations like those suggested to the NIST 

[125,126,127]. SEA is carried out by a separate work where 

few lattice-based candidates are being decrypted in which 

SEA assault concentrates on the error distribution. In the 

study conducted by Luk Bettale, the security implications of 

safe-error attacks on lattice-based cryptography algorithms 

were evaluated including Dilithium, KYBER, SABRE, and 
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NTRU [124]. This study suggests a novel method for carrying 

out SEA that can be used with more schemes and suggested 

possible defenses like moving things around and hiding the 

distribution [119]. 

 

4. Countermeasures 
 

Countermeasures play vital role in preventing attacks. 

Bousselam et al. discussed about sensor-based 

countermeasures (checks for presence of light, voltage peaks, 

etc.) and error detection-based countermeasures [74,75] 

(checks for correctness of the algorithm output). First 

countermeasures for fault attack on key scheduling of AES 

algorithm is presented by Chen et al. in which three methods 

are presented; Parity check, Generate round key only once 

and Storing key in flash memory [76]. Mestiri et al. presented 

new scheme for S-Box protection against fault attacks [78]. 

Barenghi et al. analyzed various software countermeasures 

and stated that duplication or triplication of the instructions 

belonging to vulnerable sections of algorithms can protect 

AES from almost all of the fault attacks [79]. 

 

Fan et al. provided ECC with multiple defense strategies 

against fault attacks, encompassing Point validation, which 

assesses the point's adherence to the curve, Curve integrity 

that identifies faults in curve parameters, Coherence check 

ensuring result accuracy during computation against a pattern, 

Combined curve that employs a reference curve to spot faults, 

and Co-factor multiplication serving as a defense against 

small subgroup attacks [81]. Prabu et al. gave insights into 

Algorithm based, Design based and noise based 

countermeasures of ECC in [100]. 

 

Most of the fault attacks countermeasures are not applied at 

cipher-level implementation i.e., analysis is done outside the 

cipher and they use redundancy in some form to get 

protection against fault attacks. Anubhab Baksi et al. broadly 

classified fault attack countermeasures in general into classes 

depending on their redundancy form as shown in table-3 

[106]. Strategies such as algorithmic variety and 

implementation subtleties provide layers of complexity at the 

cipher level, thereby repelling potential assaults. Using 

distinct or specialized devices—passive as well as active—

helps to isolate and protect, preventing the compromising of 

critical functions. Detection-based, infective-based, and 

preventive-based computation redundancy strengthens 

resilience against errors and manipulations, ensuring the 

integrity of cryptographic operations. Additionally, the 

overall security posture can be enhanced by using protocol 

techniques including re-keying, tweak and tweak-in-plaintext 

approaches, and masking plaintext in communication 

channels. Cryptographic systems can build a strong 

defense mechanism against a wide range of threats by 

including these multifaceted countermeasures, making a more 

secure environment for sensitive data. 

 
Table-3: Various abstract levels of countermeasures of FA 

 Countermeasure based on various 

abstract levels 

Remarks 

1 Cipher level [82]. Solely depends on the virtue 

of cipher design itself 

2 Using a separate or dedicated device Passive devices block or 

shields from external 

interference while active 
devices detect any potential 

stress 

Passive devices 

[83]. 

Active devices 

[84]. 

3 Using redundancy in computation Duplicate the circuit 
partially or fully to detect 

faults and detected faults 

will be handled according to 
predefined protocols 

Detection 

based 
[85,86,87]. 

Infective 

based [90]. 

Preventive 

based 
[91]. 

4 Using protocol techniques Tries to prevent fault 

injections through 

communication protocols.  
Re-Keying 

[92,95].  

Tweak and 

tweak-in-
plaintext 

[98]. 

Masking 

plaintext 
[89]. 

 

Some countermeasures were also given for PQC. Leon Groot 

Bruinderink and Peter Pessl demonstrated three generic 

countermeasures and their applicability & efficacy against the 

fault attacks - Double computation, Verification-after-sign, 

and additional randomness (like deterministic noise sampling) 

[118]. Buffer qubits were suggested by the authors of to 

prevent cross-talk induced fault injection [139]. Reference 

[107] pointed that, PQC systems already offer mitigating 

methods for fault attacks such as randomizing the nonce 

values, requiring randomly generated vinegar's, and adding a 

random salt to each message. 

 

5. Evaluation and rating 
 

The evaluation of fault attack resistance is required for any 

individual product. Some of the certification procedures are:  

 Common Criteria (CC) [23]. 

 EMVCo [103]. 

 FIPS 140-2 [22].  

 

The most popular and widely followed procedure is common 

criteria certification process which is termed as CC. CC is 

brought up by global security certification community and 

involves certification bodies (certifies the product after 

evaluation), vendors (person with copyright on the product to 

be certified) and labs (Evaluator who tests and reviews the 

product) for rating the product. The aim of this consortium is 

to give enough assurance for long (many years) working of 

the product. This process is complex, takes more time (in 

months) and also costly. Seven Evaluation Assurance Levels 

(EALs) are available as shown in figure 3. You can be more 

certain that the security functional requirements have been 

satisfied the higher the level. One major drawback is that 

security improvement done to the product will void the 

certification and whole process have to be done again i.e., 

even minor improvements will take months to be certified. 

 

 
Figure 3: CC-Evaluation Assurance Levels 
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Whatever might be the certification process, a white-box type 

(only information related to design and implementation) 

evaluation is done to the product. Bilgiday Yuce et al. stated 

that the evaluation process will broadly consist of two steps; 

Vulnerability Analysis (reviews and tests the vulnerability of 

the product against possible threats) and Penetration testing 

(tests and measures resistance of the product against all 

possible attacks) [13]. And parameters considered for the 

attack rating are product knowledge, equipment, expertise, 

time, ability to configure target and number of target samples. 

 

6. Conclusions 
 

This paper covers most of the Side channel fault attacks on 

various standard cryptosystems published in literature. 

Various fault attack models of different abstract levels and 

several fault attacks are also covered in this paper. The 

countermeasures for fault attacks are mentioned in general 

while also covered for standard algorithms. Resistance 

evaluation & rating are also covered. 

 

Fault attacks performance depends primarily on non-linear 

functions of the crypto-algorithm and due to this; it is 

possible to recover the key by parts instead of exponential 

complexity. The common flow of the research on fault attacks 

is a cycle of countermeasure following the attack which 

further follows attack (improved version). This cycle may 

continue unendingly with PQC too. 

 

I second Mostafa Taha et.al. Statement that we are not yet 

equipped to use any post-quantum cryptography strategy into 

use in real-world embedded systems [129]. Before achieving 

a reasonable level of security, a significant amount of study 

still needs to be done. 
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