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Abstract: Machine learning (ML) finds extensive utility across diverse engineering domains, serving a myriad of purposes. 

Within the realm of power systems, traditional fault detection relies on relays and measurement equipment to pinpoint 

anomalies. These anomalies are subsequently categorized based on their characteristics. ML tools offer the prospect of crafting 

algorithms capable of forecasting these faults. This study entails the emulation of a power distribution system within software, 

employing machine learning algorithms to predict faults. The dependable and efficient operation of power systems stands as a 

pivotal factor in guaranteeing a constant power supply, thereby satisfying the requirements of contemporary society. Through 

the application of these methods, our aim is to create a more effective and precise fault detection algorithm tailored for three-

phase power systems. This article delves into the intricacies linked with forecasting faults in power systems, provides an 

overview of pertinent ML methodologies, and delivers a case study that illustrates the efficacy of ML-driven intelligent fault 

prediction within real-world power system scenarios. 
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1. Introduction  
 

Power systems encompass a 132 kV transmission line 

interlinked with Circuit Breakers, Relays, Current 

Transformers, and Potential Transformers. At various 

intervals, diverse faults such as line-line, line-line-ground, 

line-ground, and line-line-line-ground are introduced into the 

power system. Data related to these fault events is 

meticulously collected and pre-processed to ensure data 

quality. Essential features, including voltage levels and 

current measurements, are extracted from this pre-processed 

data to facilitate fault prediction.  

 

To predict faults effectively, a spectrum of machine learning 

algorithms, such as Decision Trees, Linear Regression, 

Logistic Regression, Support Vector Machines (SVM), and 

Artificial Neural Networks (ANN), is scrutinized for their 

suitability. These algorithms are trained and validated using 

the gathered dataset, with a keen focus on optimizing their 

performance.  
 

Once trained, the chosen machine learning model is deployed 

to forecast faults within a simulated three-phase power 

system. Synthetic data from software simulations is supplied 

to the model, which then identifies and anticipates fault 

occurrences based on the given inputs. The accuracy and 

reliability of the fault prediction model are evaluated by 

comparing mean squared errors.  

This approach holds the potential to significantly enhance the 

precision, speed, and efficiency of fault detection, leading to 

more dependable and secure power distribution systems. The 

paper will comprehensively document the methodology, 

experimental setup, data pre-processing techniques, machine 

learning models utilized, evaluation outcomes, and potential 

implications for practical implementation. These findings 

have the potential to advance fault detection techniques in 

power systems, benefiting industries and utilities that rely on 

efficient and dependable power distribution systems. The 

modern economy and our daily routines hinge on the 

dependable operation of power generation, transmission, and 

distribution systems. 

 

2. Experimental Setup 
 

A. Software Simulation  

In our software simulation of the power system zone, we 

meticulously connected all the blocks as illustrated in Figure 

1. Each of these blocks was configured with specific 

parameters tailored to their respective functions.  

 

To accurately measure and monitor current throughout the 

circuit, we connected current meters in series. This series 

connection ensures that the same current flows through all 

components of the circuit, maintaining a constant current 

through the system.  
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On the other hand, voltmeters were connected in parallel with 

the circuit components. This parallel connection is essential 

because, in this configuration, the voltmeters draw very little 

current. Consequently, the voltage across the circuit remains 

constant. If we were to connect a voltmeter in series, it would 

not effectively detect potential differences because the 

voltage would fluctuate due to the voltmeter’s presence in the 

circuit.  

 

To facilitate the measurement of voltage values (Va, Vb, Vc) 

and currents (Ia, Ib, Ic), we established individual 

connections to a workspace. This workspace acts as a 

designated area for collecting and displaying these important 

electrical parameters.  

 

In our simulation, we adopted a time-series format with a 

decimation factor of 1 and a sample time of 0.001 seconds. 

This choice enables us to capture data at a high temporal 

resolution.  

 

Additionally, we employed scope instruments to visualize 

waveforms of voltages and currents. The configuration 

properties of these scope instruments can be adjusted to tailor 

the viewpoints and enhance our ability to analyse the 

electrical behaviour of the system.  

 

To step down the voltage within our simulation, we 

incorporated a three-phase two-winding transformer. This 

particular type of transformer is advantageous because it 

utilizes less iron than three equivalent single-phase units due 

to the shared magnetic paths between the coils. Furthermore, 

the three phases in this transformer design are relatively 

independent of one another, as each phase has its individual 

magnetic circuit. The winding configuration is delta to star, 

and all other parameters were set to default settings in SI 

units.  

 

Our power source for this simulation is a three-phase AC 

source supplying 132 kV, with a phase-to-phase voltage 

frequency of 50Hz. Initially, the circuit breakers were closed 

to allow current to flow through the three phases. These 

circuit breakers are subsequently opened once a fault is 

detected within the circuit.  

 

To measure key parameters, such as zero-phase voltage and 

zero-phase current, we employed sequence analysers. Zero-

sequence voltage serves as a vital diagnostic parameter in 

electrical engineering, while zero-sequence current protection 

is employed to safeguard electrical equipment against ground 

faults. The sample time for these measurements is set at 0.001 

seconds, with a frequency of 50Hz.  

 

Throughout the simulation, various types of faults, including 

LL, LLG, LLLG, and LG, were introduced at intervals of 5 

seconds. The powergui module measured discrete values with 

a sample time of 50e-6 seconds.  

 

Finally, a staircase model was implemented with a sample 

time of 5 seconds, and the vector of output variables was 

configured as [0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0]. This 

comprehensive setup and configuration allowed us to conduct 

a detailed and precise simulation of the power system, 

facilitating in-depth analysis and fault detection. The depicted 

diagram provides an insightful representation of a complex 

three-phase power system, which forms the foundation of our 

electrical infrastructure. Within this intricate system, we have 

meticulously introduced ten distinct types of faults, each 

representing unique electrical irregularities or disruptions that 

can occur within the system.  

 

To systematically study and analyse the behaviour of these 

faults, we’ve adopted a structured approach. We’ve employed 

what is known as a “staircase model.” In this model, each of 

the ten fault types has been assigned a specific numerical 

identifier, ranging from 0 to 10. This numerical allocation 

allows us to easily distinguish and categorize the various fault 

scenarios for detailed examination. 

 

  
Fig 1: Software Simulation of the power system 

 

Furthermore, we’ve introduced a time dimension into our 

simulation. Each of these fault scenarios is initiated at 

specific time intervals, precisely every 5 seconds. This 

temporal aspect enables us to investigate how the system 

responds to these faults over time and to assess the transient 

and steady-state behaviours that may occur during these fault 

Fig. 1. Software Simulation of the power system zone events.  

To ensure the safety and reliability of the power system, 

we’ve incorporated the use of zero sequence phase and zero 

sequence current measurements. These safeguards play a 

crucial role in detecting and mitigating ground faults, which 

are a common concern in power systems. By continuously 

monitoring zero sequence parameters, we can promptly 

identify any deviations or imbalances that may indicate a 

ground fault. This early detection is vital for preventing 
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potential damage to equipment and ensuring the uninterrupted 

operation of the power system. In addition to the previously 

mentioned aspects of our simulation, we’ve taken a 

significant step forward by incorporating Artificial Neural 

Networks (ANNs) into our analysis. ANNs are sophisticated 

machine learning models that can effectively learn and adapt 

to complex patterns and relationships within data.  

 

To leverage the power of ANNs in our study, we’ve utilized 

synthetic data obtained directly from the simulation. This 

synthetic data serves as a valuable resource, providing us with 

a diverse dataset that captures the system’s response to the ten 

different fault scenarios we’ve introduced.  

 

The synthetic data encompasses a wide range of inputs, 

including voltage measurements, current readings, and other 

relevant parameters, all obtained at different time intervals 

during the simulation. These data points encapsulate the 

dynamic behaviour of the power system under normal and 

fault conditions, offering a comprehensive view of how the 

system evolves over time.  

 

By training our ANN with this synthetic dataset, we empower 

it to learn the intricate relationships between various system 

variables and the corresponding fault scenarios. The ANN 

essentially becomes a virtual expert in recognizing and 

classifying these fault events based on the input data it has 

been exposed to during training.  

 

Once the ANN is trained, we can deploy it to predict and 

identify faults in real-time scenarios. This predictive 

capability is invaluable in the context of power system 

monitoring and control. When the ANN detects an anomalous 

pattern or behaviour that aligns with one of the ten predefined 

fault types, it can trigger appropriate responses, such as 

isolating the faulty component or initiating protective 

measures to safeguard the system’s integrity.  

 

In summary, our simulation not only comprehensively 

explores the dynamics of a three-phase power system under 

various fault scenarios but also harnesses the capabilities of 

Artificial Neural Networks. By training the ANN with 

synthetic data derived from the simulation, we enable it to 

become an intelligent fault detection and prediction tool, 

contributing to the enhancement of power system reliability 

and resilience in the real world. This holistic approach 

com bines simulation, machine learning, and practical 

application to advance the understanding and management of 

complex power systems 

 

B. Role of Neural Network 

After the completion of our simulations, the next step 

involved importing the values of various voltages and 

currents from the simulation into the workspace. This data 

served as the foundation for our subsequent analysis.  

 

To facilitate the organization and handling of this data, we 

created a variable named “Input” within our workspace. This 

variable was designed to hold the values of critical electrical 

parameters, including Va, Vb, Vc, Ia, Ib, Ic, V0, and I0. By 

structuring the data in this manner, we ensured that it was 

readily accessible and properly organized for further 

processing.  

 

Another essential element in our analysis was the output 

variable, which we extracted from the staircase block 

employed in our simulation. This output variable was pivotal 

in capturing and recording the system’s responses to the 

various fault scenarios introduced during the simulation.  

 

With our dataset primed and ready, we initiated the neural 

network analysis by invoking the “nntool” using the “nnstart” 

command. This marked the commencement of our 

exploration into creating a neural network model that could 

effectively learn from and predict the behavior of the power 

system.  

 

Within the neural network tool, we encountered two crucial 

options: “Predictors” and “Responses.” To correctly train the 

neural network, we designated the “output” variable as the 

response variable, while the “input” variable held the 

predictors. Ensuring that these variables were dimensionally 

compatible was imperative to facilitate accurate model 

training. Adjustments to the organization of data observations 

in rows and columns could be made to optimize training.  

 

To enhance the model’s accuracy and robustness, we 

finetuned its parameters. We set the validation data to 25 

percent, the test data to 10 percent, and established a layer 

size of 50 within the neural network architecture. These 

parameter adjustments were instrumental in refining the 

model’s predictive capabilities and ensuring its reliability.  

 

After intensive training over 1000 epochs, the neural network 

block was successfully integrated into the model. This 

marked a significant milestone in our analysis, as the neural 

network was now equipped with the knowledge and insights 

gained from the training data.  

 

Subsequently, we applied the neural network to a dataset 

containing a substantial 105,001 data points. The neural 

network leveraged its acquired knowledge to predict system 

responses accurately. This level of precision and accuracy in 

the model’s predictions validated the effectiveness of our 

neural network approach, confirming its capability to 

replicate and forecast the behaviour of the power system 

under various fault scenarios. Figure 2 provides a detailed 

illustration of the implementation process of our neural 

network. It elucidates the strategy we employed to effectively 

harness the capabilities of the neural network in our analysis.  

 

One of the key aspects depicted in Figure 2 is the utilization 

of a multi-input and single-output configuration for the neural 

network. This design choice was pivotal in accommodating 

the diverse set of input parameters and the singular, 

overarching output we aimed to predict.  

 

In essence, the multi-input configuration allowed us to feed a 

wide array of electrical parameters, including voltage 

measurements and current readings, into the neural network. 



 International Journal of Computer Sciences and Engineering                                                                          Vol.11(10), Oct 2023 

© 2023, IJCSE All Rights Reserved                                                                                                                                             11 

This comprehensive input enabled the neural network to 

ingest a wealth of information, which was essential for 

making accurate predictions regarding the behaviour of the 

power system.  

 

On the other hand, the single-output configuration was 

tailored to the specific goal of our analysis: predicting the 

system’s response to various fault scenarios. By consolidating 

the neural network’s predictions into a single output, we 

streamlined the analysis process and focused on the 

overarching behaviour of the power system.  

 

Figure 2 serves as a visual representation of the thoughtful 

design considerations and architectural choices we made 

while implementing the neural network. It highlights the 

importance of optimizing the neural network’s architecture to 

accommodate the complexity and diversity of the data while 

aligning with the ultimate goal of predicting system responses 

accurately.

 
Fig 2. Neural Network Implementation 

 

C. Data Exploration 

Data exploration, constitutes a pivotal initial step in the data 

analysis process. During this phase, analysts utilize statistical 

and visualization techniques to gain insights into their dataset. 

The primary objective is to gain a comprehensive 

understanding of the data’s characteristics, uncover any 

underlying patterns, and identify potential issues or 

anomalies. This understanding serves as a crucial foundation 

for making informed decisions about which machine learning 

models or algorithms are best suited for subsequent analysis.  

 

In the context of the specific dataset under consideration, an 

intriguing observation relates to the symmetry exhibited in 

the plotting of currents for phase A and phase B. This 

symmetry is noteworthy because it is not indicative of real-

time data but rather synthetic data generated by code. 

Consequently, this synthetic dataset displays a symmetric 

pattern in the plotted data. Fig. 3. 

 

The figure 3 prominently displays a distinct pattern of 

symmetry in the graph, which is an intriguing observation. 

This symmetry is primarily a consequence of our deliberate 

choice to employ synthetic data generated by the software. 

Unlike real-time data, which might exhibit more random and 

unpredictable variations, synthetic data often adheres to 

certain structured patterns or mathematical rules. In this case, 

the synthetic data, being generated algorithmically, leads to a 

symmetric distribution in the graph.  

Moreover, upon closer examination of the graph, a 

noteworthy pattern emerges. Specifically, areas where the 

lines in the graph are closely placed together correspond to 

regions where the frequency of data points is higher. This 

clustering of lines indicates that there is a greater 

concentration of data points within those areas. This 

observation carries significant implications for our analysis. 

 

 
Fig 3. Plotting the data 

 

The increased frequency of data points in these regions 

suggests that these particular data points might be associated 

with specific events or conditions within the system. Given 

that the graph pertains to fault detection or system behaviour 

analysis, it is conceivable that the regions with closely spaced 

lines correspond to instances of higher fault occurrence or 

system anomalies. In other words, these areas of increased 

data density may signify periods when the power system 

experienced more pronounced deviations or disturbances.  

 

In summary, the symmetry in the graph is a result of using 

synthetic data, which adheres to structured patterns. 

Additionally, the areas with closely spaced lines in the graph 

may indicate regions of increased data frequency, potentially 

signifying higher fault occurrences or notable system 

behaviour deviations. These insights derived from the graph 

can be pivotal for further investigation and understanding of 

the power system’s dynamics and response to different 

conditions. 

 

D. Implementation of Machine Learning Algorithms 

Moving forward to the stage of building machine learning 

models, various types of models are explored and evaluated 

to determine which one aligns most effectively with the 

dataset’s characteristics and objectives. These models are 

imported from the sklearn library, a collection of machine 

learning tools readily available for analysis.  

 

To facilitate model training and evaluation, the dataset is 

divided into distinct training and testing subsets. This division 

is instrumental in ensuring that the machine learning model is 



 International Journal of Computer Sciences and Engineering                                                                          Vol.11(10), Oct 2023 

© 2023, IJCSE All Rights Reserved                                                                                                                                             12 

trained on a portion of the data and subsequently tested on an 

independent subset to assess its performance accurately.  

 

Furthermore, to ensure that the dataset is appropriately 

prepared for the machine learning algorithms, a data scaling 

process is applied. This scaling operation ensures that the data 

is standardized and compatible with the algorithms used.  

 

The performance of each of the four machine learning models 

is evaluated, with a key metric being the mean squared error. 

The algorithm that exhibits the lowest mean squared error is 

considered the most accurate and suitable for the dataset.  

 

The calculated mean squared errors for the four algorithms 

are as follows: Linear Regression: 7.36 Logistic Regression: 

18.28 Decision Tree: 1.29 Support Vector Machine: 5.57 

Based on this evaluation, it is evident that the Decision Tree 

algorithm yields the lowest mean squared error, indicating 

that it is the most accurate model for the given dataset. 

Consequently, the Decision Tree model is deemed the most 

suitable choice for further analysis and predictive tasks with 

this specific dataset. 

 
Graphs and Tables 

 
Table 1. Different Algorithms and their mean squared errors 

ALGORITHMS MEAN SQUARED ERROR 

Linear Regression 7.36 

Logistic Regression 18.28 

Decision Tree 1.29 

Support Vector Machine 5.57 

 

Graphs of phase voltages 

The bar graphs of the voltages are being represented. It has 

been shown that as there are different faults, the phase 

voltage reacts to them and even recovers when the fault does 

not affect that phase. 

 

 
Bar Graph 1: Voltage A 

 

 
Bar Graph 2: Voltage B 

 

 
Bar Graph 3: Voltage C 

 

3. Results and Discussion  
 

The graph depicting the performance of the staircase model 

reveals a highly encouraging outcome. It is evident from the 

graph that our analysis and modeling efforts have yielded 

results of exceptional accuracy. In fact, we have achieved an 

accuracy rate of over 95 percent, which is a remarkable 

achievement in data analysis and fault detection.  

 

This level of accuracy indicates that our model, trained on 

data generated through our simulation, has been highly 

effective in capturing and understanding the underlying 

patterns and behaviours of the power system. It demonstrates 

the model’s proficiency in making precise predictions and 

classifications, particularly in the context of fault detection.  
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One of the most noteworthy aspects of this achievement is the 

model’s robustness in accurately detecting various types of 

faults within the power system. Fault detection is a critical 

component of power system management, as it enables early 

identification and response to potential issues or disruptions. 

The fact that our model has demonstrated such accuracy in 

fault detection is a testament to its effectiveness and 

reliability.  

 

 
Fig 4. Expected Output 

 

 
Fig 5. Output Obtained 

 

In essence, the graph signifies the successful implementation 

of our modeling approach, with an accuracy rate exceeding 

95 percent. This level of accuracy is indicative of the model’s 

ability to perform exceptionally well in predicting and 

detecting faults within the power system. Such high accuracy 

not only enhances our understanding of the system but also 

bolsters its reliability and resilience in real-world 

applications, ensuring the efficient and secure operation of 

the power distribution system. 

4. Conclusion and Future Scope 

 

In the realm of machine learning applications, we have 

witnessed a transformative shift in the way we tackle the 

intricate challenges presented by power systems. 

Conventional approaches, once relied upon, are now deemed 

inadequate in the face of the ever-expanding volume of data. 

This data surge encompasses a multitude of diverse and often 

complex datasets, originating from sources as diverse as 

smart meters and phasor measurement units. 

 

These data-rich environments necessitate a fresh and more 

sophisticated approach. Here enters a cohort of advanced, 

efficient, and intelligent machine learning algorithms, 

meticulously designed to address the evolving complexities 

of power systems. These algorithms represent a significant 

leap forward in our ability to provide highly precise solutions 

to a broad spectrum of real-world challenges.  

 

These challenges span a multitude of domains within power 

systems, including voltage and slope stability, power flow 

optimization, state of charge estimation, and rotor system 

diagnostics. The utilization of intelligent learning algorithms 

not only enables us to navigate the intricacies of these 

problems but also enhances our capability to proactively 

manage and optimize power systems in a dynamic and data-

driven manner. We have achieved an accuracy rate of over 95 

percent, which is a remarkable achievement in data analysis 

and fault detection. 

 

In essence, the infusion of machine learning into the domain 

of power systems offers a paradigm shift. It empowers us to 

harness the potential of vast and diverse datasets, unleashing 

the capabilities of advanced algorithms to provide more 

precise, efficient, and effective solutions to the multifaceted 

challenges that characterize modern power systems. 

 

The future scope of research in machine learning-based fault 

detection in power systems is promising. As the power grid 

continues to evolve and become more complex, innovative 

machine learning algorithms and approaches will play a 

crucial role in ensuring the reliability and resilience of the 

electrical infrastructure. Researchers and industry 

stakeholders should collaborate to address the challenges and 

opportunities in this dynamic field. 
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