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Abstract: Machine learning (ML) finds extensive utility across diverse engineering domains, serving a myriad of purposes.
Within the realm of power systems, traditional fault detection relies on relays and measurement equipment to pinpoint
anomalies. These anomalies are subsequently categorized based on their characteristics. ML tools offer the prospect of crafting
algorithms capable of forecasting these faults. This study entails the emulation of a power distribution system within software,
employing machine learning algorithms to predict faults. The dependable and efficient operation of power systems stands as a
pivotal factor in guaranteeing a constant power supply, thereby satisfying the requirements of contemporary society. Through
the application of these methods, our aim is to create a more effective and precise fault detection algorithm tailored for three-
phase power systems. This article delves into the intricacies linked with forecasting faults in power systems, provides an
overview of pertinent ML methodologies, and delivers a case study that illustrates the efficacy of ML-driven intelligent fault

prediction within real-world power system scenarios.
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1. Introduction

Power systems encompass a 132 kV transmission line
interlinked with  Circuit Breakers, Relays, Current
Transformers, and Potential Transformers. At various
intervals, diverse faults such as line-line, line-line-ground,
line-ground, and line-line-line-ground are introduced into the
power system. Data related to these fault events is
meticulously collected and pre-processed to ensure data
quality. Essential features, including voltage levels and
current measurements, are extracted from this pre-processed
data to facilitate fault prediction.

To predict faults effectively, a spectrum of machine learning
algorithms, such as Decision Trees, Linear Regression,
Logistic Regression, Support Vector Machines (SVM), and
Artificial Neural Networks (ANN), is scrutinized for their
suitability. These algorithms are trained and validated using
the gathered dataset, with a keen focus on optimizing their
performance.

Once trained, the chosen machine learning model is deployed
to forecast faults within a simulated three-phase power
system. Synthetic data from software simulations is supplied
to the model, which then identifies and anticipates fault
occurrences based on the given inputs. The accuracy and
reliability of the fault prediction model are evaluated by
comparing mean squared errors.
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This approach holds the potential to significantly enhance the
precision, speed, and efficiency of fault detection, leading to
more dependable and secure power distribution systems. The
paper will comprehensively document the methodology,
experimental setup, data pre-processing techniques, machine
learning models utilized, evaluation outcomes, and potential
implications for practical implementation. These findings
have the potential to advance fault detection techniques in
power systems, benefiting industries and utilities that rely on
efficient and dependable power distribution systems. The
modern economy and our daily routines hinge on the
dependable operation of power generation, transmission, and
distribution systems.

2. Experimental Setup

A. Software Simulation

In our software simulation of the power system zone, we
meticulously connected all the blocks as illustrated in Figure
1. Each of these blocks was configured with specific
parameters tailored to their respective functions.

To accurately measure and monitor current throughout the
circuit, we connected current meters in series. This series
connection ensures that the same current flows through all
components of the circuit, maintaining a constant current
through the system.
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On the other hand, voltmeters were connected in parallel with
the circuit components. This parallel connection is essential
because, in this configuration, the voltmeters draw very little
current. Consequently, the voltage across the circuit remains
constant. If we were to connect a voltmeter in series, it would
not effectively detect potential differences because the
voltage would fluctuate due to the voltmeter’s presence in the
circuit.

To facilitate the measurement of voltage values (Va, Vb, Vc)
and currents (la, Ib, Ic), we established individual
connections to a workspace. This workspace acts as a
designated area for collecting and displaying these important
electrical parameters.

In our simulation, we adopted a time-series format with a
decimation factor of 1 and a sample time of 0.001 seconds.
This choice enables us to capture data at a high temporal
resolution.

Additionally, we employed scope instruments to visualize
waveforms of voltages and currents. The configuration
properties of these scope instruments can be adjusted to tailor
the viewpoints and enhance our ability to analyse the
electrical behaviour of the system.

To step down the voltage within our simulation, we
incorporated a three-phase two-winding transformer. This
particular type of transformer is advantageous because it
utilizes less iron than three equivalent single-phase units due
to the shared magnetic paths between the coils. Furthermore,
the three phases in this transformer design are relatively
independent of one another, as each phase has its individual
magnetic circuit. The winding configuration is delta to star,
and all other parameters were set to default settings in Sl
units.

Our power source for this simulation is a three-phase AC
source supplying 132 kV, with a phase-to-phase voltage
frequency of 50Hz. Initially, the circuit breakers were closed
to allow current to flow through the three phases. These
circuit breakers are subsequently opened once a fault is
detected within the circuit.

To measure key parameters, such as zero-phase voltage and
zero-phase current, we employed sequence analysers. Zero-
sequence voltage serves as a vital diagnostic parameter in
electrical engineering, while zero-sequence current protection
is employed to safeguard electrical equipment against ground
faults. The sample time for these measurements is set at 0.001
seconds, with a frequency of 50Hz.

Throughout the simulation, various types of faults, including
LL, LLG, LLLG, and LG, were introduced at intervals of 5
seconds. The powergui module measured discrete values with
a sample time of 50e-6 seconds.

Finally, a staircase model was implemented with a sample

time of 5 seconds, and the vector of output variables was
configuredas[0102030405060708090 100]. This
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comprehensive setup and configuration allowed us to conduct
a detailed and precise simulation of the power system,
facilitating in-depth analysis and fault detection. The depicted
diagram provides an insightful representation of a complex
three-phase power system, which forms the foundation of our
electrical infrastructure. Within this intricate system, we have
meticulously introduced ten distinct types of faults, each
representing unique electrical irregularities or disruptions that
can occur within the system.

To systematically study and analyse the behaviour of these
faults, we’ve adopted a structured approach. We’ve employed
what is known as a “staircase model.” In this model, each of
the ten fault types has been assigned a specific numerical
identifier, ranging from 0 to 10. This numerical allocation
allows us to easily distinguish and categorize the various fault
scenarios for detailed examination.
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Fig 1: Software Simulation of the power system

Furthermore, we’ve introduced a time dimension into our
simulation. Each of these fault scenarios is initiated at
specific time intervals, precisely every 5 seconds. This
temporal aspect enables us to investigate how the system
responds to these faults over time and to assess the transient
and steady-state behaviours that may occur during these fault
Fig. 1. Software Simulation of the power system zone events.
To ensure the safety and reliability of the power system,
we’ve incorporated the use of zero sequence phase and zero
sequence current measurements. These safeguards play a
crucial role in detecting and mitigating ground faults, which
are a common concern in power systems. By continuously
monitoring zero sequence parameters, we can promptly
identify any deviations or imbalances that may indicate a
ground fault. This early detection is vital for preventing
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potential damage to equipment and ensuring the uninterrupted
operation of the power system. In addition to the previously
mentioned aspects of our simulation, we’ve taken a
significant step forward by incorporating Artificial Neural
Networks (ANNS) into our analysis. ANNs are sophisticated
machine learning models that can effectively learn and adapt
to complex patterns and relationships within data.

To leverage the power of ANNSs in our study, we’ve utilized
synthetic data obtained directly from the simulation. This
synthetic data serves as a valuable resource, providing us with
a diverse dataset that captures the system’s response to the ten
different fault scenarios we’ve introduced.

The synthetic data encompasses a wide range of inputs,
including voltage measurements, current readings, and other
relevant parameters, all obtained at different time intervals
during the simulation. These data points encapsulate the
dynamic behaviour of the power system under normal and
fault conditions, offering a comprehensive view of how the
system evolves over time.

By training our ANN with this synthetic dataset, we empower
it to learn the intricate relationships between various system
variables and the corresponding fault scenarios. The ANN
essentially becomes a virtual expert in recognizing and
classifying these fault events based on the input data it has
been exposed to during training.

Once the ANN is trained, we can deploy it to predict and
identify faults in real-time scenarios. This predictive
capability is invaluable in the context of power system
monitoring and control. When the ANN detects an anomalous
pattern or behaviour that aligns with one of the ten predefined
fault types, it can trigger appropriate responses, such as
isolating the faulty component or initiating protective
measures to safeguard the system’s integrity.

In summary, our simulation not only comprehensively
explores the dynamics of a three-phase power system under
various fault scenarios but also harnesses the capabilities of
Artificial Neural Networks. By training the ANN with
synthetic data derived from the simulation, we enable it to
become an intelligent fault detection and prediction tool,
contributing to the enhancement of power system reliability
and resilience in the real world. This holistic approach
com bines simulation, machine learning, and practical
application to advance the understanding and management of
complex power systems

B. Role of Neural Network

After the completion of our simulations, the next step
involved importing the values of various voltages and
currents from the simulation into the workspace. This data
served as the foundation for our subsequent analysis.

To facilitate the organization and handling of this data, we
created a variable named “Input” within our workspace. This
variable was designed to hold the values of critical electrical
parameters, including Va, Vb, Vc, Ia, Ib, Ic, VO, and 10. By
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structuring the data in this manner, we ensured that it was
readily accessible and properly organized for further
processing.

Another essential element in our analysis was the output
variable, which we extracted from the staircase block
employed in our simulation. This output variable was pivotal
in capturing and recording the system’s responses to the
various fault scenarios introduced during the simulation.

With our dataset primed and ready, we initiated the neural
network analysis by invoking the “nntool” using the “nnstart”
command. This marked the commencement of our
exploration into creating a neural network model that could
effectively learn from and predict the behavior of the power
system.

Within the neural network tool, we encountered two crucial
options: “Predictors” and “Responses.” To correctly train the
neural network, we designated the “output” variable as the
response variable, while the “input” variable held the
predictors. Ensuring that these variables were dimensionally
compatible was imperative to facilitate accurate model
training. Adjustments to the organization of data observations
in rows and columns could be made to optimize training.

To enhance the model’s accuracy and robustness, we
finetuned its parameters. We set the validation data to 25
percent, the test data to 10 percent, and established a layer
size of 50 within the neural network architecture. These
parameter adjustments were instrumental in refining the
model’s predictive capabilities and ensuring its reliability.

After intensive training over 1000 epochs, the neural network
block was successfully integrated into the model. This
marked a significant milestone in our analysis, as the neural
network was now equipped with the knowledge and insights
gained from the training data.

Subsequently, we applied the neural network to a dataset
containing a substantial 105,001 data points. The neural
network leveraged its acquired knowledge to predict system
responses accurately. This level of precision and accuracy in
the model’s predictions validated the effectiveness of our
neural network approach, confirming its capability to
replicate and forecast the behaviour of the power system
under various fault scenarios. Figure 2 provides a detailed
illustration of the implementation process of our neural
network. It elucidates the strategy we employed to effectively
harness the capabilities of the neural network in our analysis.

One of the key aspects depicted in Figure 2 is the utilization
of a multi-input and single-output configuration for the neural
network. This design choice was pivotal in accommodating
the diverse set of input parameters and the singular,
overarching output we aimed to predict.

In essence, the multi-input configuration allowed us to feed a

wide array of electrical parameters, including voltage
measurements and current readings, into the neural network.
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This comprehensive input enabled the neural network to
ingest a wealth of information, which was essential for
making accurate predictions regarding the behaviour of the
power system.

On the other hand, the single-output configuration was
tailored to the specific goal of our analysis: predicting the
system’s response to various fault scenarios. By consolidating
the neural network’s predictions into a single output, we
streamlined the analysis process and focused on the
overarching behaviour of the power system.

Figure 2 serves as a visual representation of the thoughtful
design considerations and architectural choices we made
while implementing the neural network. It highlights the
importance of optimizing the neural network’s architecture to
accommodate the complexity and diversity of the data while
aligning with the ultimate goal of predicting system responses
accurately.
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Fig 2. Neural Network Implementation

C. Data Exploration

Data exploration, constitutes a pivotal initial step in the data
analysis process. During this phase, analysts utilize statistical
and visualization techniques to gain insights into their dataset.
The primary objective is to gain a comprehensive
understanding of the data’s characteristics, uncover any
underlying patterns, and identify potential issues or
anomalies. This understanding serves as a crucial foundation
for making informed decisions about which machine learning
models or algorithms are best suited for subsequent analysis.

In the context of the specific dataset under consideration, an
intriguing observation relates to the symmetry exhibited in
the plotting of currents for phase A and phase B. This
symmetry is noteworthy because it is not indicative of real-
time data but rather synthetic data generated by code.
Consequently, this synthetic dataset displays a symmetric
pattern in the plotted data. Fig. 3.

The figure 3 prominently displays a distinct pattern of
symmetry in the graph, which is an intriguing observation.
This symmetry is primarily a consequence of our deliberate
choice to employ synthetic data generated by the software.
Unlike real-time data, which might exhibit more random and
unpredictable variations, synthetic data often adheres to
certain structured patterns or mathematical rules. In this case,
the synthetic data, being generated algorithmically, leads to a
symmetric distribution in the graph.

© 2023, 1JCSE All Rights Reserved

Vol.11(10), Oct 2023

Moreover, upon closer examination of the graph, a
noteworthy pattern emerges. Specifically, areas where the
lines in the graph are closely placed together correspond to
regions where the frequency of data points is higher. This
clustering of lines indicates that there is a greater
concentration of data points within those areas. This
observation carries significant implications for our analysis.

Plot4=plt.plot(CurA,CurB)
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Fig 3. Plotting the data

The increased frequency of data points in these regions
suggests that these particular data points might be associated
with specific events or conditions within the system. Given
that the graph pertains to fault detection or system behaviour
analysis, it is conceivable that the regions with closely spaced
lines correspond to instances of higher fault occurrence or
system anomalies. In other words, these areas of increased
data density may signify periods when the power system
experienced more pronounced deviations or disturbances.

In summary, the symmetry in the graph is a result of using
synthetic data, which adheres to structured patterns.
Additionally, the areas with closely spaced lines in the graph
may indicate regions of increased data frequency, potentially
signifying higher fault occurrences or notable system
behaviour deviations. These insights derived from the graph
can be pivotal for further investigation and understanding of
the power system’s dynamics and response to different
conditions.

D. Implementation of Machine Learning Algorithms
Moving forward to the stage of building machine learning
models, various types of models are explored and evaluated
to determine which one aligns most effectively with the
dataset’s characteristics and objectives. These models are
imported from the sklearn library, a collection of machine
learning tools readily available for analysis.

To facilitate model training and evaluation, the dataset is

divided into distinct training and testing subsets. This division
is instrumental in ensuring that the machine learning model is
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trained on a portion of the data and subsequently tested on an
independent subset to assess its performance accurately.

Furthermore, to ensure that the dataset is appropriately
prepared for the machine learning algorithms, a data scaling
process is applied. This scaling operation ensures that the data
is standardized and compatible with the algorithms used.

The performance of each of the four machine learning models
is evaluated, with a key metric being the mean squared error.
The algorithm that exhibits the lowest mean squared error is
considered the most accurate and suitable for the dataset.

The calculated mean squared errors for the four algorithms
are as follows: Linear Regression: 7.36 Logistic Regression:
18.28 Decision Tree: 1.29 Support Vector Machine: 5.57
Based on this evaluation, it is evident that the Decision Tree
algorithm yields the lowest mean squared error, indicating
that it is the most accurate model for the given dataset.
Consequently, the Decision Tree model is deemed the most
suitable choice for further analysis and predictive tasks with
this specific dataset.

Graphs and Tables

Table 1. Different Algorithms and their mean squared errors

ALGORITHMS MEAN SQUARED ERROR
Linear Regression 7.36
Logistic Regression 18.28
Decision Tree 1.29
Support Vector Machine 5.57
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3. Results and Discussion

The graph depicting the performance of the staircase model
reveals a highly encouraging outcome. It is evident from the
graph that our analysis and modeling efforts have yielded
results of exceptional accuracy. In fact, we have achieved an
accuracy rate of over 95 percent, which is a remarkable
achievement in data analysis and fault detection.

This level of accuracy indicates that our model, trained on
data generated through our simulation, has been highly
effective in capturing and understanding the underlying
patterns and behaviours of the power system. It demonstrates
the model’s proficiency in making precise predictions and
classifications, particularly in the context of fault detection.
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One of the most noteworthy aspects of this achievement is the
model’s robustness in accurately detecting various types of
faults within the power system. Fault detection is a critical
component of power system management, as it enables early
identification and response to potential issues or disruptions.
The fact that our model has demonstrated such accuracy in
fault detection is a testament to its effectiveness and
reliability.
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In essence, the graph signifies the successful implementation
of our modeling approach, with an accuracy rate exceeding
95 percent. This level of accuracy is indicative of the model’s
ability to perform exceptionally well in predicting and
detecting faults within the power system. Such high accuracy
not only enhances our understanding of the system but also
bolsters its reliability and resilience in real-world
applications, ensuring the efficient and secure operation of
the power distribution system.
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4. Conclusion and Future Scope

In the realm of machine learning applications, we have
witnessed a transformative shift in the way we tackle the
intricate  challenges presented by power systems.
Conventional approaches, once relied upon, are now deemed
inadequate in the face of the ever-expanding volume of data.
This data surge encompasses a multitude of diverse and often
complex datasets, originating from sources as diverse as
smart meters and phasor measurement units.

These data-rich environments necessitate a fresh and more
sophisticated approach. Here enters a cohort of advanced,
efficient, and intelligent machine learning algorithms,
meticulously designed to address the evolving complexities
of power systems. These algorithms represent a significant
leap forward in our ability to provide highly precise solutions
to a broad spectrum of real-world challenges.

These challenges span a multitude of domains within power
systems, including voltage and slope stability, power flow
optimization, state of charge estimation, and rotor system
diagnostics. The utilization of intelligent learning algorithms
not only enables us to navigate the intricacies of these
problems but also enhances our capability to proactively
manage and optimize power systems in a dynamic and data-
driven manner. We have achieved an accuracy rate of over 95
percent, which is a remarkable achievement in data analysis
and fault detection.

In essence, the infusion of machine learning into the domain
of power systems offers a paradigm shift. It empowers us to
harness the potential of vast and diverse datasets, unleashing
the capabilities of advanced algorithms to provide more
precise, efficient, and effective solutions to the multifaceted
challenges that characterize modern power systems.

The future scope of research in machine learning-based fault
detection in power systems is promising. As the power grid
continues to evolve and become more complex, innovative
machine learning algorithms and approaches will play a
crucial role in ensuring the reliability and resilience of the
electrical  infrastructure.  Researchers and  industry
stakeholders should collaborate to address the challenges and
opportunities in this dynamic field.
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