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Abstract: The design and implementation of interactive systems and Human-Machine Interfaces (HMI) use different techniques
from both software engineering and ergonomics. To improve the productivity and quality of software, automating the
development process is an important factor. User interfaces are nonfunctional but complex software components that play a vital
role in the development of interactive applications. We propose in this paper an approach for the automatic production of
Human-Machine Interfaces (HMI) for the development of interactive applications according to the Model-Driven Engineering
(MDE) approach. A source Meta-Model called "DD_IHM" ("Description Diagram for Human-Machine Interfaces"), a target
Meta-Model specific to the PHP language called "CGFP" (Context Grammar for PEAR) for the construction of HMIs and, a set
of generic rules for transforming a model conforms to the source meta-Model into a model conforms to the target Meta-Model,

written in the QVT language are develop. We apply this approach to the creation of a simple online registration platform.

Keywords: Interactive Systems, Ergonomie, Models Transformation, Context-free Grammar, QVT Language, Software

productivity.

1. Introduction

According to the 1SO 9126 standard, productivity is defined
as “the ability of software products to enable users to expend
an appropriate number of resources in relation to the
efficiency achieved in a given specific context” [1], [2].
Nowadays, the implementation of quality software requires
attention to both the process used for its development and its
productivity [3][4][5].

An approach to improve productivity in software engineering
is presented in this paper. We focus on the HMI layer of the
multi-layered software architectures. The visual models and
standardized notations are generally necessary for its
development. The use of a multilayer architecture promotes
the reusability and maintainability of the system [6]. The
three-layer architecture is used: the presentation layer or
external layer, corresponds to the implementation of HMI; the
business layer or functional layer, corresponds to the
construction of the needs of the system, and the data layer or
internal layer.

We are interested in this paper by the presentation layer. As
with all other phases of the system development process, the
complexity of modern systems user interface requires good
modeling technique and methodology. The classic approaches
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used in the literature are either task-based or model-based.
According to Schlungbaum [7], the knowledge used in the
development of interactive systems can be represented by
models, hence our choice for the model-based approach. The
realization of an operational model of HMI will retain our
attention.

Many development tools integrate so-called interface
management  systems  (UIMS), to facilitate the
implementation of HMIs by non-IT specialists and also to
improve productivity [8]. However, these tools are for the
most part proprietary and cannot be used in a complete MDE
process.

The MDE [9][10] which promotes the system model as the
main elements of development, is today used as a basic
approach for the implementation of complex systems [9],
[11], [212], [13], [14]. However, the developer is constrained
to use operational models so that an implementation can be
systematically generated.

We propose in this work an approach to produce a Meta-
Model for the design of operational HMI models. We enrich
the design elements proposed in [15][16] with new concepts.
The authors in [16] have proposed an approach based on two
levels of transformation.
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The UML interaction diagram obtained is translated to a
model conforms to the meta-model specific to PHP. The
translation rules implemented in the QVT language use a
single level of transformation. The work is structured in seven
sections.

We present in section 2 some works of the literature which
focused on HMI modeling for the development of interactive
systems. Our development approach is presented in section 3.
The proposals made in terms of the source Meta-Model, the
target Meta-Model and the QVT implementation of the
transformation rules are given in section 4. Through an
example, we show in section 5, the results from the automatic
generation of a simple online registration system interface. In
section 6, we present the deployment model of our system,
highlighting  the  components  necessary  for  the
implementation of the GUI according to our approach. We
end our study with section 7 which concludes and gives some
future work.

2. Related Work

Nowadays, interacting with computer systems is part of our
daily live. If such systems are well designed they will be very
useful. Many tools in the literature facilitate the design of
user needs concerning Human-Machine Interaction, we can
cite: HTA (Hierarchical Task Analysis) [17], AMD (Analyt-
ical Method of Description) [18], UAN [19] extended in
XUAN [20] and the "ConcurTaskTrees" notation (CTT1
[21]). The tools presented above are the starting point for the
implementation of HMI. Although they are mostly user-
centric, the computer models produced are not operational.
The final system presents an architecture with several layers,
the most prominent are: the interface layer, the business layer
and the data layer. There are many models in the literature for
HMI development: Seeheim [22], Arch [23] are used in
layered models, MVC (Model, View, Controller), PAC
(Presentation, Abstraction Control) [6] , [24], [25], [26] are
used in agent models and the mixed models that try to exploit
the advantages of the previous categories. We focus on "agent
models" in this article. They all have in common the interface
between the user and the system. This interface is called
"view" in the MVVC model and "Presentation" in the PAC
model. However, no specification is made on the details of
this layer.

In [27], the authors present a technique which makes it
possible to generate adaptable user interfaces, starting from
the specification of the task at the time of the execution by
taking into account the context of use. The designer specifies
a task template using the "ConcurTaskTrees" notation and its
context-dependent parts and generates the UI.

In [28], the authors present a design technique and
architecture of a Personal Universal Controller (PUC) which
is a system for automatically generating high quality
multimodal interfaces for remote control of complex devices.
The system includes a communication protocol, adapters for
translating proprietary device protocols to the PUC protocol,
a specification language for describing functions, and a
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generator  that interfaces from

specifications.

automatically creates

The approaches presented here cannot be used in an MDE
process because the generation module produces a result that
does not conform to any target meta-model.

In [16], the authors proposed an approach based on a two-
level transformation, to automate the development of user
interfaces usable in MDE.

The objective in this work is to automate the development of
user interfaces usable in MDE. The resulting interaction
diagram is translated into a PHP-specific Meta-Model, and
using a single generic model transformation rule and is
implemented in the QVT language. This overall objective is
broken down into several specific objectives. The proposal of
a "DD_IHM" source meta-model, whose elements are
designed by extension of the UML meta-model. The proposal
of a target meta-model called "CGFP" which is specific to the
PHP language. The implementation of the transforming rules
to a model conform to the source meta-model to a model
conform to the target meta-model.

3. A One-level transformation approach

We present in Figure 1 our design approach, based on MDE.
It uses a one-level transformation.

4

DD_IHM Meta-Model o
|7

L

Figure 1. One-level transformation approach

We build the source model (c) using the elements of the "DD-
IHM" meta-model (a). The engine (e) performs a model to
text transformation. Its input is a model of the "DD-IHM"
meta-model and its output is the model (d) conform to the
target meta-model "CGFP" (b).

4. Materials and Method

In this section, we use the Unified Modeling Language
(UML) [29], [30], [31], which has established itself as a
standard for modeling systems according to the object-
oriented approach. The elements of this modeling language
allow us to represent the different meta-classes constituting
the elements of our source Meta-Model. The target Meta-
Model is also defined as a concrete syntax of the context-free
grammar. A generic specification of transformation rules is
given in to QVT language.

The “DD-IHM” Meta-Model

We propose in this section the elements of modeling of the
meta-model “DD _IHM”. It covers concepts for modeling
Human-Machine Interfaces.
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Figure 2. DD-IHM Meta-Model

Class, activity and "state machine™ diagrams of UML[23] are
used for the construction of new design elements. Table 1
presents the UML representation of the different modeling
elements of our meta-model. The main elements that can be
used for the construction of GUIs are given in figure 2. The
form is modeled using the "FormClass" element which has
two subclasses, "Node" and "Attribute”. Three subclasses
make up the ‘“Node” element: the “Data”, “Rules” and
“groupELT” subclasses. Form elements are labeled using the
“Data” class. It is similar to the labels that exist in the HTML
language. Constraint modeling is done using the “Rule” class,
which are applied to form components. Each node is
composed of at most one element group. Several subgroups
make up a group. The "Menu" object is used to build the
navigation components in the application. The menu has
properties allowing to define its nature which can be vertical
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or horizontal. The class diagram is the basis of this proposal.
With each node of the Meta-Model, we associate
communication ports (input and output) to obtain a new
elements call "Dynamic Object" which is an instance of a
class of the basic diagram of figure 2. The composition of the
"Dynamic Objects" by using the nodes of "activities diagram"
included in the Meta-Model, gives us a new diagram called
“Dynamic Objects Diagram” (DoD). The "DoD" makes it
possible to model an HMI by connecting by carefully
selecting dynamic objects’ inputs and outputs. An HMI is
considered as a composite "DoD", using other "DoDs" as
states of a UML statechart diagram. The DTD that validates
the final model storage XML file is given in Listing 1 below.

The elements of our source meta-model are presented in table
1 in the form of elementary "DoD"..
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TABLE 1 HMI elements of the source meta-model

Element’s names Representation Semantics
- Create an

Form_Class _ encapsulation

Elements

()

Create an
Group_Elt Element Group

Create a
Menu Node Navigation

Cr Menu

Field_Text Create a Text

Field

Long_Field_Text

Create a Long
Text Field

Bouton

Create a Button
Element

Date

Create a Date
Element

CheckBox

Create a
CheckBox
Element

Radio

Create a Radio
Field Element

Begin Diagram

Initial_Node Node , (UML
Element)
End Diagram
End_Node Node , (UML
Element)

Transition_Node

Transition Node,
(UML Elemen)t

Bridge between

two or more
Test Node elements, (UML
Element)
Synchronization Synchronazation
Node - of form elements,
(UML Element)
Label Node Label Create a Label

Element

Add a Condition to
a Decision Nodes ,

Condition Node (UML Element)

The CGFP Meta-Model

We present in this section the “CGFP” meta-model used as
target meta-model. "CGFP" allows to produce an abstract
representation of the QuickForm HTML code for the
generation of an HMI in PHP. This description is given in the
form of productions of a context-free grammar (see Listing
2). Note that a context-free grammar consists of a tuple

G =(V,T,P,S) where:
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* "V" is a finite set of variables also called non-terminals;
* "T" is a finite set of terminals;

+ "P" is a set of production rules;

+ "S" is the start symbol of the language being defined.

The transformation rules

We use in this work the QVT Language
(Query/View/Transformation) more specifically the QVT-
Operational model defined as a transformation standard by
the Object Management Group (OMG) [32]. It act on a
source models conforming to MOF meta-models to build
target models. QVT-Operational is an imperative language
designed for writing one-way transformations. The
transformation process begins with the declaration of the
source “DD_HMI” and target “CGFP” Meta-Models with the
following instructions:

. modeltype DD _IHM uses "http://localhost/hmi2";

. modeltype CGFP uses "http://localhost/htmIQF.hs";

The structure of the transformation rules is given as follow:

Listing 1. Extract of the DTD

<?xml version="1.0"7 encoding="1S0-8859-1">
<!DOCTYPE DoD_IHM_DIAGRAM |
<!ELEMENT FormNode(BeginNode, labelNode (Node)+, EndNode>

<!ATTLIST DoD_Form Name CDATA #REQUIRED Method CDATA #REQUIRED Action CDATA #REQUIRED>
< |ELEMENT BeginNode EMPTY:>
<!ATTLIST B Node ID_Elements ID Next_node IDREF #REQUIRED>
|ELEMENT LabelNode EMPTY>
<!ATTLIST LabelNode ID.Elements ID ID_Next IDREF #REQUIRED>
|ELEMENT Node (StructNode| FormElem>
< |ELEMENT EndNode EMPTY:>
<!ATTLIST EndNode ID.Elements ID #REQUIRED>
<|ELEMENT StructNode (BeginNode | EndNode ForkNode | JunctionNode | TestNode

| TransitionNode | CondNode)>
<|ELEMENT FormElemNode (LabelNode | Menu | Text | RadioNode | CheckBox | List

| Button | Group)>

A

A

<IELEMENT ForkNode (FormElemNode)+>
IATTLIST ForkNode I1D_Elements ID Next_node IDREFS #REQUIRED>
<IELEMENT JunctionNode EMPTY>
<IATTLIST JuntionNode 1D_Elements ID Next_node IDREFS #REQUIRED>
<IELEMENT TestNode (CondNode, CondNodet)>
CIATTLIST TestNode ID_Elements ID Next-node IDREFS #REQUIRED>
<IELEMENT CondNode (FormElem+)>
<IATTLIST CondNode 1D_Elements ID Next-node IDREF Condition DATA #REQUIRED>
IELEMENT TransitionNode EMPTY>
IATTLIST TransitionNode ID_Elements ID source_node IDREF target.node IDREF #REQUIRED>
IELEMENT MenusNode (BeginNode , (MenuNode+,(StructNode ) ,MenuNode+),End-Node)s)>
<IATTLIST MenuNode 1D_Elements ID Name CDATA Value CDATA parent IDREF #REQUIRED>
<IELEMENT InputElem (Rules)>
IATTLIST InputElem 1D.Elements ID #REQUIRED
Name CDATA #REQUIRED

A

A

A A

A

Value CDATA
Type CDATA #REQUIRED
Multilign CDATA
NumberOfLigne CDATA
NumberOfCol CDATA
ID_Warning IDREF #REQUIRED
ID_Sucess IDREF #REQUIRED>
< !ELEMENT ButtonElem (Rules)>
<!ATTLIST ButtonElem ID_Elements ID #REQUIRED
Name CDATA #REQUIRED
Value CDATA #REQUIRED
Type CDATA #REQUIRED
Action CDATA #REQUIRED
ID_Warning IDREF #REQUIRED
ID_Sucess IDREF #REQUIRED>
< |ELEMENT RadioElem (Rules)>
<!ATTLIST RadioElem ID.Elements ID #REQUIRED
Name CDATA #REQUIRED
Value CDATA #REQUIRED
ID_Warning IDREF #REQUIRED
ID_Sucess IDREF #REQUIRED:>

A

!ELEMENT ChecKBoxElem (Rulez)>
<!ATTLIST ChecKBoxElem ID_Elements ID #REQUIRED
Name CDATA #REQUIRED
Value CDATA #REQUIRED
ID_Warning IDREF #REQUIRED
ID_Suces: IDREF #REQUIRED>
<|ELEMENT SelectElem (SelectOptions, Rules«)>
<!ATTLIST SelectElem ID.Elements ID #REQUIRED
Name CDATA #REQUIRED
ID_Warning IDREF #REQUIRED
ID_Sucess IDREF #REQUIRED>
<!ELEMENT SelectOption EMPTY>
<!ATTLIST SelectOption Name CDATA #REQUIRED
Value CDATA
ID_Next IDREF #REQUIRED>
<!ELEMENT Rules EMPTY>
<!ATTLIST Rules Name CDATA #REQUIRED
Value CDATA
ID_Next IDREF #REQUIRED>
]’\
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Listing 2. The CGFP target meta-model

<FormHtmlIQF> 1= <HEADER> <Formld> "=new_HTML_QuickForm('" <Name> " ','" <Method> A
<Action> " ');" <FormElement>+ <DISPLAY>
<FormElement> = <OptionsArray> <FormEIt> <AddEIt> <AddRule>»
<OptionsArray> := <Optionld> "=array (" <Option>« " );_" | <Optionld> "=
<Option> = """ <OptionName> "'=2"" <Value> """ | »
<FormElt> ::= <TextEIlt> | <RadioElt> | <CheckBoxElt> | <ListELt> | <GroupElt> | <DateElt>
| <ButtonElt>
<AddEIt> := <Formld> "—>addElement(” <Elementld> " ):;"
<AddRule> = "—>addRule(’'" <Name> <ReturnMsg> <Type> ' I Validation>” )"
<TextElIt> ::=<Elementld>"=new_HTML_QuickForm_Text('""<Name>" ', "<Label>" " ,"<Optionld>" };"
| <Elementld> "—new_HTML_QuickForm_Textarea (' '"<Name>" ', '"<Label>" ' ,"<Optionld>" );"
<RadioElt> = <Elementld> "=new HTML_QuickForm_Radio('"<Name>" ",'" <Label> "', '""<Text>
ALY VW alue> "7 " <LOptionld> ")"”
<CheckBoxEIt> := <Elementld> "=new_HTML_QuickForm_CheckBox('" <Name> " ','"<Label>" "',""
<Text> " ',"<Optionld>" );"
<ListELt> ::=<Elementld>"=new_HTML_QuickForm_Select(""<Name>" ', ""<Label>" ' ,"<Optionld>");
<DateEIt> := <Elementld>"=new_HTML_QuickForm_Date( '""<Name>" ", ""<Label>" ' ,"<OptionlId>" );"
<ButtonEIt> = <Elementld> "=new”<FctName>" ( '"<Name>" ', '"<Label>" ' ,"<Optionld>" )"
<FctName> ::= "HTML_QuickForm_Button” | "HTML_QuickForm_Submit” | "HTML_QuickForm_Reset"
<Id> = 78" <Char>f
<Optionld> = <1d>
<Elementld> = <Id>
<Formld> = <Id>
<Name> = String
<Label> := String
<Validation> := "server” | "client”
<Type> = "required” | "maxlength” | "minlength” | “"rangelength”| "email”| "letterzonly”
| "alphanumeric” | "numeric”" | "nopunctuation”| "nonzero”
<OptionName> := String
<Value> = String
<HEADER> := "include('headerFile.php') ;"
<DISPLAY> = <Formld> "—>display ():"

Listing 3. The transformation rules
transformation hmi2htmIQF(in hmi :DD_IHM, out htmlQF :CGFPY
main (}{
hmi.objects()[hmi::FormNode]->map frmNode2frmHtmIQF();
hmi.objects()[hmi::TextNode]->map txtNode2tdtHtmIQF();
hmi.objects()[hmi::RadioNode]->map radioNode2radioHtmIQF);
hmi.objects()[hmi::CheckBoxNode]->map cbNode2chHtmIQF();
hmi.objects()[hmi::ListNode] ->map IstNode2lstHtmIQR);
hmi.objects()[hmi::DateNode]->map dateNode2dateHtmIQF();
hmi.objects()[hmi::ButtonNode] ->map btnNode2btnHtmIQF();
}

© 2023, IJCSE All Rights Reserved

Each input "hmi" model of type simpleHMI_MM is
transformed into an htmlQF output model of type
HtmIQF_MM. The transformation process is triggered by
the main function named main().We give below the
declaration of an example of transformation rule which
allows to apply “frmNode2frmHtmlQF()” to the input
model in order to produce the corresponding code in
HTML_QuickForm.

hmi.objects()[hmi::FormNode]
frmNode2frmHtmIQF();

->map
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Site registration form .

Figure 3. Registration form in our graphical editor

Every mapping is an operation associating an element from
the input model with another element from the output model.
For example, to transform a FormNode to FormHtmIQF, the
corresponding mapping operation is:

Listing 4. The mapping code
mapping hmi::FormNode: :frmNode2frmHtmIQF() : htmIQF: :FormHtmIQF {
FormHtmIQF :="indude('headerFile.php’);"+self.Name+" id = new
HTML QuickForm ("+ self.Name+","+ self.Method + ™,'" + self.Action+ ™);
" + hmi::FormNode::frmElements();
¥

5. Results and Discussion

The code below given in Listing 5 is the XML file of an
example GUI for an online registration platform.

Listing 5 XML description of the simple online registration platform.
1 <?xml version ="1.0 "encoding ="UTF-8"?>
2 <ddihm :DDIHM xmi : version =" 2.0 "
3 xmins : xmi="http://wwwv. omg.org /XMI"
4 xmins : xsi ="http://wvw.w3.0org /200 1 /
5 XMLSchema-instance ”
6 xmins : ddihm="http:// ddihm . com”
7 xsi : schemalLocation="http://ddihm . com
8 ../ MetaModel /DDIHM. e core ">
9 <form class
10 IdFormCl ass="1" Methode="post "
11 action ="Info Personnelles”=
12 <noeud xsi:type =" ddihm : Group eElt "
13 nom="infoper "description ="Informations
14 personnelles"type="field set”>
15 <formelement xsi:type =" ddihm : ChampsTexte ”
16 id ="1" name="nom"” type ="inputtext”>
17 <regles type="required”/>=
18 <donnees nom="label” contenu ="Nom"/>
19 </form el ement>
20 <noeud xsi:type ="ddihm : Button
21 nom="Envoyer” v al u e =" s ubmit "/>
22 <noeud xsi:type ="ddihm:Button ”
23 nom="Annuler”
24 valu e="reset"/>
25 </formclass>
26</ddihm :DDIHM=>

By applying the transformation rules defined above, the
HTML_QuickForm code is generated as shown in Listing 4.
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This code displays as a result the online registration user
interface of Figure 4.

Figure 4. HMI of the registration form

Listing 6. Generated HTML QuickForm of the simple online registration
platform

1 <?xml version="1.0"encoding="UTF-8"?>

2 <abstractform:Model

3 xmi : version ="2.0"

4 xmins : xmi="http://www. omg.org /XMI"

5 xmins : x s ="http://www. w3.org /2 00 1 / XMLSchema-
instance”

6 xmins :abstractform ="http: / / www. mdt . com /
abstractform”

7 xsi:schemaLocation="http:/fwww. mdt . com /
abstractformmetamodel / AbstractForm.ecore "

8 Appname="registration">

9 <forms id ="Etape2"description="Infopersonnelles”>
10 <nodexsi:type="abstractform:Fieldset'label="
Informationpersonnelles’name="infopers">

11 <nodexsi:type="abstractform:InputText"id="
nom" name="nom">

12 <rulesxsi.type="abstractform:Required”
message="Veuillezentrervotrenom'/>

13 <dataname="label" value ="Nom"/> 14 </node>
15,

16.

17:,

18 <nodexsi:type="abstractform:InputCheckBox id="Deutsh " name="espagnol ">
19 <dataname="content " value ="cagtellano"/>

20 <attributname="value "value="es"/> 21 </node>
22 </node>

23 <nodexsi:type ="abstractform:InputS ubmit "name="Envoyer "[>
24 <nodexsi:type="abgtractform:InputReset” name
=" Annul er />

25 <[forms>

26</abstractform:Model>
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6. Deployment model

Figure 5 represents the result of the deployment of our system
after installing the packages PEAR and HTML QuickForme2.
The "PHP Server" directory is created and contains the Web
server and the PHP script engine. In the PEARDIR sub-
directory of “Serveur Web”, the PEAR package is installed.
PEARDIR contains two sub-directories, the HTML sub-
directory where the packages useful for QuickForm2 are
deployed and DATA which contain the style sheet references
and JavaScript code used by the QuickForm2 package. After
transformation of the “DD IHM” model, the PHP source file
obtained is stored in the PEARDIR directory and is accessible
via the URL
“http://localhost/peardir/currency_registrationform.php”. A
file named “head.php”, stored in the HTML sub-directory,
contains the definition of the personal data of the result form.

Serveur PHP

PEARDIR

|
QuickForm2 Data

|
.CSS, .js

.php I

AL

Figure 5. Deployment model
7. Conclusion and Future Scope

In this paper, an approach for the automatic production of the
HMI dialogue layer is proposed. The work is part of a broader
research perspective aiming to automate the complete process
of software production. We presented a source meta-model
"DD_IHM" which is an extension of the UML modeling
language for the specification of HMI components, a target
meta-model for the production of models conforming to the
PHP language and finally a set of transformation rules
implemented with QVT, allowing to pass from a source
model to a target model. The quality of the results obtained in
terms of ergonomics, the development time and the
maintainability of the final result are factors in the assessment
of our proposal. In our future work, we intend to extend this
method to all layers of the architecture. For this, an extension
of the source and target meta-models and the transformation
rules will be necessary in order to take into account all the
modeling elements.
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