International Journal of Computer Sciences and Engineering

Vol.11, Issue.8, pp.01-08, August 2023
ISSN: 2347-2693 (Online)
Available online at: www.ijcseonline.org

@
AJCSE

ISSN: 2347-2693 (E)

Research Paper

An Approach to Build the Ergonomics of Interactive Software based on
MDE

Thierry Noulamo'™, Bernard Fotsing Talla**, Jean Pierre Lienou®", Alain Djimeli-Tsajio*

124Dept. of Computer Engineering/IUT Fotso Victor of Bandjoun, University of Dschang, Bandjoun, Cameroon
3Dept. of Computer Engineering, College of Technology/ University of Bamenda, Bamenda, Cameroon

*Corresponding Author: thierry.noulamo@gmail.com

Received: 24/Jun/2023; Accepted: 26/Jul/2023; Published: 31/Aug/2023. DOI: https://doi.org/10.26438/ijcse/v11i8.18

Abstract: The design and implementation of interactive systems and Human-Machine Interfaces (HMI) use different techniques
from both software engineering and ergonomics. To improve the productivity and quality of software, automating the
development process is an important factor. User interfaces are nonfunctional but complex software components that play a vital
role in the development of interactive applications. We propose in this paper an approach for the automatic production of
Human-Machine Interfaces (HMI) for the development of interactive applications according to the Model-Driven Engineering
(MDE) approach. A source Meta-Model called "DD_IHM" ("Description Diagram for Human-Machine Interfaces"), a target
Meta-Model specific to the PHP language called "CGFP" (Context Grammar for PEAR) for the construction of HMIs and, a set
of generic rules for transforming a model conforms to the source meta-Model into a model conforms to the target Meta-Model,

written in the QVT language are develop. We apply this approach to the creation of a simple online registration platform.

Keywords: Interactive Systems, Ergonomie, Models Transformation, Context-free Grammar, QVT Language, Software

productivity.

1. Introduction

According to the 1SO 9126 standard, productivity is defined
as “the ability of software products to enable users to expend
an appropriate number of resources in relation to the
efficiency achieved in a given specific context” [1], [2].
Nowadays, the implementation of quality software requires
attention to both the process used for its development and its
productivity [3][4][5].

An approach to improve productivity in software engineering
is presented in this paper. We focus on the HMI layer of the
multi-layered software architectures. The visual models and
standardized notations are generally necessary for its
development. The use of a multilayer architecture promotes
the reusability and maintainability of the system [6]. The
three-layer architecture is used: the presentation layer or
external layer, corresponds to the implementation of HMI; the
business layer or functional layer, corresponds to the
construction of the needs of the system, and the data layer or
internal layer.

We are interested in this paper by the presentation layer. As
with all other phases of the system development process, the
complexity of modern systems user interface requires good
modeling technique and methodology. The classic approaches

© 2023, 1JCSE All Rights Reserved

used in the literature are either task-based or model-based.
According to Schlungbaum [7], the knowledge used in the
development of interactive systems can be represented by
models, hence our choice for the model-based approach. The
realization of an operational model of HMI will retain our
attention.

Many development tools integrate so-called interface
management systems (UIMS), to facilitate the
implementation of HMIs by non-IT specialists and also to
improve productivity [8]. However, these tools are for the
most part proprietary and cannot be used in a complete MDE
process.

The MDE [9][10] which promotes the system model as the
main elements of development, is today used as a basic
approach for the implementation of complex systems [9],
[11], [212], [13], [14]. However, the developer is constrained
to use operational models so that an implementation can be
systematically generated.

We propose in this work an approach to produce a Meta-
Model for the design of operational HMI models. We enrich
the design elements proposed in [15][16] with new concepts.
The authors in [16] have proposed an approach based on two
levels of transformation.

https://orcid.org/0000-0000-0003-0129-0727
https://orcid.org/0000-0002-4145-3220
https://orcid.org/0000-0002-3386-9402
https://orcid.org/0000-0002-4433-0074

International Journal of Computer Sciences and Engineering

The UML interaction diagram obtained is translated to a
model conforms to the meta-model specific to PHP. The
translation rules implemented in the QVT language use a
single level of transformation. The work is structured in seven
sections.

We present in section 2 some works of the literature which
focused on HMI modeling for the development of interactive
systems. Our development approach is presented in section 3.
The proposals made in terms of the source Meta-Model, the
target Meta-Model and the QVT implementation of the
transformation rules are given in section 4. Through an
example, we show in section 5, the results from the automatic
generation of a simple online registration system interface. In
section 6, we present the deployment model of our system,
highlighting the components necessary for the
implementation of the GUI according to our approach. We
end our study with section 7 which concludes and gives some
future work.

2. Related Work

Nowadays, interacting with computer systems is part of our
daily live. If such systems are well designed they will be very
useful. Many tools in the literature facilitate the design of
user needs concerning Human-Machine Interaction, we can
cite: HTA (Hierarchical Task Analysis) [17], AMD (Analyt-
ical Method of Description) [18], UAN [19] extended in
XUAN [20] and the "ConcurTaskTrees" notation (CTT1
[21]). The tools presented above are the starting point for the
implementation of HMI. Although they are mostly user-
centric, the computer models produced are not operational.
The final system presents an architecture with several layers,
the most prominent are: the interface layer, the business layer
and the data layer. There are many models in the literature for
HMI development: Seeheim [22], Arch [23] are used in
layered models, MVC (Model, View, Controller), PAC
(Presentation, Abstraction Control) [6] , [24], [25], [26] are
used in agent models and the mixed models that try to exploit
the advantages of the previous categories. We focus on "agent
models" in this article. They all have in common the interface
between the user and the system. This interface is called
"view" in the MVVC model and "Presentation" in the PAC
model. However, no specification is made on the details of
this layer.

In [27], the authors present a technique which makes it
possible to generate adaptable user interfaces, starting from
the specification of the task at the time of the execution by
taking into account the context of use. The designer specifies
a task template using the "ConcurTaskTrees" notation and its
context-dependent parts and generates the UI.

In [28], the authors present a design technique and
architecture of a Personal Universal Controller (PUC) which
is a system for automatically generating high quality
multimodal interfaces for remote control of complex devices.
The system includes a communication protocol, adapters for
translating proprietary device protocols to the PUC protocol,
a specification language for describing functions, and a

© 2023, IJCSE All Rights Reserved

Vol.11(8), Aug 2023

generator that interfaces from

specifications.

automatically creates

The approaches presented here cannot be used in an MDE
process because the generation module produces a result that
does not conform to any target meta-model.

In [16], the authors proposed an approach based on a two-
level transformation, to automate the development of user
interfaces usable in MDE.

The objective in this work is to automate the development of
user interfaces usable in MDE. The resulting interaction
diagram is translated into a PHP-specific Meta-Model, and
using a single generic model transformation rule and is
implemented in the QVT language. This overall objective is
broken down into several specific objectives. The proposal of
a "DD_IHM" source meta-model, whose elements are
designed by extension of the UML meta-model. The proposal
of a target meta-model called "CGFP" which is specific to the
PHP language. The implementation of the transforming rules
to a model conform to the source meta-model to a model
conform to the target meta-model.

3. A One-level transformation approach

We present in Figure 1 our design approach, based on MDE.
It uses a one-level transformation.

4

DD_IHM Meta-Model o
|7

L

Figure 1. One-level transformation approach

We build the source model (c) using the elements of the "DD-
IHM" meta-model (a). The engine (e) performs a model to
text transformation. Its input is a model of the "DD-IHM"
meta-model and its output is the model (d) conform to the
target meta-model "CGFP" (b).

4. Materials and Method

In this section, we use the Unified Modeling Language
(UML) [29], [30], [31], which has established itself as a
standard for modeling systems according to the object-
oriented approach. The elements of this modeling language
allow us to represent the different meta-classes constituting
the elements of our source Meta-Model. The target Meta-
Model is also defined as a concrete syntax of the context-free
grammar. A generic specification of transformation rules is
given in to QVT language.

The “DD-IHM” Meta-Model

We propose in this section the elements of modeling of the
meta-model “DD _IHM”. It covers concepts for modeling
Human-Machine Interfaces.

International Journal of Computer Sciences and Engineering

Vol.11(8), Aug 2023

. 2 Sone = .9 noruedecion = NosdDeosdon
S peaCenanien | ESing 0. sedtie
© nom: Liirng 0. meurason
| Enlree T . e s————
I B.7 antree l 1] Meevateamn
= preCandtion: EOnrg
D.omern ? JRRR— R T [T
£ Feetertation Ll NotadB T aton
B." prerentation S fow| ESng
— e e [
l H Meu :
E 3
= Wi g i Madge Ldotmccerunones M o bictcciiimidl
= now: BStrag = mp: Brsg o ROt | B8 O henCodiedt : ERLHIL
= Betfhersonts : E0LIM 0 raneoasd
] E FormOaws [Deenrees
. ‘] donraet
— - Preae = mors : LSty e b
I T S B MervaMarizomy S MFoonCless EStiag || = % :’;
— < Nethode | EString £ covies : Liing B Wowos
=1 tygeMera: FSing W hpeikine: Bl = adien : F5teng “ | 0.1] graupelt "
- L] Graupetn
© demigtian: COnieg » INDME < fMre ! ESting
I l = fondien) ESweny R Jecesd = nam:Cnisg
\ R it | f._'!?cT‘u ‘ : - ?;lmm»n
| O DLV, B o m3
0.7 mervabseantal = hppe ESting
| £ fegres
C 2 sexiape : Eliing
Lo tonlhy : ESing
= ype By o FomExment
= noe : ESieng L4
2 vakw : ESang 0.4 wessbats
' -
|
L] Dae L Onarnpslede o] Ononn Ul Lenglone [L] tuman £l Lsze
= nan g = id: e o M:ting = abrecsh : El=t = nam:tinng 1 nen: tning
1 lasgage : ESteng 0 name: ESling = nos: Bilring £ mbeerows - Hrk o wlewr - EOring 1 safewr : Blning
w4 Tomeat : ESting o ype: Ellrng om0 ESling @ hpe! ESung
= yabeut | ESTenyg <o EStmg
(1] eptiom
P ——
£ Radi H Checdaea
< hee fSting = hpe: BSting B Csticns -

& doiesu ESng

= Qo | EString

Figure 2. DD-IHM Meta-Model

Class, activity and "state machine™ diagrams of UML[23] are
used for the construction of new design elements. Table 1
presents the UML representation of the different modeling
elements of our meta-model. The main elements that can be
used for the construction of GUIs are given in figure 2. The
form is modeled using the "FormClass" element which has
two subclasses, "Node" and "Attribute”. Three subclasses
make up the ‘“Node” element: the “Data”, “Rules” and
“groupELT” subclasses. Form elements are labeled using the
“Data” class. It is similar to the labels that exist in the HTML
language. Constraint modeling is done using the “Rule” class,
which are applied to form components. Each node is
composed of at most one element group. Several subgroups
make up a group. The "Menu" object is used to build the
navigation components in the application. The menu has
properties allowing to define its nature which can be vertical

© 2023, IJCSE All Rights Reserved

or horizontal. The class diagram is the basis of this proposal.
With each node of the Meta-Model, we associate
communication ports (input and output) to obtain a new
elements call "Dynamic Object" which is an instance of a
class of the basic diagram of figure 2. The composition of the
"Dynamic Objects" by using the nodes of "activities diagram"
included in the Meta-Model, gives us a new diagram called
“Dynamic Objects Diagram” (DoD). The "DoD" makes it
possible to model an HMI by connecting by carefully
selecting dynamic objects’ inputs and outputs. An HMI is
considered as a composite "DoD", using other "DoDs" as
states of a UML statechart diagram. The DTD that validates
the final model storage XML file is given in Listing 1 below.

The elements of our source meta-model are presented in table
1 in the form of elementary "DoD"..

International Journal of Computer Sciences and Engineering

TABLE 1 HMI elements of the source meta-model

Element’s names Representation Semantics
- Create an

Form_Class _ encapsulation

Elements

()

Create an
Group_Elt Element Group

Create a
Menu Node Navigation

Cr Menu

Field_Text Create a Text

Field

Long_Field_Text

Create a Long
Text Field

Bouton

Create a Button
Element

Date

Create a Date
Element

CheckBox

Create a
CheckBox
Element

Radio

Create a Radio
Field Element

Begin Diagram

Initial_Node Node , (UML
Element)
End Diagram
End_Node Node , (UML
Element)

Transition_Node

Transition Node,
(UML Elemen)t

Bridge between

two or more
Test Node elements, (UML
Element)
Synchronization Synchronazation
Node - of form elements,
(UML Element)
Label Node Label Create a Label

Element

Add a Condition to
a Decision Nodes ,

Condition Node (UML Element)

The CGFP Meta-Model

We present in this section the “CGFP” meta-model used as
target meta-model. "CGFP" allows to produce an abstract
representation of the QuickForm HTML code for the
generation of an HMI in PHP. This description is given in the
form of productions of a context-free grammar (see Listing
2). Note that a context-free grammar consists of a tuple

G =(V,T,P,S) where:

© 2023, IJCSE All Rights Reserved

Vol.11(8), Aug 2023

* "V" is a finite set of variables also called non-terminals;
* "T" is a finite set of terminals;

+ "P" is a set of production rules;

+ "S" is the start symbol of the language being defined.

The transformation rules

We use in this work the QVT Language
(Query/View/Transformation) more specifically the QVT-
Operational model defined as a transformation standard by
the Object Management Group (OMG) [32]. It act on a
source models conforming to MOF meta-models to build
target models. QVT-Operational is an imperative language
designed for writing one-way transformations. The
transformation process begins with the declaration of the
source “DD_HMI” and target “CGFP” Meta-Models with the
following instructions:

. modeltype DD _IHM uses "http://localhost/hmi2";

. modeltype CGFP uses "http://localhost/htmIQF.hs";

The structure of the transformation rules is given as follow:

Listing 1. Extract of the DTD

<?xml version="1.0"7 encoding="1S0-8859-1">
<!DOCTYPE DoD_IHM_DIAGRAM |
<!ELEMENT FormNode(BeginNode, labelNode (Node)+, EndNode>

<!ATTLIST DoD_Form Name CDATA #REQUIRED Method CDATA #REQUIRED Action CDATA #REQUIRED>
< |ELEMENT BeginNode EMPTY:>
<!ATTLIST B Node ID_Elements ID Next_node IDREF #REQUIRED>
|ELEMENT LabelNode EMPTY>
<!ATTLIST LabelNode ID.Elements ID ID_Next IDREF #REQUIRED>
|ELEMENT Node (StructNode| FormElem>
< |ELEMENT EndNode EMPTY:>
<!ATTLIST EndNode ID.Elements ID #REQUIRED>
<|ELEMENT StructNode (BeginNode | EndNode ForkNode | JunctionNode | TestNode

| TransitionNode | CondNode)>
<|ELEMENT FormElemNode (LabelNode | Menu | Text | RadioNode | CheckBox | List

| Button | Group)>

A

A

<IELEMENT ForkNode (FormElemNode)+>
IATTLIST ForkNode I1D_Elements ID Next_node IDREFS #REQUIRED>
<IELEMENT JunctionNode EMPTY>
<IATTLIST JuntionNode 1D_Elements ID Next_node IDREFS #REQUIRED>
<IELEMENT TestNode (CondNode, CondNodet)>
CIATTLIST TestNode ID_Elements ID Next-node IDREFS #REQUIRED>
<IELEMENT CondNode (FormElem+)>
<IATTLIST CondNode 1D_Elements ID Next-node IDREF Condition DATA #REQUIRED>
IELEMENT TransitionNode EMPTY>
IATTLIST TransitionNode ID_Elements ID source_node IDREF target.node IDREF #REQUIRED>
IELEMENT MenusNode (BeginNode , (MenuNode+,(StructNode) ,MenuNode+),End-Node)s)>
<IATTLIST MenuNode 1D_Elements ID Name CDATA Value CDATA parent IDREF #REQUIRED>
<IELEMENT InputElem (Rules)>
IATTLIST InputElem 1D.Elements ID #REQUIRED
Name CDATA #REQUIRED

A

A

A A

A

Value CDATA
Type CDATA #REQUIRED
Multilign CDATA
NumberOfLigne CDATA
NumberOfCol CDATA
ID_Warning IDREF #REQUIRED
ID_Sucess IDREF #REQUIRED>
< !ELEMENT ButtonElem (Rules)>
<!ATTLIST ButtonElem ID_Elements ID #REQUIRED
Name CDATA #REQUIRED
Value CDATA #REQUIRED
Type CDATA #REQUIRED
Action CDATA #REQUIRED
ID_Warning IDREF #REQUIRED
ID_Sucess IDREF #REQUIRED>
< |ELEMENT RadioElem (Rules)>
<!ATTLIST RadioElem ID.Elements ID #REQUIRED
Name CDATA #REQUIRED
Value CDATA #REQUIRED
ID_Warning IDREF #REQUIRED
ID_Sucess IDREF #REQUIRED:>

A

!ELEMENT ChecKBoxElem (Rulez)>
<!ATTLIST ChecKBoxElem ID_Elements ID #REQUIRED
Name CDATA #REQUIRED
Value CDATA #REQUIRED
ID_Warning IDREF #REQUIRED
ID_Suces: IDREF #REQUIRED>
<|ELEMENT SelectElem (SelectOptions, Rules«)>
<!ATTLIST SelectElem ID.Elements ID #REQUIRED
Name CDATA #REQUIRED
ID_Warning IDREF #REQUIRED
ID_Sucess IDREF #REQUIRED>
<!ELEMENT SelectOption EMPTY>
<!ATTLIST SelectOption Name CDATA #REQUIRED
Value CDATA
ID_Next IDREF #REQUIRED>
<!ELEMENT Rules EMPTY>
<!ATTLIST Rules Name CDATA #REQUIRED
Value CDATA
ID_Next IDREF #REQUIRED>
]’\

International Journal of Computer Sciences and Engineering

Vol.11(8), Aug 2023

Listing 2. The CGFP target meta-model

<FormHtmlIQF> 1= <HEADER> <Formld> "=new_HTML_QuickForm('" <Name> " ','" <Method> A
<Action> " ');" <FormElement>+ <DISPLAY>
<FormElement> = <OptionsArray> <FormEIt> <AddEIt> <AddRule>»
<OptionsArray> := <Optionld> "=array (" <Option>« ");_" | <Optionld> "=
<Option> = """ <OptionName> "'=2"" <Value> """ | »
<FormElt> ::= <TextEIlt> | <RadioElt> | <CheckBoxElt> | <ListELt> | <GroupElt> | <DateElt>
| <ButtonElt>
<AddEIt> := <Formld> "—>addElement(” <Elementld> "):;"
<AddRule> = "—>addRule(’'" <Name> <ReturnMsg> <Type> ' I Validation>”)"
<TextElIt> ::=<Elementld>"=new_HTML_QuickForm_Text('""<Name>" ', "<Label>" " ,"<Optionld>" };"
| <Elementld> "—new_HTML_QuickForm_Textarea (' '"<Name>" ', '"<Label>" ' ,"<Optionld>");"
<RadioElt> = <Elementld> "=new HTML_QuickForm_Radio('"<Name>" ",'" <Label> "', '""<Text>
ALY VW alue> "7 " <LOptionld> ")"”
<CheckBoxEIt> := <Elementld> "=new_HTML_QuickForm_CheckBox('" <Name> " ','"<Label>" "',""
<Text> " ',"<Optionld>");"
<ListELt> ::=<Elementld>"=new_HTML_QuickForm_Select(""<Name>" ', ""<Label>" ' ,"<Optionld>");
<DateEIt> := <Elementld>"=new_HTML_QuickForm_Date('""<Name>" ", ""<Label>" ' ,"<OptionlId>");"
<ButtonEIt> = <Elementld> "=new”<FctName>" ('"<Name>" ', '"<Label>" ' ,"<Optionld>")"
<FctName> ::= "HTML_QuickForm_Button” | "HTML_QuickForm_Submit” | "HTML_QuickForm_Reset"
<Id> = 78" <Char>f
<Optionld> = <1d>
<Elementld> = <Id>
<Formld> = <Id>
<Name> = String
<Label> := String
<Validation> := "server” | "client”
<Type> = "required” | "maxlength” | "minlength” | “"rangelength”| "email”| "letterzonly”
| "alphanumeric” | "numeric”" | "nopunctuation”| "nonzero”
<OptionName> := String
<Value> = String
<HEADER> := "include('headerFile.php') ;"
<DISPLAY> = <Formld> "—>display ():"

Listing 3. The transformation rules
transformation hmi2htmIQF(in hmi :DD_IHM, out htmlQF :CGFPY
main (}{
hmi.objects()[hmi::FormNode]->map frmNode2frmHtmIQF();
hmi.objects()[hmi::TextNode]->map txtNode2tdtHtmIQF();
hmi.objects()[hmi::RadioNode]->map radioNode2radioHtmIQF);
hmi.objects()[hmi::CheckBoxNode]->map cbNode2chHtmIQF();
hmi.objects()[hmi::ListNode] ->map IstNode2lstHtmIQR);
hmi.objects()[hmi::DateNode]->map dateNode2dateHtmIQF();
hmi.objects()[hmi::ButtonNode] ->map btnNode2btnHtmIQF();
}

© 2023, IJCSE All Rights Reserved

Each input "hmi" model of type simpleHMI_MM is
transformed into an htmlQF output model of type
HtmIQF_MM. The transformation process is triggered by
the main function named main().We give below the
declaration of an example of transformation rule which
allows to apply “frmNode2frmHtmlQF()” to the input
model in order to produce the corresponding code in
HTML_QuickForm.

hmi.objects()[hmi::FormNode]
frmNode2frmHtmIQF();

->map

International Journal of Computer Sciences and Engineering

Site registration form .

Figure 3. Registration form in our graphical editor

Every mapping is an operation associating an element from
the input model with another element from the output model.
For example, to transform a FormNode to FormHtmIQF, the
corresponding mapping operation is:

Listing 4. The mapping code
mapping hmi::FormNode: :frmNode2frmHtmIQF() : htmIQF: :FormHtmIQF {
FormHtmIQF :="indude('headerFile.php’);"+self.Name+" id = new
HTML QuickForm ("+ self.Name+","+ self.Method + ™,'" + self.Action+ ™);
" + hmi::FormNode::frmElements();
¥

5. Results and Discussion

The code below given in Listing 5 is the XML file of an
example GUI for an online registration platform.

Listing 5 XML description of the simple online registration platform.
1 <?xml version ="1.0 "encoding ="UTF-8"?>
2 <ddihm :DDIHM xmi : version =" 2.0 "
3 xmins : xmi="http://wwwv. omg.org /XMI"
4 xmins : xsi ="http://wvw.w3.0org /200 1 /
5 XMLSchema-instance ”
6 xmins : ddihm="http:// ddihm . com”
7 xsi : schemalLocation="http://ddihm . com
8 ../ MetaModel /DDIHM. e core ">
9 <form class
10 IdFormCl ass="1" Methode="post "
11 action ="Info Personnelles”=
12 <noeud xsi:type =" ddihm : Group eElt "
13 nom="infoper "description ="Informations
14 personnelles"type="field set”>
15 <formelement xsi:type =" ddihm : ChampsTexte ”
16 id ="1" name="nom"” type ="inputtext”>
17 <regles type="required”/>=
18 <donnees nom="label” contenu ="Nom"/>
19 </form el ement>
20 <noeud xsi:type ="ddihm : Button
21 nom="Envoyer” v al u e =" s ubmit "/>
22 <noeud xsi:type ="ddihm:Button ”
23 nom="Annuler”
24 valu e="reset"/>
25 </formclass>
26</ddihm :DDIHM=>

By applying the transformation rules defined above, the
HTML_QuickForm code is generated as shown in Listing 4.

© 2023, IJCSE All Rights Reserved

Vol.11(8), Aug 2023

This code displays as a result the online registration user
interface of Figure 4.

Figure 4. HMI of the registration form

Listing 6. Generated HTML QuickForm of the simple online registration
platform

1 <?xml version="1.0"encoding="UTF-8"?>

2 <abstractform:Model

3 xmi : version ="2.0"

4 xmins : xmi="http://www. omg.org /XMI"

5 xmins : x s ="http://www. w3.org /2 00 1 / XMLSchema-
instance”

6 xmins :abstractform ="http: / / www. mdt . com /
abstractform”

7 xsi:schemaLocation="http:/fwww. mdt . com /
abstractformmetamodel / AbstractForm.ecore "

8 Appname="registration">

9 <forms id ="Etape2"description="Infopersonnelles”>
10 <nodexsi:type="abstractform:Fieldset'label="
Informationpersonnelles’name="infopers">

11 <nodexsi:type="abstractform:InputText"id="
nom" name="nom">

12 <rulesxsi.type="abstractform:Required”
message="Veuillezentrervotrenom'/>

13 <dataname="label" value ="Nom"/> 14 </node>
15,

16.

17:,

18 <nodexsi:type="abstractform:InputCheckBox id="Deutsh " name="espagnol ">
19 <dataname="content " value ="cagtellano"/>

20 <attributname="value "value="es"/> 21 </node>
22 </node>

23 <nodexsi:type ="abstractform:InputS ubmit "name="Envoyer "[>
24 <nodexsi:type="abgtractform:InputReset” name
=" Annul er />

25 <[forms>

26</abstractform:Model>

International Journal of Computer Sciences and Engineering

6. Deployment model

Figure 5 represents the result of the deployment of our system
after installing the packages PEAR and HTML QuickForme2.
The "PHP Server" directory is created and contains the Web
server and the PHP script engine. In the PEARDIR sub-
directory of “Serveur Web”, the PEAR package is installed.
PEARDIR contains two sub-directories, the HTML sub-
directory where the packages useful for QuickForm2 are
deployed and DATA which contain the style sheet references
and JavaScript code used by the QuickForm2 package. After
transformation of the “DD IHM” model, the PHP source file
obtained is stored in the PEARDIR directory and is accessible
via the URL
“http://localhost/peardir/currency_registrationform.php”. A
file named “head.php”, stored in the HTML sub-directory,
contains the definition of the personal data of the result form.

Serveur PHP

PEARDIR

|
QuickForm2 Data

|
.CSS, .js

.php I

AL

Figure 5. Deployment model
7. Conclusion and Future Scope

In this paper, an approach for the automatic production of the
HMI dialogue layer is proposed. The work is part of a broader
research perspective aiming to automate the complete process
of software production. We presented a source meta-model
"DD_IHM" which is an extension of the UML modeling
language for the specification of HMI components, a target
meta-model for the production of models conforming to the
PHP language and finally a set of transformation rules
implemented with QVT, allowing to pass from a source
model to a target model. The quality of the results obtained in
terms of ergonomics, the development time and the
maintainability of the final result are factors in the assessment
of our proposal. In our future work, we intend to extend this
method to all layers of the architecture. For this, an extension
of the source and target meta-models and the transformation
rules will be necessary in order to take into account all the
modeling elements.

Conflict of Interest
The authors declare it unrelated to this research

Funding Source

This work was supported in part by the Unit Research in
Control and Applied Computing (URCAC) of the University
of Dschang, Cameroon

© 2023, IJCSE All Rights Reserved

Vol.11(8), Aug 2023

Authors’ Contributions

Dr Noulamo contributes in the modelling and implementation
of source meta-model, writing up of paragraph 2, 3, the
structure of the paper and approved its final version.

Dr Fotsing contributes in writing up the transformation rules
from source meta-model to target meta-model which was
applied.

Dr Lienou contributes in the modeling and implementation of
the target meta-model, write up of paragraph 4 and 5,
translate and format the document.

Dr Djimeli contributes in implementing the transformation
rules, final readings, translation and formatting.

References

[1]. Hernandez-Loépez, Adrian, Colomo-Palacios, Ricardo, Et Garcia-
Crespo, Angel, “Productivity in software engineering: A study of its
meanings for practitioners: Understanding the concept under their
standpoint”, In: 7th Iberian Conference on Information Systems and
Technologies (CISTI 2012). IEEE, pp.1-6, 2012.

[2]. Abran, Alain, Al-Qutaish, Rafa E., et Cuadrado-Gallego, Juan J.
“Analysis of the 1ISO 9126 on software product quality evaluation
from the metrology and 1SO 15939 perspectives.” WSEAS
Transactions on Computers, Vol.5, no.11, pp.2778-2786, 2006.

[3]. Anupriya et al., “Survey on Various Productivity Measures of
Software Development Teams”, International Journal of Advanced
Research in Computer Science and Software Engineering 4(6),
pp.462-464, June 2014

[4]. Bindia Tarika, “Review on Software Analysis & Design Tools”,
International Journal of Computer Sciences and Engineering, Vol.8,
Issue.1, pp.115-119, 2020.

[5]. Rakesh Kumar, Priti Maheshwary, Timothy Malche, “Inside Agile
Family: Software Development Methodologies™, International Journal
of Computer Sciences and Engineering, Vol.7, Issue.6, pp.650-660,
2019.

[6]. Pfaff, Gunther E. (Ed.). “User Interface Management Systems:
Proceedings of the Workshop on User Interface Management Systems
held in Seeheim”, Springer Science & Business Media, 2012.

[7]. Schlungbaum, Egbert Et Elwert, Thomas. “Automatic User Interface
Generation from Declarative Models.” In: CADUI. pp.3-17, 1996.

[8]. Myers Brad A., “User Interface Software Tools”, ACM Transac-tions
on Computer Human Interaction. Vol.1, no.2, pp.64-103, 1995.

[9]. R. B. Hailpern , P. Tarr, “Model-driven development : The good, the
bad and the ugly”, IBM Systems Journal, Vol.3, no.45, pp.1-25, 2006.

[10]. Smita Agarwal, S. Dixit, Alok Aggarwal, “Model to Model
Transformation for Declarative Models”, International Journal of
Computer Sciences and Engineering, Vol.6, lIssue.11, pp.164-170,
2018.

[11]. D. Schmidt, “Guest Editor's Introduction:Model-Driven
Engineering”, Computer, Vol.2, no.9, pp.25-31, 2006, ISSN 0018-
9162.

[12]. Warnars, H. L. H. S. “Object-oriented modelling with unified
modelling language 2.0 for simple software application based on
agile methodology” Behaviour & Information Technology, Vol.30,
no.3, pp.293-307, 2011.

[13]. Noulamo, T. & Tanyi, E. & Nkenlifack, Marcellin & Lienou, Jean-
Pierre & Alain Bernard, Djimeli Tsajio. “Formalization method of the
UML statechart by transformation toward Petri Nets.”, IAENG
International Journal of Computer Science. 45. Pp.505-513, 2018.

[14]. Tajouo, Frangois & Noulamo, Thierry & Lienou, Jean-Pierre.
“Procedure for the Contextual, Textual and Ontological Construction
of Specialized Knowledge Bases”, European Journal of Electrical
Engineering and Computer Science. 5. pp.62-67, 2021,
doi:10.24018/ejece.2021.5.1.282

[15]. André, Etienne, Choppy, Christine, et Noulamo, Thierry. “Modelling
timed concurrent systems using activity diagram patterns”, Book
Chapter, Springer International Publishing, pp.339-351, 2015.

International Journal of Computer Sciences and Engineering

[16]. T. Noulamo, B. Fotsing Talla, M. Wane, L. H. Nzothiam Takou, “A
Model-Driven Approach for Developing WEB Users Interfaces of
Interactive Systems”, International Journal of Computer Trends and
Technology (IJCTT) — Volume 68 Issue 4 pp.33-43, April 2020,
ISSN: 2231-2803.

[17]. AJ. Dix, J. Finlay, G. Abowd, R. Beale.
Interaction”, Prentice Hall, 1993.

[18]. Scapin, Dominique Et Pierret-Golbreich, Christine. “Towards a
method for task description: MAD Work with display units”, Elsevier
Science Publishers, North-Holland, Vol.89, pp.371-380, 1989.

[19]. D. Rix, H.R. Hartson. “Developing User Interfaces: Ensuring
Usability Through Product Process”, Wiley Professional Computing
John Wiley Sons, USA, 1993.

[20]. Gray, Phil, England, David, et Mcgowan, Steve. Xuan: “Enhancing
the UAN to capture temporal relation among actions.” People and
Computers IX, pp.301-312, 1994.

[21]. Fabio Patern. “Model-Based Design and Evaluation of Interactive
Applications”, Springer, 2001.

[22]. Hix, Deborah. “Generations of user-interface management systems.”,
IEEE software, Vol.7, no.5, pp.77-87, 1990.

[23]. Bass, Len, Faneuf, Ross, Little, Reed, et al. “A metamodel for the
runtime architecture of an interactive system”. SIGCHI Bulletin,
\Vol.24, no.1, pp.32-37, 1992.

[24]. Coutaz, J.. “Interfaces Homme-Ordinateur,
Ralisation ”, Dunod Informatique, Paris, 1990
[25]. Coutaz, Joélle Et Nigay, Laurence. “Architecture logicielle
conceptuelle des systémes interactifs.” Analyse et conception de

I’THM, pp.207-246, 2001.

[26]. Vasilakis, Christos, Lecznarowicz, D., Et Lee, Chooi, “Developing
model requirements for patient flow simulation studies using the
Unified Modelling Language (UML)”. Journal of Simulation, Vol.3,
no.3, pp.141-149, 2009.

[27]. Clerckx, T., Luyten, K., Coninx, K. “Generating Context-Sensitive
Multiple Device Interfaces from Design.” In: Jacob, R.J., Limbourg,
Q., Vanderdonckt, J. (eds) Computer-Aided Design of User Interfaces
IV. Springer, Dordrecht, 2005, https://doi.org/10.1007/1-4020-3304-
4 23.

[28]. Nichols, Jeffrey & Myers, Brad & Higgins, Michael & Hughes,
Joseph & Harris, Thomas & Rosenfeld, Roni & Pignol, Mathilde.
“Generating remote control interfaces for complex appliances. UIST
(User Interface Software and Technology)”, Proceedings of the ACM
Symposium. pp.161-170, 2002, doi;10.1145/571985.572008.

[29]. Booch, G., Rumbaugh, J., Jacobson, I. “Unified Modeling Language
User Guide, The (2nd Edition)” (Addison-Wesley Object Technology
Series). Addison-Wesley Professionnal, 2005

[30]. France, Robert B., Kim, D.-K., Ghosh, Sudipto, et al. “A UML-based
pattern specification technique*, IEEE transactions on Software
Engineering, Vol.30, no.3, pp.193-206, 2004.

[31]. Noulamo, T., Djimeli-Tsajio, A., Lienou, J. P., Fotsing-Talla, B.
“Agent platform for the remote monitoring and diagnostic in
precision agriculture.” Engineering Letter, Vol.30, Issue.3, pp.972—
980, 2022.

[32]. Bast, Wim; Murphree, Michael; Lawley, Michael, Duddy, Keith;
Belaunde, Mariano; Gri_n, Catherine; Sendall, Shane; \ojtisek,
Didier; Steel, Jim; Helsen, Simon; Tratt, Laurence; Reddy, Sreedhar;
Ven-katesh, R.; Blanc, Xavier; Dvorak, Radek; Willink, “Meta Object
Facility (MOF) 2.0 Query/View/Transformation (QVT) ”, Object
Management Group, May 2011

“Human-Computer

Conception et

AUTHORS PROFILE

Noulamo Thierry earned his Master's
degree, Diploma of Advanced Studies
(DEA), and Ph.D. in software engineering
science from the University of Yaounde I in
2000, 2001, and 2010, respectively. He is
currently working as lecturer in
Department of Computer Engineering
from Fotso Victor University Institute of
Technology (IUT-FV) of Bandjoun, since
2004. He is a member of EANG since 2009, Life member of
UR.A.L.A since 2008. He has published more than 11 research
papers in reputed international journals and conferences. His

© 2023, IJCSE All Rights Reserved

Vol.11(8), Aug 2023

main research work focuses on Process Automation using MDE
and Muti-Agent approach. He has 18 years of teaching
experience and 11 years of research experience.

Bernard Fotsing Talla obtained his
Bachelor in Mathematics and Fundamental
Computer Science in 1999 at the University
of Dschang. He obtained his Master's
degree, his DEA (Diploma of Advanced
Studies) and his Ph.D in Computer Science
at the University of Yaoundé | in 2001,
2003 and 2010, respectively. He is currently
working as a Lecturer in the Department of
Computer Engineering of the Fotso Victor University Institute of
Technology (IUT-FV) of Bandjoun since 2008. He is a member
of the LAIA (Laboratory of Automatic Control and Applied
Computer Science) of the IUTFV since 2010. He has published
about ten Research articles in international journals including
IUCTT, USER, ARIMA and conferences including CARI which
are also available online. His main research work focuses on the
design of model-driven software architectures, the specification
of formal languages for the description of models using formal
tools such as Attributed Grammars, and very recently the use of
algorithms of Machine Learning for the diagnosis of certain
diseases. He has 13 years of teaching experience and a few years
of research experience.

Jean-Pierre Lienou, PhD.,
Lecturer/Researcher, he obtained his MSc
in System Engineering in Kiev Polytechnic
Institute (National Technical University of
Ukraine) and his PhD in University of
Yaounde | (Cameroon). Former
Maintenance Engineer at Labotech Medical,
he was in charge of Medical imaging
equipment. He joining the University of A
Dschang since 2002. He is actually the Head of Department of
Computer Engineering, College of Technology, The University
of Bamenda. He is a member of EANG since 2018. His Research
fields are Method Engineering applied in control systems, Multi
Agent Systems applied in power electric systems, cyber
resilience and the use of various artificial intelligent techniques
in diagnostic of complex systems. He manages a grant related to
cyber resilience funded by US ARL.

Djimeli Tsajio Alain Bernard received
B.S. (2001) and M.S. with thesis (2004)
from the Faculty of Science of the
University of Yaoundé 1 and the Ph.D.
(2016) from the Faculty of Science of the
University of Dschang, all in Cameroon in
the field of Physics option Electronics.
Since 2006, he have joined Fotso Victor
University Institute of Technology of the :
University of Dschang as lecturer in the Department of
Telecommunication and Network Engineering. He is member of
UR.A.LLA of the present university where he is carrying out
research in the field of Artificial Intelligence for biomedical
process.

