International Journal of Computer Sciences and Engineering

Vol.11, Issue 5, pp.41-59, May 2023
ISSN: 2347-2693 (Online)
Available online at: www.ijcseonline.org

@
A CSE

ISSN: 2347-2693 (E)

Survey Paper

An Analysis of Machine Learning Solution for QoS and QoE in Network
(Infrastructure Oriented and Less)

N. Kanimozhi*™", S. Hari Ganesh®", B. Karthikeyan®

L2Department of Computer Science, H.H The Rajah’s College, Pudukkotai — 622 001, India
3Department of Computer Science, Bishop Heber College, Trichy — 620 017, India

*Corresponding Author: nkanimozhimphil@gmail.com

Received: 25/Mar/2023; Accepted: 09/May/2023; Published: 31/May/2023. DOI: https://doi.org/10.26438/ijcse/v11i5.4159

Abstract: Now, Communication network (Network may be a wired or wireless network. In wireless network it may be an
infrastructure oriented or infrastructure less) plays vital role in the world. . At present without network people cannot do their
work easily. Communication Network described as two or more device connecting together and share its resources. If a resource
is accessed by more than one person. Network faces lot of issues in its Qualitative and Quantitative of Service. This paper is try
to provide solution for infrastructure oriented and less network QoS (Quality of Service) and QoE (Quality of Experience)

problems using Al and ML.
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1. Introduction

Communication Network is used to share resources among
nodes (users). What are the things the device has itself is
called resources. Like resource, device may be a computer,
mobile, printer, router, etc. if we want to lay communication
network between two devices, we need following factors.

e Device
The device can be called nodes. Nodes can be a
computer, router, printer, etc. Those who share or
use resources is called a device or node.

e Interface (NIC)
Link between device and the communication media
is called interface. This interface is called Network
Interface Card (NIC).

e Communication Media
Which is used to carry the data from one place to
another place.

e Protocol
Set of rules and regulation is used to transfer
resource between two open systems.

If we want to lay communication network with 'n' numbers of
devices. It needs additional two factors which is listed below.
e Topology
It describe logical or physical arrangements of
devices.
e Architecture
It describe communication format between devices.
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Communication media may be wired or wireless. In wired
network the physical path will be there between nodes. In
wireless electromagnetic waves will be present between
devices. Network device may connect with wired or wireless,
with the device nature the communication network may
called Homogenies or Heterogeneous.

If the communication network is created by the use of similar
type of devices is called Homogenies network.

If the communication network is created by the use of
dissimilar type of devices is called heterogeneous.

If the communication network uses existing things like cable,
tower, etc. That type of network is called Infrastructure
oriented networks. If the network does not utilize any existing
infrastructure is called Infrastructure Less network or Ad-Hoc
network.

The world cannot function without the above network. If we
want reserve a train ticket we need any one of the network. It
may be wired or wireless, Homogenies or Heterogeneous, and
Infrastructure oriented or Less.

The world cannot function without the above network. Even
reserve one train ticket, we need any one of the
communication network. It may be wired or wireless,
Homogenies or Heterogeneous, and Infrastructure oriented or
Less.

Communication Network provide the facility to the People to
do their work from their place itself. If more people may
access the same network and single resource. Communication
Network will face more Quality and Quantity issues.
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The Quality of Service involve following Quantitative factors
— Packet Delivery Ratio (PDR), End-to-End Time Delay,
Over Head (OH), and Normalized Routing Load (NRL). The
Quality of Service involve following Qualitative factors —
Data Theft and Data Change that means authentication and
security.

QoE is the end user’s overall happiness or frustration with the
network service experience is the litmus test for successful
network performance. QoE looks at the impact of the network
behaviour on the end user, a fuzzier domain where certain
network imperfections go unnaticed but others may render an
application essentially useless. QoE achieves its goal by
looking at the information within the data sent over the
network, not just the efficiency of data transport across the
network itself. This level of quality control requires better
network traffic analysis, with increased efficiencies and
metadata collection algorithms that gather the key
performance indicators while minimizing the amount of data
that has to be stored. Advances in automation and artificial
intelligence have made that attainable.

This paper try to find solutions for QoS and QOE issues using
latest technology like Al and ML.

1.1 ML (Machine Learning)

Machine learning (ML) [1] is the study of computer
algorithms that improve themselves over time. Artificial
intelligence is seen as a subset of it. Machine learning
algorithms create a mathematical model based on sample
data, referred to as "training data," in order to make
predictions or judgments without being explicitly
programmed. Machine learning is a discipline that uses a
variety of ways to train computers how to complete tasks for
which no entirely suitable solution exists. In circumstances
where a large number of people are involved.

Approaches to machine learning

Depending on the type of the "signal” or "feedback" available
to the learning system, machine learning systems are
generally categorised into three major categories:

. Supervised learning: A "teacher" presents
the computer with sample inputs and
desired outputs, with the purpose of
learning a general rule that maps inputs to
outputs.

. Unsupervised learning: The learning
algorithm is given no labels and is left to
find structure in its data on its own.
Unsupervised learning can be a goal in and
of itself (finding hidden patterns in data) or
a means to an end (finding hidden patterns
in data) (feature learning).

. Reinforcement learning: A computer
programme interacts with a dynamic
environment in order to accomplish a
specific task (such as driving a vehicle or
playing a game against an opponent). The
software receives input in the form of
incentives as it navigates its issue space,
which it strives to maximise.
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2. Proposed Work

The goal of this research is try to find automated solution for
QoS issues and QOE issues.

When QoS related issues occur in any type of network, before
it before realizing it should be rectify. For that purpose this
work analyze Machine Learning (ML) for solution. For
example, when the PDR is decreases the proposed solution
should be provide the solution. As well as, during
transmission if the data is theft or data is changed then the
proposed solution should be provide solution.

Some QOoE assured services in the communication network
should be provide to consumers. If the assured services failed
to serve the consumers. it should be rectified by the proposed
solution before it realize by the consumer.

This paper is try to find solution for QoS and QOE issues
using Machine Learning unsupervised learning.

3. Literature Review

Raouf Boutaba et. Al. [2]: This work examine the above
topics, as well as a number of additional obstacles and
opportunities, in this poll. This findings highlight the need for
additional study in order to progress the state-of-the-art and
realise the long-awaited ambition of autonomic network.

Noman Haider et. Al. [3]: This article discusses Al-assisted
technologies, scenarios, and applications for wireless network
security in 5G and beyond. In 5G and beyond networks,
extremely dynamic traffic patterns, service-based network
architecture,  distributed  network  operations, and
authentication across several servers necessitate a security
framework that is relatively strong, adaptable, and fully
automated. This framework is based on cutting-edge Al
technology. For distributed ad-hoc network architecture
delivering various network tasks, Al can dramatically
increase security. At present time, a semi-automated security
framework is more appropriate; but, as Al technologies
advance and feasibility studies of safe application of these
technologies are conducted, the final aim of complete
automation will be determined. Before Al can fully take over
digital automation, further study is needed to address the
obstacles and issues.

Rishabh Das, Thomas H. Morris [4] : In this work, an
extensive survey was conducted to identify a few prominent
datasets, after which a few machine learning methods and
their applications in cyber-security were explored. Finally, a
few suggestions were offered about which ML to use. A brief
analysis was performed with an ICS data set in the later part
of the paper, and the performance of a few ML algorithms
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was examined. Although the J48 algorithm outperforms other
algorithms in the scope of the study, more research is needed
to determine the performance of the algorithms because
algorithm performance is skewed based on the dataset to
which it is applied. Second, because of its ideal real-time
performance in the current circumstance, Random forest
might be a better choice as a fundamental IDS algorithm.

R. Devakunchari et. Al. [5]: This study provides a review
of Machine Learning and DL unit approaches in the realm of
network security. The literature study introduces the most
recent uses of ML and DL units in the field of intrusion
detection systems, with a focus on the last four years.
Regrettably, the most effective intrusion detection
methodology has yet to be found, and hence the investigation
continues. Every method for creating an intrusion detection
system has advantages and disadvantages, as evidenced by
the comparisons made among the various methods. As a
result, choosing one way to deploy an intrusion detection
system over the others is difficult. Network intrusion
detection datasets are valuable resources for training and
testing systems. Machine Learning and Deep Learning
methods don't work without representative data, yet obtaining
such a dataset is difficult and time-consuming. However,
there are a number of flaws with the already available public
dataset, such as inconsistencies in information or out-of-date
content, and so the issues are comparable. These problems
have largely limited the scope of analysis in this explicit
domain. The network information updates in real time,
presenting ML and DL model coaches with a larger problem.
The Model must be retrained fast and on a semi-
permanent/long-term basis. As a result, long-term learning
and progressive learning will be the emphasis of future
research in this discipline.

4. Machine Learning Techniques

4.1. The Fundamentals of Machine Learning

Artificial intelligence (Al) is a branch of computer science
concerned with the creation of new techniques, ideas, and
applications. Early attempts to develop a simplified model
based on how neurons in a biological system, such as an
organic brain, activate other neurons resulted in Artificial
Neural Networks (ANNSs). Machine learning (ML) is an
artificial intelligence sub-discipline. Machine learning
algorithms build models using training data, allowing them to
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make predictions (or choices) about new data without being
explicitly taught [6], [7]. (8), (8), (8), (8), (8), (8), Machine
learning offers a wide range of applications. ML techniques
are being utilised to improve cyber security and early
detection of a variety of automated and emerging threats [10],
[11], as well as phishing website detection [12], [13].

Machine learning can be classified into three types based on
their approaches: supervised machine learning, unsupervised
machine learning, and semi-supervised machine learning. In
supervised machine learning, the required labels or classes for
the data are already known, and those labels and classes are
used to train for computations like classification and
regression. In unsupervised machine learning, the target value
is unknown. The goal of unsupervised learning is to discover
links between data. It works by finding data patterns, such as
clustering. When a portion of the data needs to be labelled or
when human specialists are needed during the data collection
process, semi-supervised machine learning is used. A human
expert will surely assist in fixing the issue and boosting the
model's accuracy throughout the labelling phase [14].
Reinforcement learning (RL) is a subdomain of machine
learning. RL is also known as learning with a critic since the
algorithms receive feedback when they make an inaccurate
prediction. The algorithm, on the other hand, hasn't been told
how to fix it. Instead, the algorithm must evaluate and test a
wide range of possibilities until it finds the best one [15]. This
phenomenon is based on a reward and punishment system. A
well-known example of this method is AlphaGo [16], [17].
Deep reinforcement learning is used in cyber security by [18],
[19], and [20].

4.2. A Most Popular Machine Learning Techniques
The approaches used in machine learning are described in this
section. Table 1 summarises the time complexity, benefits,
and drawbacks of ML models.

Support Vector Machine

Decision Tree

K-Nearest Neighbor

Random Forest

Naive Bayes

Artificial Neural Network
Recurrent Neural Network
Convolutional Neural Networks
Deep Belief Network

Table 1. An overview of the most commonly used machine learning techniques.
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5. Machine Learning for Network Security -
Current State

Cyberattacks and online threats are said to be protected by
network security. Only a few instances of network security
include the detection and classification of dangerous URLs,
financial fraud, spam classification, IDS, malicious domain

creation, probing, cyber extortion, and malware. Furthermore,
hackers are targeting mobile devices and networks in addition
to computer networks as a result of the fast rise of mobile
nodes and networks. There has never been a survey that
focuses on any aspect of Machine Learning for Network
Security assaults on both computer networks and mobile
devices in one location, to our knowledge. Figure 10 depicts
the important sectors of cyber security, as well as cyberspace
attacks and a collection of key machine learning references
that target that specific type of attack. Other aspects of
cyberspace, such as network security, Internet security, and
ICT security, overlap with cyber security.

It has focused on three major cyber security concerns (IDS
detection and categorization, spam, and malware), all of
which are aided by machine learning approaches. We've gone
into greater detail about these risks to mobile devices and
computer networks. Intrusion detection systems that can be
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employed on a computer network include signature-
based/misuse-based, anomaly-based, and hybrid-based
techniques. Intrusion subtypes are further classified into those
that are employed on a computer network vs those that are
used on a host. Image, email, SMS, video, and Twitter are all
examples of media that can be used to refine spam detection.
Malware is also looked into from a static and dynamic
standpoint. Machine learning approaches have been utilized
to combat several types of cyberattacks in the literature.

;
.| Agent ||
State s | Reward r Action a
e < ',
5 r r
Environment

Figure 1. Reinforcement Learning.
Machine learning is one of the strategies for quickly

responding to cyberattacks. Machine learning techniques are
employed to address such concerns since learning approaches
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may learn from prior occurrences and respond swiftly to
newer attacks. We've included a few links to stories about this
form of intrusion. The subheadings below go through each
cyber threat to the computer and mobile networks, as well as
how cutting-edge machine learning techniques are being
utilized to counteract them.

5.1. Computer Network Intrusion Detection

There are two types of cyber security threats in cyberspace:
network-based and host-based. On both levels, a cyber
defence system provides a defence mechanism. The network-
based defence system is in charge of controlling network
flow. A host-based defence system, on the other hand, uses a
firewall and other protection mechanisms installed on the host
to combat incoming data on a workstation/computer [85],
[86]. As described in section I1-A, the four fundamental types
of attacks for instruction detection are Denial of Service
(DoS), Phishing/Scanning/Probe, Remote to Local (R2L), and
User to Root. (U2R). The crossover between machine
learning models and intrusion detection attacks is summarised
in the sections below.

5.1.1.DOS Attacks and ML

To detect DoS assaults, Decision Trees with a 97.24 percent
accuracy [87], Neural Networks with a 97 percent accuracy
[88], Nave Bayes with a 96.65 percent accuracy [87], and
SVM with a 91.6 percent accuracy [89] were utilised.

5.1.2.Probe Attacks and ML

Nave Bayes, Fuzzy Association, Decision Tree, Neural
Network, and SVM were used to detect probing attacks with
accuracy of 88.83 percent, 88.50 percent, 77.92 percent,
71.63 percent, and 36.65 percent, respectively [87], [88],
[90].

5.1.3. R2L Attacks and ML

On the KDD dataset, R2L attacks were detected using Neural
Net, SVM, and Nave Bayes, with Neural Net achieving the
greatest accuracy of 26.68 percent. [87]-[89].

5.1.4. UZR Attacks and ML

Fuzzy association, SVM, DT, and NB were used to identify
User to Root assaults, with accuracy rates of 68.60 percent,
12 percent, 13.60 percent, and 11.84 percent, respectively.

5.1.5. HOST-BASED Attacks and ML

Machine learning techniques were used to detect attacks on
host and computer networks. Machine learning technologies
such as Rule-based, ANN, Fuzzy association rules, and
various statistical methodologies were employed to detect
misuse-based assaults on a host [91]-[95]. Statistical models,
association rules, ANN, and KNN were used to identify
anomalous 492-based detection methodologies on a host
[96]-[98]. For the hybrid-based intrusion, ANN and
association rules were applied over the host [99], [100].

5.1.5.1. Network-Based Attacks and ML

SVM and Decision Tree were used to identify misuse-based
attacks on a network [101]-[106]. Random Forest and ANN
were used to the network for hybrid-based intrusion detection
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[107], [108]. Teodoro [109] used machine learning and
knowledge-based techniques for anomaly-based intrusion
detection.

Machine learning (ML) methodologies for identifying
Internet traffic for any cyber data and IP flows were presented
by Nguyen [110]. For intrusion detection, others used Fuzzy
Logic and Artificial Neural Networks (ANN) [111]. Case-
based reasoning is a technique for solving new problems by
referring to previously solved similar problems. The answer
of previous problem situations is then employed as a starting
point for tackling a current challenge [112].

Mansour [113] proposed a case-based reasoning technique for
intrusion detection. Unsupervised and semi-supervised
techniques such as clustering algorithms in [68], SVM in
[114], and neural networks in [115] were employed to detect
abnormalities in addition to supervised machine learning
techniques. Others have detected irregularities in airports
using deep learning models [116] and feature optimization
approaches for intrusion detection systems [117].

5.1.6. Techniques (Tools)

For intrusion detection, there are a variety of tools existing on
the market. Intrusion detection software is designed to deal
with intrusions on either the host or the network. To detect an
intrusion on a network, a Network Intrusion Detection
System (NIDS) is utilised. A Host Intrusion Detection System
(HIDS) is used to identify intrusions on a host based on
signatures or anomalies. A number of free ID tools are
available. Others, on the other hand, are pricey. Popular
commercial ID tools include McAfee NSP [118], Hillstone
NIPS [119], Huawei NIP [120], Palo Alto [121], Dark Trace
[122], and Cisco Firepower NGIPS [123]. Snort [124],
Suricata [125], Samhain [126], Security Onion [127], and
Sagan [128] are all free tools. The use of tools is determined
by the operating system, detection mechanism (HIDS, NIDS),
and detection type (HIDS, NIDS) (anomaly-based, signature-
based). Another technique for preventing and mitigating
cyberattacks is the Trusted Automated eXchange of
Intelligence Information (TAXII). Using Structured Threat
Information eXpression (STIX), a language created to convey
cyber threat information, TAXII outlines how services and
messages interact to become a mechanism of sharing threat
information [129].

5.2. Mobile Devices - Intrusion System

5.2.1.Framework

Mobile devices are capable of doing a wide range of complex
activities. Every day, smart gadgets face an increasing
number of attacks [130], [131]. In wired networks, networks
now offer higher transmission speeds ranging from 100 Mbps
to 10+ Gbps. IDS was unable to efficiently acquire and
analyse network traffic due to the large volume of data. Snort,
a Deep Packet Inspection (DPI), can handle data up to 1 Gbps
on a wired network and discard after 1.5 Gbps [132]. Attacks
on a mobile network can include replaying, traffic analysis,
and spoofing [133].
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5.2.2.Movement

ML techniques such as supervised ANN, Decision tree, MLP,
and SVM are frequently used to detect an intrusion on a
mobile network. Decision trees and deep learning algorithms
outperformed all other classifiers. Machine learning
techniques have evolved to offer new methods of intrusion
detection as bandwidth has increased [134].

5.2.3. Approaches and Routine

The two main types of mobile network attacks are active and
passive assaults on the network. An active assault is one in
which data is modified and the normal functioning of a
network is disrupted in order to obtain access and impair
network performance. Passive assaults, on the other hand, do
not disturb the network's usual flow but instead search it for
any relevant information [135].

5.2.3.1. Anomalous Behaviors and ML

Bayes decision rules [136] used to improve the security of
cellular networks. The authors of [137] employed supervised
ANN to identify malicious performance on mobile
communication, like service fraud. [138] used ANN and
probabilistic models to identify use irregularities with a TPR
of 69 percent. In [139]-[141], ANN is also utilised to detect
anomalies in mobile network communication. The authors of
[141] proposed the VirusMeter malware detection system and
compared it to ANN and decision trees in order to discover
unusual behaviours. Self-organizing maps and clustering
algorithms were employed to detect abnormal behaviour, with
the conclusion that both methods were adequate for network
monitoring [142]. [143] compared the accuracy of detecting
misuse-based behaviour of users on mobile devices using the
BN, KNN, and Random Forest techniques.

On mobile devices, decision tree, KNN, MLP, and SVM were
used to detect infiltration, with decision tree outperforming
the others with an accuracy of 97.04 percent [144]. SVM was
used to detect infiltration on a mobile network, and it
performed similarly to a system that wasn't infected [145]. A
90.99 percent accurate deep learning solution for detecting
cyberattacks has been proposed [146].

5.2.4.  Techniques (Tools)

To safeguard the Android system, there are a variety of
programmes accessible on the market. Some of them are free
to use, while others with higher quality charge an annual fee.
Bitdefender [147], Trend Micro [148], and BullGuard [149]
are commercial programmes that charge an annual fee to
secure the Android system. Sophos [150], Trustlook [151],
and PSafe [152], on the other hand, are examples of ID
software that are free to use but have restricted
functionalities.

5.3. Computer Network - Malware Detection

Malware is divided into two groups: first, the first generation,
and second, the second generation. Malware from the 1st
generation has the similar structure. The second generation,
on the other hand, modifies its structure and grows into a
novel variation while maintaining the same activities [166].
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Polymorphic, Metamorphic, Oligormorphic, and Encrypted
malware are the second generation's additional classifications
based on structure evolution. Malware structural changes are
unpredictable and random [167].

5.3.1. Feature Selection and Ml

Feature selection improved accuracy when machine learning
algorithms were used. Feature selection was employed by
authors in [168], [169], and [171], who claimed that it
enhanced malware detection accuracy. Kolter [172] analysed
the datasets using a decision tree, TF-IDF, and support vector
machine, with the decision tree outperforming the others. A
decision tree was also used in conjunction with a hierarchical
feature extraction approach in [169].

The AdaBoostM1 and decision tree classification algorithms
were utilised by the authors of [173], who reported a 90
percent malware detection accuracy.

The authors of [174] requested that their hyper-grams method
for malware identification produced no false alarms. In [175],
the semi-supervised technique was found to be 86 percent
accurate, whereas SVM [168] was shown to be 95.9%
accurate. SVM was also used to detect malware in [176],
[177]. The researcher of [178] proposed a new technique for
detecting unknown malware that has a 97.95 percent
accuracy. In [179], the authors introduced a different dataset
named CA and Mal2017, which achieved an 87 percent recall
for traffic classification detection and incorporated 80
features.

5.3.2. Zero-Day Malware and ML

An approach for identifying zero-day attacks was proposed
by Pierra et al. [180]. Principal Component Analysis (PCA)
and artificial neural networks (ANN) were planned to detect
and categorise Al-based cyberattacks, with a precision of
90% [181]. In [182], DBN was used to detect malware. Other
authors in [183] employed DBN with semi-supervised
techniques to enhance accuracy.

5.3.3. Adversarial Inputs and ML

Adversarial malware samples can readily evade the machine
learning methods used to identify malware. Because machine
learning systems were not created with cyber security in
mind, a dodge can readily deceive the ML [184-186].
Adversial training is being researched as a possible option.

5.3.4.Techniques (Tools)

Malware detection tools are available on the market in a
variety of forms. However, selecting the appropriate
instrument is crucial. Some tools are free to use, while others
need an annual fee. The most popular anti-malware
programme is Avast Internet Security [187], which accounts
for 15.21% of the market [188]. Malwarebytes [189], Norton
Power Eraser [190], AVG [191], and Bitdefender Antivirus
[192] are also regularly used tools.

5.4. Mobile Devices -Malware Detection

There are three types of malware detection strategies for
mobile devices: static, dynamic, and hybrid. Static detection
is a method for spotting potentially hazardous patterns in a
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programme without running it. Dynamic detection, on the
other hand, involves running the programme and observing
its dynamic behavior [195]-[197]. Hybrid malware detection
is a technology that combines static and dynamic analysis to
detect malware. [198], [199].

5.4.1. Feature Selection and ML

Others [200] proposed a novel way for categorising related
flow behaviours into bags, which was followed by a
supervised detection method with a 90% precision. The
authors of [201] employed SVM to train their model and
predict future assaults using real-world attacks. Decision
Tree, KNN, and SVM were used to achieve a 90% accuracy
on the model represented by opcode-sequence-frequency
[168]. Random Forest, SVM, Logistic Regression, and Nave
Bays were used to identify malware, with Random Forest
outperforming in terms of TPR/FPR [202].

5.4.2.Android and ML

Existing malware finding methods on Android performed
excellently on pre-defined datasets, but they failed to reach a
high detection rate in real-world settings. Using permission
and API calls, SVM, J48, and Bagging were used to detect
malware in Android-based applications, with bagging
achieving 96.39 percent accuracy [203]. Another author
[204], [205] used permission features and SVM to classify
Android malware. The authors of [206] used information gain
to establish the most important components. They employed
the C4.5 Decision Tree, RIPPER (Repeated Incremental
Pruning to Produce Error Reduction), and Kk-Nearest
Neighbour techniques to categorise malware. HOSBAD is a
K-NN-based Android malware detection system that can tell
the difference between malicious and benign apps [207]. The
Nave Bayes technique beat other classification models in
detecting malware in [208]-[210].

5.4.3. Detection Techniques and ML Models

Various Android identification approaches for static and
dynamic analysis were categorised and assessed by the
authors of [211]-[213]. The authors of [214] identified the
relevant features by doing static and dynamic analysis on the
application, followed by 95 percent accuracy SVM. In [170],
[215]-[221], SVM was also employed to detect malware.

If compared to other ML techniques, DeepFlow, a DBN-
based deep learning model, was shown to identify Android
malware and earned the highest F1 score [222]. The authors
of [223] employed the K-mean technique to identify harmful
Android business and tool apps with a recall of 71%.

5.4.4. Parallel Combination in ML Models

The authors of [224] offered a concurrent combination of
Decision Tree, Simple Logistic Regression, Nave Bayes,
PART, and RIDOR algorithms, claiming that evaluating the
classifiers individually yielded greater accuracy. The authors
of [225] used the DBN architecture to create a deep learning
model and compared detection accuracy to SVM, C4.5, and
Logistic Regression. The authors discovered that the deep
learning model outperformed traditional machine learning
models with an accuracy of 96.76 percent.
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Ucci [226] conducted a survey on malware analysis using a
variety of machine learning methodologies, as well as a
correlation between the machine learning techniques used in
the analysis, the types of attributes acquired from samples,
and the analysis' purpose. They claimed that there was
insufficient publicly available data for certain purposes. They
emphasized the need of putting new techniques to the test
using recent data. Such solutions would be useless in real-life
situations otherwise [226].

5.4.5. Techniques (Tools)

Kaspersky mobile antivirus [227], Norton Security and
Antivirus [228], and Avira Antivirus Security [229] are
examples of high-end mobile device malware detection
software.

6. Criteria and Metrics for Evaluation

A variety of indicators and measurements can be used to
evaluate an ML model. Every learning task emphasises a
variety of measures. A confusion matrix is one of the formal
ways to present the aspects of the learning model. A
confusion matrix, often called an error matrix, is a table that
summarises the performance of a prediction or classification
model [230]. Table 4 illustrates a confusion matrix that
categorises the binary classification findings into four groups.
It generates true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) values from the
classifier's output, which are then utilised to construct further
measures.

In addition to the mistake rate, other factors such as time
complexity, space complexity, and the adaptability of
learning algorithms should be addressed. The priority of the
measure, on the other hand, changes depending on the
application. Assume that while determining whether a
financial transaction is authentic or fraudulent, false negatives
must be taken into account. A single value of FN in a
financial transaction might result in a large financial loss. As
a result, we are unable to determine which metrics are most
important for a specific form of intrusion/attack. The
following terms are commonly used to evaluate cyber
security classification models:

i. True Positive: number of accurately categorised
normal traffic/nonmalignant/positive
samples/applications by the model.

ii. The number of attack/malicious/negative
samples/applications accurately categorised by
the model is known as True Negative.

iii. The number of attack/malicious/negative
samples/applications misclassified as
normal/positive by the model, also known as
False Positives or False Alarms.

iv. The number of normal traffic/nonmalignant/positive
samples/applications that the model incorrectly
classifies as False Negative.

The confusion matrix's aforementioned terms are also used to
produce the following metrics:
1. Precision/Positive Predictive Value
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It's the proportion of correctly diagnosed benign/positive
samples/applications in the dataset to all classified
benign/positive samples/applications (Eq. 1). A greater
precision number is preferable and indicates that a classifier
is doing better.

Precision = TP/(TP + FP) @

2. Recall/ Sensitivity/True Positive Rate (TPR)

It's a ratio of correctly categorised benign/positive

samples/applications to the total number of benign/positive

samples/applications in the dataset (Eq. 2). A greater recall

value is good and indicates that a classifier is doing better.
Recall = TP/TP + FN 2

3. Specificity/True Negative Rate (TNR)
It's the proportion of attack/malicious/negative
samples/applications accurately classified to the total number
of attack/malicious/negative samples/applications in the
dataset (Eq. 3). A greater specificity value is good and
indicates that a classifier is doing better.

True Negative Rate = TN / (TN + FP) 3)

4, Accuracy

It's the proportion of correctly identified samples/applications

in a dataset to the total number of samples/applications (Eqg.

4). The higher the accuracy value, the more accurate the

classifier is. It is preferable to have a greater accuracy value.
Accuracy = (TP + TN)/(TN + FP + FN + TP) (@)

5. Error Rate
It's the proportion of samples/applications that were
erroneously  classified to the total number of
samples/applications in the dataset (Eg. 5). A lower error rate
is preferable and indicates that a classifier is performing
better.

Error Rate = (FP + FN)/(TN + FP + FN + TP) 5)

6. Fall Out/False Positive Rate (FPR)
It's the proportion of malicious/negative samples/applications
that were erroneously classified to the total number of
attack/malicious/negative samples/applications in the dataset
(Eq. 6). A lower FPR number is preferable and indicates that
a classifier is performing better.

False Positive Rate = FP/(FP + TN) (6)

7. Miss Rate/False Negative Rate (FNR)
It's the proportion of benign/positive samples/applications
that were erroneously classified to the total number of
benign/positive samples/applications in the dataset (Eq. 7). A
lower FNR value is preferable and indicates higher classifier
performance.

False Negative Rate = FN/(FN + TP) @)

8. False Discovery Rate (FDR)

It's the proportion of malicious/negative samples/applications
that were mistakenly classified to the total number of
classified attack/malicious/negative samples/applications in
the dataset (Eq. 8). A lower FDR value is preferable and
indicates that a classifier is performing better.
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False Discovery Rate = FP/(FP + TP) (8)

9. False Omission Rate (FOR)

It is a method of calculating the model's accuracy utilising
precision and recall variables (Eqg. 10). If the user wants to
strike a compromise between recall and precision, and the
sample distribution is uneven, this metric will be useful. A
higher F1-score indicates that the ML model is outperforming
other models.

F1-score = 2.(precisionx* recall)/(precision + recall) (10)

10. F1-Score

It is calculated using the classifier's true predicted values (Eq.

11). The accuracy will not project the right picture for

positive samples if the number of negative samples is greater

than the number of positive ones. In that situation, G-Mean

will be of assistance.
G-mean=V(((TP/(TP+FN)XTN)/((TN+EP))) ) (11)

11. G-Mean

The often used graph that plots the values of TPR (y-axis)
against FPR to provide a summary of all threshold's
performance (x-axis).

12. Received Operating Characteristic (ROC) Curve

AUC refers to the size of the area covered by ROC, which
can range from 0.5 to 1.0. A higher AUC value indicates that
a classifier is doing better.

13. Area Under Curve (AUC)

The average of the squared difference or error that occurred
between the actual values and predicted values of the
classifier can be used to construct this metric. A lower MSE
score is preferable and indicates that a classifier is performing
better.

14. Mean Squared Error (MSE)

The average of the squared difference or error that occurred
between the actual values and predicted values of the
classifier can be used to construct this metric. A lower MSE
score is preferable and indicates that a classifier is performing
better.

15. Mean Absolute Error (MAE)

This metric can be generated by averaging the absolute
difference or error that occurred between the classifier's
actual and projected values. A lower MAE value is preferable
and indicates higher classifier performance.

16. Mean Absolute Prediction Error (MAPE)

The MAPE is the average of the absolute difference between
the classifier's actual and predicted values. A lower MAPE
value is preferable and indicates higher classifier
performance.

17. Root MSE (RMSE)

The square root of the mean squared error can be used to
determine this metric. A lower RMSE value is preferable and
indicates higher classifier performance.
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TABLE 2. A comparison and summary of ML models for intrusion
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KNN KNN
96.51% 94.79%
- AdaBoos
AdaBoost t93.40%
93.40% 148
AdaBoost, (_ o i .
2020 12817 | Customized 348, SVM, DDoS e Tl 2 At
- 85.30% 85.20%
NB 73.10% NB
7.50%%
2020 2821 | NsI-gkDD | T D;ﬁ’{fjﬂ::"l 1:231.::;521_ 95 4095 06.20% 93 50%
2020 1283 KDD 99 = NB. DT, RF P{:{:H:QR';L 99 80% 99 80% -
TABLE 3. A comparison and summary of ML models for malware detection
Pul:!_l ished Ref Dataset Sub-Domain Learning Model | Attack Type - Res_u.lt
Year Accuracy Precision Recall
: g y ’ n-gram, Markov o7
2011 [284] | Customized Hybrid Chain - 94.41% - -
2011 | [285] | Customized|  Dynamic ; Mabile - - i
: Malware
2012 286] SMOTE Static DT - 96.62.% - -
2012 | [286] | e Hbid ANN : 88.89% 88.89% .
eavens
VX .
2012 [286] H Static ANN - 92.19 - -
eavens
Malware ;
g ) ; Y foe %0;() = =
2013 [287] Tistasat Dynamic SVM 959
: Malware ;
201 : £ v " 92 349 _ 93%
013 [168] o Static D1 02.34% 3%
Malware . -
X 2 o » % it . -
2013 [288] Dataset Dynamic DT 88.47
VX - —
2013 289] . : Static ANN - 88.31% - -
Geavebs
2013 [290] | NSL-KDD Hybrid NB - 99.50% - -
Malware . .
9 o 7 o ” 0/ 40%
2004 | 2o1] | oot Hybrid NB 97.50% 67.40
2014 | [291] | Customized Static PART Malicions 95 8% . :
Intend
2014 [292] | Customized Static J48, NB. RF Mobile MLP 83% - -
. Malware .
2015 2 S\ - 0 - .
2015 [293] Ditiist Dynamic SVM 97.10%
2015 | [294] KDEOC“F’ Hybrid DBN ; 91.40% . 95.34%
2015 [295] | VX Heaven Static NB - 88.80% - -
2015 | (296 | Malware Hybrid NB : 95.90% 95.90% 95.90%
Dataset
2016 [297] | Customized Static SVM - 91% 84.74% 100%
2016 [194] | Customized Static DT - 99 90% 99 40% -
2016 [225] | Customized Static DBN - 89.03% 83% 98.18%
2016 [298] Comdo Static ANN - 92.02% - -
- Malware : :
[s]s - - 49 - =
2016 [299] Dataset Dynamic RF 96.14%
. . -, NB. SVN
2016 [300] Drebin Dynamic KE, 1\3‘15 L - RF 99.49% - -
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2017 | pory | Mabware Static SVM - 94.37% . -
Dataset
2017 [302] | Customized Static DT - 84.7% - -
M e y .
2017 | [303] Sal“f““ Hybrid RF : 91.40% 89.80% 91.10%
dtaset
Android . Information
5 i L - -
2017 [304] Apps Dynamic RF Theft 99.1%
2017 [305] | Contagio Hybrid CNN API Calls 99 4% - -
: Comodo ; :
2 3 I S ° 4 4
2017 [306] Cloud DBN API Calls 96.66%
2018 307] | Customized Static SVM - 89.91% 88.84% -
2018 [308] | Customized Dynamic SVM - 96.27% 96.16% 93.71%
2018 [309 SMOTE Dynamic DT - 92.82% - .
2018 [310] | Customized Dynamic ANN - 82.79 - -
2018 [311 Drebin Hybrid RF Mobile 99.07% - -
2018 [312] | VirusShare - ANN - - - 98.29%
2018 | [313]| Drebin Static CNN Code 95.4% » v
Analysis
2018 [314] Drebin Dynamic/Static DNN System Calls 95% - -
2019 [315] | Customized Static SVM - 95.17% 95.57% 95%
2019 [316] | Customized KNN, DT, Malicious Qf]:;" SVM 92% KNN 95%
2 S & : L 7o Q0 ) 0/
SVM. RF Samples DT 99 37% RF 96% RF 96%
. Hardware- J48 93.2%
2 3 = 4 - X a =
2019 [317] | Customized J48. MLP Assisrad MLP 94 7%
Contagia KiGE
2019 [318] Dump, Static AdaBoost S : 99.11% 99.33% 99.36%
Virus Share Apps
J48 76.2% J48 76 8% JAR 77.6%
: J48 RF, Android RF 76% RF 73.5% RF 71.6%
202 3 . . :
2020 B12] | Customized AdaBoost Apps AdaBoost AdaBoost AdaBoost
75.4% 75.8% 75.9%
Android
2020 | [320]| Malware - LST™M API Calls 97.22% - s
Dataset
Leopard
2020 [321] Maobile - Deep CNN loT Device - 98.79% 98.79%
Dataset
2020 | [322]| Drebin Hybrid Graph CN sareatd 99.69% 99.57% 99.82%
Malware

7. Discussion

The Table 2 & 3 shows the past ten years data from the year
2010 onwards ML algorithms are used in the network
security in different perspective. Table 2 made a comparison
of different ML models with intrusion. Table 3 made a
comparison of different ML models with malware. From this
above two comparison it shows different ML models are very
useful to improve QoS and QoE in the infrastructure oriented
and infrastructure less networks. This analysis gives positive
results to proceed author's research

8. Conclusion

This review gives positive answer. According to the previous
researchers, Network can get automated solution for QoS and
QoOE issues using Al and ML. Reviewed researchers are
provides solutions using Al and ML for their domain

© 2023, IJCSE All Rights Reserved

problems. In the next work author have to analyse the other
researchers solution which is related to QoS and QOE issues.
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