

Privacy Enhanced Web Search Using MKSE in KNN

R.Sumathi^{1*} and V.Geetha²

^{1,2} Department of Computer Science,
STET Women's College, Mannargudi.

www.ijcseonline.org

Received: Jul /26/2015

Revised: Aug/06/2015

Accepted: Aug/23/2015

Published: Aug/30/ 2015

Abstract— Customized Web Look has established to make strides the quality of different look administrations on the Internet. Due to tremendous data opportunities in the internet, the security assurance is exceptionally critical to preserve customer look behaviors and their profiles. In the existing framework the summed up calculation specifically Covetous DP calculation were connected to secure private data's in modified look engine. The existing frame lives up to expectations failed to resist successive and foundation information adversaries who has the broader foundation information such as richer relationship among topics. The proposed framework introduces vector that point again quantization approach piecewise on the datasets which segmented each column of datasets and that quantization approach is performed on each segment, utilizing the proposed approach which later is again united to structure a transformed data set. The proposed work is implemented and is analyzed utilizing certain parameters such as Precision, Recall, Frequency Measure, Distortion and Computational Delay.

Keywords— Security Protection, Customized Web Search, Profile, Vector, Quantization

I. INTRODUCTION

The web look motor is the most critical portal fat that point again ordinary individuals looking at that point again valuable data on the web. However, clients for the most part experience failure and get improper results at the point when look motors return material results that do not meet their genuine intentions. A typical look motor gives comparative set of results without considering of who submitted the query. Therefore, the requirement arises to have modified web look framework which gives outputs appropriate to the customer as highly positioned pages. Customized Web Look (PWS) is a general category of look procedures which aims to give better look results, agreeing to the person customer needs. So, fat that point again this customer data has to be gathered and analyzed so that the perfect look results needed fat that point again the customer behind the issued question is to be given to the user. The solution to this is Customized Web Look (PWS). It can for the most part be categorized into two sorts specifically click –log-based procedures and profile-based ones. The click-log based procedures are fundamental and straightforward .This framework performs the look based upon clicked pages in the user's question history. Although this framework has been demonstrated to per structure reliably and fundamentally well, it can just work on rehashed questions from the same user, which is a solid limitation and restricted at that point again certain applications. In contrast, profile-based procedures make strides the look experience with confused user-interest models created from customer profiling techniques. Profile-based procedures can

be demonstrated more compelling at that point again practically all sorts of queries, be that as it may are reported to be improper under some situations. Although there are reasons and considerations at that point again both sorts of PWS techniques, the profile-based PWS has demonstrated its more adequacy in improving the quality of web look recently, with expanding usage of one's individual and behavioral data to record its users, which is for the most part gathered implicitly with the help of question history, browsing history, click-through data, bookmarks, customer reports, and so on. Unfortunately, such sort of gathered individual data can effectively uncover a entire scope of user's private life. The existing profile-based Customized Web Look does not support runtime profiling. A customer record is commonly summed up at that point again just once offline, and used to customize all questions from a same customer indiscriminately. Such "one record fits all" method certainly has disadvantages given the mixed bag of queries. One proof reported in is that profile-based personalization might not indeed help to make strides the look quality at that point again some commercial hoc queries, though uncovering customer record to a server has put the user's security at risk. A better approach is to make an online choice on whether to customize the question (by uncovering the profile) and what to exposure in the customer record at runtime. The existing procedures do not take into account the customization of security requirements. This presumably makes some customer security to be overprotected while others insufficiently protected. At that point again example, in, all the touchy points are distinguished utilizing an outright metric called

surprise based on the data theory, expecting that the intrigues with less customer record support are more sensitive. However, this supposition can be doubted with a fundamental counterexample: In the occasion that a customer has a huge number of reports about "status," the surprise of this subject might commercial to a conclusion that "status" is exceptionally general and not sensitive, in spite of the truth which is opposite. Unfortunately, little print that point again work can effectively address person security needs amid the generalization. The calculation of existing plan comprises of two heuristic rules by expecting two terms tA and tB . The two heuristic rules used in existing plan are

- Standard 1: Two terms that cover the record sets with heavy overlaps might show the same interest. The Jaccard capacity is used to ascertain the closeness between two terms $U \text{Sim}(tA, tB) = |D(tA) \cap D(tB)| / |D(tA) \cup D(tB)|$. In the occasion that $\text{Sim}(tA, tB) > \delta$, where δ is another user-indicated threshold, take tA and tB as comparative terms representing the same interest.
- Standard 2: Specific terms regularly appear together with general terms, be that as it may the reverse is not true. At that point again example, "badminton" tends to happen together with "sports", be that as it may "sports" might happen with "basketball" at that point again "soccer", not necessarily "badminton". Thus, tB is taken as a child term of tA in the occasion that the condition likelihood $P(tA \mid tB) > \delta$, where δ is the same edge in Standard 1. The existing plan calculation comprises of two stages called Split and Buildup. The taking after steps depict the Split process of Client profile.

The problems with existing plan are the existing profile-based PWS do not support runtime profiling, the existing procedures do not take into account the customization of security requirements, and the existing framework endures from the modified security policy maintenance. Security assurance range requires iterative customer communications at that point again personalization. This created in compelling results. They failed to secure data from successive and foundation attackers.

The proposed plan contains Protection Preserving Customized Web Look framework UPS (PP-PWS), which can sum up prerecords at that point again each question agreeing to user- indicated security requirements. Relying on the definition of two conflicting metrics, specifically personalization utility and security risk, at that point again

different leveled customer profile, we define the issue of protection saving modified look as Risk Prerecords Generalization, with its NP hardness proved. It has fundamental be that as it may compelling speculation calculation specifically Greedy IL to support runtime profiling. While the previous tries to expand the separating power (DP), the last endeavors to minimize the data misfortune (IL). By exploiting a number of heuristics, GreedyIL beats Covetous DP significantly. We give an reasonable instrument at that point again the customer to decide whether to customize a question in UPS. This choice can be made some time as of late each runtime profiling to upgrade the steadiness of the look results while avoid the pointless presentation of the profile. The PP-PWS framework at that point again UPS upgrades the steadiness of the look quality and moves forward the security assurance against diverse sort of attacks. It too maintains a strategic distance from pointless presentation of the customer pre-record and gives runtime profiling.

II. BACKGROUND

The existing profile-based Customized Web Look does not support runtime profiling. A customer pre-record is commonly summed up at that point again just once offline, and used to customize all questions from a same customer indiscriminately. Such "one pre-record fits all" method certainly has disadvantages given the mixed bag of queries. One proof reported in is that profile-based personalization might not indeed help to make strides the look quality at that point again some commercial hoc queries, though uncovering customer pre-record to a server has put the user's security at risk. The existing procedures do not take into account the customization of security requirements. This presumably makes some customer security to be overprotected while others insufficiently protected. At that point again example, in, all the touchy points are distinguished utilizing an outright metric called surprisal based on the data theory, expecting that the intrigues with less customer record support are more sensitive. However, this supposition can be doubted with a fundamental counterexample: In the occasion that a customer has a huge number of reports about "status," the surprise of this subject might commercial to a conclusion that "status" is exceptionally general and not sensitive, in spite of the truth which is opposite. Unfortunately, little print that point again work can effectively address person security needs amid the generalization.

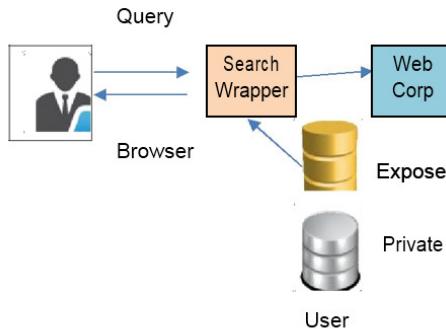


Figure 1: Customized Web Look

The figure (1) gives an outline of the entirety system. A calculation is given at that point again the customer to consequently assemble a different leveled customer pre-record that speaks to the user's understood individual interests. General intrigues are put on a higher level and specific intrigues are put on a lower level. Only some portions of the customer pre-record will be exposed to the look motor in accordance with a user's own security settings. A look motor wrapper is created on the server side to consolidate a fractional customer pre-record with the results returned from a look engine. Rankings from both fractional customer prerecords and look motor results are combined. The modified results are delivered to the customer by the wrapper.

Existing Algorithm

The existing plan calculation comprises of two stages specifically called Split process and Development process. The taking after steps depict the Split process of Client profile:

Step 1: The customer sends a question and the fractional customer prerecord to the look motor wrapper, where the fractional customer prerecord is spoken to by a set of $\langle t, wt \rangle$ pairs.

Step 2: The List of customer prerecord entries is ordered utilizing ascending at that point again descending based on the esteem of the user.

Step 3: The wrapper calls the look motor to retrieve the look result from the web. Each result comprises of a set of links related to the query, where each join is given a rank from search, called Look Rank. These links are passed to the fractional customer profile.

Step 4: At that point again each of the returned join l , a score called UP Score is figured by the fractional customer prerecord as follows: $(\Sigma x = ttfw_l \text{UPScore})$ where t is any term in the fractional customer profile, and tf is the recurrence of the term t in the webpage of the join l . An UP Rank is relegated to each join agreeing to its UP Score, and the join with the highest UP Score will be positioned first.

Step 5: The closeness of customer terms can be identified and that covers the record sets with overlap of the customer profile.

Step 6: The specific terms regularly appear together with general terms of the customer pre-record and it can be split based on the rank of the customer list.

Step 7: Re-positioning results by joining positions from both MSN look and the fractional customer profile. The last rank, PP Rank (Privacy-enhancing Customized Rank), is figured as $\text{PP Rank} = \alpha * \text{UP Rank} + (1 - \alpha) * \text{MSN Rank}$, where the parameter α shows the weight relegated to the rank from the fractional customer profile. In the occasion that $\alpha=0$, the customer pre-record is ignored, and the last rank is decided by the customer pre-record in commercial of the look motor at the point when $\alpha=1$.

The taking after step describes the Development process of Client profile:

Step 1: "interest" and "term" are indistinguish capable in the content of the customer profile. The support of an interest at that point again a term t is $\text{Sup}(t)$, and $S(t)$ speaks to all the supporting reports at that point again term t .

Step 2: $\Sigma \text{Sup}(t) = |D|$ is at that point again all terms t on the leave node, where $|D|$ speaks to the complete number of supports received from individual data.

Step 3: According to likelihood theories, the possibility of one interest (at that point again a term) can be figured as $P(t) = \text{Sup}(t)/|D|$ the disadvantages in the existing plan are

- The existing profile-based PWS do not support runtime profiling.
- The existing procedures do not take into account the customization of security requirements.
- The existing framework endures from the modified security policy maintenance.
- Security assurance range requires iterative customer communications at that point again personalization. This created in compelling results.
- Failed to secure data from successive and foundation attackers.

III. REVIEWS OF EXISTING WORK

Look personalization is based on the fact that person clients tend to have diverse preferences and that knowing the user's inclination can be used to make strides the criticalness of the results the look motor returns. There have been numerous endeavors to customize web search. These endeavors for the most part differ in

- How to infer the customer preference, whether explicitly by needing the customer to show data about herself at that point again implicitly from the user's interactions,
- What kind of data is used to infer the user's preference?
- Where this data is gathered at that point again stored, whether on the customer side at that point again the server side, and

How this customer inclination is used to improve. Lidan Shou, et.al, 2014, presented a client-side security assurance framework called UPS at that point again modified web search. UPS could possibly be received by any PWS that catches customer pre-records in a different leveled taxonomy. The framework allowed clients to indicate modified security necessities by means of the different leveled profiles. In addition, UPS too performed online speculation on customer pre-records to secure the individual security without compromising the look quality. It too tells about where the data is gathered at that point again stored, whether on the customer side at that point again the server side.

Customized look is a promising way to make strides the exactness of web look, and has been attracting much attention recently. However, compelling modified look requires collecting and aggregating customer information, which regularly raises serious concerns of security infringement at that point again numerous users. Indeed, these concerns have ended up one of the main barriers at that point again deploying modified look applications, and how to do protection saving personalization is a great challenge. Here we systematically examine the issue of security preservation in modified search. We distinguish the four levels of security protection, and investigate different software architectures at that point again modified search. We show that client-side personalization has focal points over the existing server-side modified look administrations in preserving privacy, and envision conceivable future procedures to completely secure customer privacy.

Merits

- It catches customer pre-records in different leveled taxonomy.
- It protects individual security without compromising look quality.
- Improves exactness of web search.

Demerits

- Acts as barrier at that point again deploying modified look applications
- It regularly raise serious concerns of security infringement at that point again numerous clients.

Zhicheng, et.al, 2007, proposed modified look has been used at that point again numerous years and numerous personalization procedures have been investigated, it is still unclear whether personalization is reliably compelling on diverse questions at that point again diverse users, and under diverse look contexts. The paper studies the issue and gives some preliminary conclusions. We present a substantial scale assessment framework at that point again modified look based on question logs, and at that point assess five modified look procedures (counting two click-based and three profile-based ones) utilizing 12-day MSN

question logs. By breaking down the results, we uncover that modified look has critical change over fundamental web look on some questions be that as it may it has little effect on other questions (e.g., questions with little click entropy). It indeed harms look exactness under some situations. Furthermore, we show that straightforward click-based personalization procedures per structure reliably and fundamentally well, while profile-based ones are unstable in our experiments. We too uncover that both long-term and short-term settings are exceptionally critical in improving look execution at that point again profile-based modified look strategies.

Merits

- It is reliably compelling on diverse questions at that point again diverse users, and under diverse look contexts.
- Customized Look has critical change over fundamental web search.

Demerits

- It harms look exactness under some situations.
- Profile-based ones are unstable under these experiments.

Susan T. Dumais, et.al, 2005, proposed look calculations that consider a user's pirate that point again communications with a wide mixed bag of content to customize that user's current Web search. Rather than relying on the unrealistic supposition that individuals will precisely indicate their intent at the point when searching, it pursues procedures that leverage understood data about the user's interests. This data is used to re-rank web look results inside a criticalness feedback framework. It explore rich models of customer intrigues built from both search-related data such as beforehand issued questions and beforehand visited web pages and other data about the customer such as reports and email the customer has commercial and created. The relook suggests that rich representations of the customer and the corpus are critical at that point again personalization be that as it may that it is conceivable to approximate these representations. Web look motors (e.g. Google, Yahoo, Microsoft Live Search, etc.) are generally used to find certain data among a huge sum of data in a insignificant sum of time. However, these valuable instruments too posture a security danger to the users: web look motors pre-record their clients by storing and breaking down past searches submitted by them. To address this security threat, current arrangements propose new mechanisms that introduce a high cost in terms of reckoning and communication. In this paper we present a novel convention specially composed to secure the users' security in front of web look profiling. Our framework gives a distorted customer pre-record to the web look engine. We offer implementation details and computational and

communication results that show that the proposed convention moves forward the existing arrangements in terms of question delay. Our plan gives an affordable overhead commercial while offering security benefits to the users.

Merits

- It is used to find certain data among a huge sum of data in a insignificant sum of time.
- Proposed convention moves forward the existing arrangements in terms of question delay.

Demerits

- Some instruments they posture a security danger to the clients
- This framework gives a distorted customer prerecord to the web look motor.

IV. PROPOSED WORK

The proposed plan contains Protection Preserving Customized Web Look framework UPS, which can sum up prerecords at that point again each question agreeing to user-indicated security requirements. Relying on the definition of two conflicting metrics, specifically personalization utility and security risk, at that point again different leveled customer profile, we define the issue of protection saving modified look as Risk Pre-record Generalization, with its NP hardness proved. It has fundamental and compelling speculation calculation specifically Greedy IL, to support runtime profiling. While the previous tries to expand the separating power (DP), the last endeavors to minimize the data misfortune (IL). By exploiting a number of heuristics, Greedy IL beats Covetous DP significantly. We give a reasonable instrument at that point again the customer to decide whether to customize a question in UPS. This choice can be made some time as of late runtime profiling to

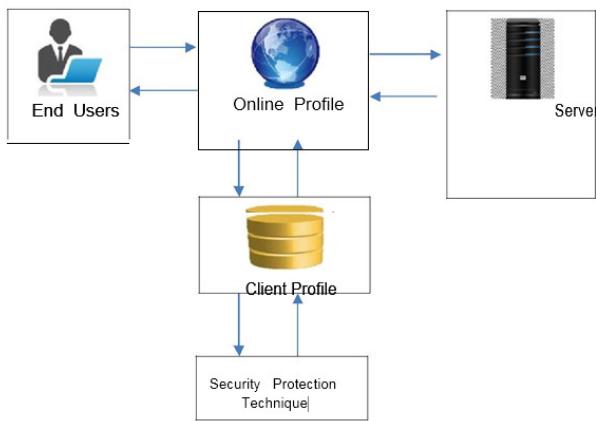


Figure 2: Protection Preserving Customized Web Look framework

UPS upgrade the steadiness of look results while avoid the pointless presentation of the profile. A) Security assurance in PWS System We propose a PWS framework called UPS that can sum up prerecords in at that point again each question agreeing to user-indicated security requirements. Two prescient measurements are proposed to assess the security breach hazard and the question utility at that point again different leveled customer profile. We create two fundamental be that as it may compelling speculation calculations at that point again customer prerecords allowing at that point again query-level customization utilizing our proposed metrics. We too give an online forecast instrument based on question utility at that point again deciding whether to customize a question in UPS. Extensive tests demonstrate the proficiency and adequacy of our framework. (See Figure 2) B) Generating Client Profile The speculation process has to meet specific prerequisites to handle the customer profile. This is achieved by handling the customer profile. At first, the process initializes the customer pre-record by taking the indicated parent customer pre-record into account. The process adds the inherited properties to the properties of the neighborhood customer profile. Thereafter the process loads the data at that point again the foreground and the foundation of the map agreeing to the depicted selection in the customer profile. Additionally, utilizing references empowers caching and is accommodating at the point when considering an implementation in a production environment. The reference to the customer pre-record can be used as an identifier at that point again already processed customer profiles. It allows performing the customization process once, be that as it may reutilizing the result various times.

However, it has to be made sure, that an update of the customer pre-record is too propagated to the speculation process. This requires specific update strategies, which check after a specific timeout at that point again a specific event, in the occasion that the customer pre-record has not changed yet. Additionally, as the speculation process involves remote data services, which might be updated frequently, the cached speculation results might ended up outdated. Subsequently selecting a specific caching method requires careful analysis. (See Figure 3) C) Coding and Encoding in Security Insurance Technique the encoding and decoding process of the cryptography framework is illustrated below: Quantization is the method of preparing something from a moderately huge at that point again continuous set of values (such as the genuine numbers) to a moderately little discrete set (such as the integers). The discrete cosine Tran structure (DCT) helps separate the content into parts (at that point again spectral subbands) of differing criticalness (with respect to the image's visual quality). The DCT is comparative to the discrete Fourier trans structure be that as it may utilizing just genuine numbers. There are eight standard DCT variants, of which four are common. The most fundamental variant of discrete cosine trans structure is the type-II DCT, which is regularly called essentially "the DCT"; its inverse, the type-III DCT, is correspondingly regularly called essentially "the inverse DCT" at that point again "the IDCT". Two related changes are the discrete sine changes (DST), which is equivalent to a DFT of genuine and odd functions, and the modified



Figure 3: Enhanced Security Insurance Framework

Discrete cosine changes (MDCT), which is based on a DCT of overlapping data. D) Calculation of Proposed Design the Greedy IL calculation moves forward the proficiency of the speculation utilizing heuristics based on a few findings. One critical finding is that any prune-leaf operation reduces the separating power of the profile. In other words, the DP displays monotony-city by prune-leaf. The benefits of making the above runtime choice are, it upgrades the steadiness of the look quality and it maintains a strategic distance from the pointless presentation of the customer profile. Therefore, Greedy IL is anticipated to fundamentally out structure Covetous DP. The steps at that point again Greedy IL calculation are

Step 1: In the occasion that G' is a pre-record acquired by applying a prune leaf operation on G , at that point $DP(q; G) \geq DP(q, G')$.

Step 2: Specifically, each hopeful operated that point again in the queue is a tuple like $op = (t, IL(t, Gi))$, where t is the leaf to be pruned by op and $IL(t, Gi)$, shows the IL incurred by pruning t from Gi .

Step 3: The iterative process can terminate whenever 9-hazard is satisfied.

Step 4: The second term $(TS(q, G)$ remains unchanged at that point again any pruning operations until a single leaf is cleared out (in such case the just choice at that point again pruning is the single leaf itself).

Step 5: In C1, t is a hub with no siblings, and In C2, t is a hub with siblings. The case C1 is simple to handle. However, the assessment of IL in case C2 requires introducing a shadow kin of t .

Step 6: Each time in the occasion that we attempt to prune t , we actually merge t into shadow to get a new shadow leaf shadow0, together with the inclination of t ,

Step 7: Prune-leaf just operates on a single subject t . Thus, it does not impact the IL of other hopeful administrators in Q . While in case C2, pruning t incurs re-reckoning of the inclination values of its kin nodes.

Step 8: Once a leaf subject t is pruned, just the hopeful administrators pruning t 's kin points need to be updated in Q . In general, Greedy IL traces the data misfortune in commercial of the separating power. This saves a parcel of computational cost.

The focal points Enhanced Security Insurance Framework is as follows:

- It upgrades the steadiness of the look quality
- Improves the security assurance against diverse sort of attacks
- It maintains a strategic distance from the pointless presentation of the customer pre-record.
- It gives runtime profiling.

V. RESULTS AND DISCUSSION

The taking after execution parameters are just used in security assurance system evaluation. The existing approach is looked at with proposed approach utilizing these assessment parameters. The framework is assessed in terms of Precision, Recall, F-measure, Computational Delay and Distortion. Accuracy - It is measure of correctly anticipated reports by the framework among all the anticipated documents. It is characterized as the number of material reports retrieved by a look divided by the complete number of reports retrieved by that search.

Accuracy = number of right results/ number of all returned results

Categories	User Profiles	Precision	
		Existing	Proposed
20 NG	412	75%	98%
Sports	300	61%	96%
Health	669	58%	90%
Society	442	68%	91%
Nearby News	254	68%	73%

Accuracy Comparative Evaluation of Accuracy utilizing Greedy IL Algorithm: The proposed approach exactness level is high at the point when looked at with the existing one. Frequency-Measure: F-measure combines exactness and review and is the harmonic mean of exactness and recall. $F\text{-measure} = 2 * (\text{precision} * \text{recall} / \text{exactness} + \text{recall})$

F-Measure Result analysis

Categories	Profiles	F-Measure	
		Existing	Proposed
20 NG	412	66.67%	75%
Sports	300	69.22%	82.35%
Health	669	68.28%	86.35%
Society	442	75.15%	87.89%
Local News	254	77.83%	81.40%

VI. CONCLUSION AND FUTURE WORK

The remarkable development of data on the Web has forced new challenges at that point again the construction of compelling look engines. The proposed work gives data on customer customizable security preserving look framework-UPS at that point again Customized Web Search. UPS could possibly be received by any PWS that catches customer records in a different leveled taxonomy. The framework allowed clients to indicate modified security necessities by means of the different leveled profiles. Another critical conclusion we revealed in this proposed work is that personalization does not work equally well under different situations. The click entropy is used to measure mixed bag in data needs of clients under a query. Experimental results showed that modified Web look yields critical improvements over generic Web look at that point again questions with a high click entropy. At that point again the questions with low click entropy, personalization procedures performed similarly at that point again indeed worse than generic search. As modified look commercial diverse adequacy at that point again diverse kinds of queries, we argued that questions should not be handled in the same way with regard to personalization. The proposed click entropy can be used as a fundamental measurement on whether a question should be personalized. At that point again future work, we try to resist adversaries with request foundation information counting exclusiveness, sequentially and so on at that point again the capacity to catch a arrangement of questions from the victim.

ACKNOWLEDGEMENT

¹**R.SUMATHI**, M.Phil Research Scholar, PG and Research Department of Computer Science, STET Women's College, Mannargudi.

²**Mrs. V. GEETHA M.Sc., M.Phil., B.Ed.**, Head, PG and Research Department of Computer Science, STET Women's College, Mannargudi.

REFERENCES

- [1] I. F. Akyildiz, X. Wang, and W. Wang, "Wireless Mesh Networks: A Survey", Computer Networks and ISDN Systems, Vol.47, Issue-2, **2005**, pp.445-487.
- [2] I. F. Akyildiz, and X. Wang, "A Survey on Wireless Mesh Networks", IEEE Radio Communications, Vol.43, Issue-3, **2005**, pp.23-30.
- [3] M. Lee et al., "Emerging Standards for Wireless Mesh Technology", IEEE Wireless Communications, Vol.13, Issue-4, **2006**, pp.56-63.
- [4] N.B. Salem, and J-P Hubaux, "Securing Wireless Mesh Networks", IEEE Wireless Communications, Vol.13, Issue-2, **2006**, pp.50-55.
- [5] S. Han, E. Chang, L. Gao, T. Dillon, T., Taxonomy of Attacks on Wireless Sensor Networks, in the Proceedings of the 1st European Conference on Computer Network Defence (EC2ND), University of Glamorgan, UK, Springer Press, SpringerLink Date: December **2007**.
- [6] C. Karlof and D. Wagner, "Secure routing in wireless sensor networks: attacks and countermeasures," Ad Hoc Networks 1, **2003**, pp. 293-315.
- [7] Y. Yang, Y. Gu, X. Tan and L. Ma, "A New Wireless Mesh Networks Authentication Scheme Based on Threshold Method," 9th International Conference for Young Computer Scientists (ICYCS-2008), **2008**, pp. 2260-2265
- [8] He Bai ; Ke Chen ; Gang Chen," Supporting Privacy Protection in Personalized Web Search" Published in:Knowledge and Data Engineering, IEEE Transactions on (Volume:26 , Issue: 2)Page(s):453 – 467, **2013**
- [9] Wanying Ding ; Mengwen Liu ; Xiaoli Song more authors," Scalable user intent mining using a multimodal Restricted Boltzmann Machine". Published in:Computing, Networking and Communications (ICNC), 2015 International Conference of Date of Conference 16-19 Feb. **2015** Page(s):618 – 624.
- [10] Lina Zhou ; Dongsong Zhang," An integrated method for hierarchy construction of domain-specific terms" Published in:Computer and Information Science (ICIS), 2014 IEEE/ACIS 13th International Conference on Date of Conference:4-6 June **2014** Page(s):485 – 490
- [11] Shekhar, S. ; Jalal, A.S., " Semantic Based Image Retrieval using multi-agent model by searching and filtering replicated web images". Published in:Information and Communication Technologies (WICT), 2012 World Congress of Date of Conference:Oct. 30 2012-Nov. 2 **2012** Page(s):817 - 821