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Abstract— The predominant vocabulary of the deaf and dumb, Sign Language serves as a natural, visual language which 

our brain is capable of processing and deciphering linguistic details. For the past two decades, scientists have been 

researching the automated recognition of sign language using translating gloves and complex systems with several 

cameras. Most of these systems can provide partial or complete recognition of the vocabulary but aren’t cost-effective for 

the average and below-average section of the demographic. With the advent of AI, we’re trying to overcome this biasness 

in technology. Google’s MediaPipe, which is an open-source framework for multimodal (video, audio, time-series) 

features with applied ML pipelines, came into existence in 2019. Using MediaPipe’s Multi-hand Tracking model pipeline 

we can get landmarks of our fingers. This paper advocates the use of MediaPipe Hand Tracking to get hand landmarks, 

training a Keras RNN-LSTM model with that data to detect Sign Language of 5 trained words in real-time. 
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I.  INTRODUCTION  

 

According to the data provided in 2019 by World Health 

Organisation, approximately 466 million of the world’s 

population has disabling hearing loss. It is extrapolated by 

their research that by 2050, this number would surge to 

over 900 million. For the past centuries, people have been 

using translators and texts to fetch the need for 

communication between the disabled and non-disabled 

people. These methods have succumbed to limitations: 

Firstly, the text conversions aren’t able to elucidate human 

expressions and proceeds very slowly which is not as 

comfortable as the spoken ones. Secondly, the translator 

method can be expensive and insolvent for the majority of 

the demographics and bear privacy issues to the public and 

government bodies. 

 

The advent of Computer Vision and Artificial Intelligence 

has assisted us to overcome the technological barriers 

involving finger tracking and real-time image and video 

processing. This project aims to build and enact an AI 

model capable of detecting sign language in real-time with 

the help of Computer Vision and Google’s MediaPipe 

Multi-Hand Tracking ML pipelines. MediaPipe helps us to 

track fingers of our hands and returns the coordinates of 

each point even in real-time. Giving primacy to finger 

tracking, we generated a dataset of 42 coordinates per 

frame (21 for each hand), for each video dataset we created 

for a word. Using Keras library of Tensorflow we created a 

RNN (Recurrent Neural Network) – LSTM (Long Short 

Term Memory) model [9], and trained it with the dataset 

we created earlier. Then using the real-time approach of 

MediaPipe finger tracking, we used the saved model to 

predict the word that we’re showing. MediaPipe [10] is a 

framework effective to detect sign languages. This method 

is advantageous to the earlier used methods of detection as 

it only uses a single camera application of a laptop or a 

mobile phone to detect the sign- language.  

 

This paper doesn’t intend to recognize each and every ASL 

(American Sign Language). Owing to restrictions in time 

and computational power, our model can differentiate 

between five different words and also invigorates the 

hypothesis that if a larger dataset is used along with 

combined MediaPipe Hands and PoseNet algorithm, any 

number of signs is possible to decipher. The rest of the 

paper contains Section II as Related Works, Section III as 

Methodology (MediaPipe Implementation, Dataset 

Collection, Preprocessing, Model Creation, Training and 

Evaluation, Evaluation of test data and Real-time testing), 

Section IV as Results and Discussion, Section V as 

Conclusion and Section VI as Future Scope. 

 

II. RELATED WORK  

 

The need for developing a solution for sign language 

detection was clear to the researchers for a couple of 

decades. Now, we will be summarizing the previously 

known works on this topic and would illustrate how our 

Google’s MediaPipe based research is different, further in 

the other topics. 

 

The contour detection approach presented an OpenCV-

based approach which was the earliest known approach for 

Object Detection (before MediaPipe). OpenCV is an Intel-

based programming library that focuses on real-time 
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computer vision applications. In “Hand detection using 

multiple proposals” by Arpit Mittal et al. [1], which 

studies real-time hand detection claims that it can detect 

multi-hands although the accuracy drops when the top half 

part of the human body appears in the frame. 

 

In 2015, Ruchi Manish Gurav et al. presented a similar 

approach in “Real time finger tracking and contour 

detection for gesture recognition using OpenCV” [2]. It 

shows that steady signs can be predicted at the rate of 

30FPS but lists numerous disadvantages: the fingers that 

are behind the other fingers aren’t detected correctly and if 

we display a fist, it’s only detected as a fist and not fingers. 

 

RNN combined with other AI models approach is a 

similar approach that we used in this project. We have used 

Google’s MediaPipe along with RNN to detect sign 

language. Sarfaraz Masood et al. details a similar 

approach which utilizes the CNN approach to detect the 

position of the hands along with RNN to detect a pattern of 

signs in the paper “Real-Time Sign Language Gesture 

(Word) Recognition from Video Sequences Using CNN and 

RNN” [3]. The results were pretty good as the paper states 

the detection of 46 signs with an accuracy of 95.2 percent 

but the type of camera used is not defined by the authors. 

 

HMM, Hidden Markov Model, approach was first 

proposed back in 1997 by Kirsti Grobel et al. in their 

research paper “Isolated sign language recognition using 

hidden Markov models” [4]. They recognized 262 

independent signs with an accuracy of 91 percent. Since 

then, many papers have been published using this method. 

One of the recent publications includes the one by 

Pradeep Kumar et al [5], who in their publication, 

“Coupled HMM-based multi-sensor data fusion for sign 

language recognition”, tried different hand tracking 

approaches to detect 25 different sign languages with the 

help of HMM on a 2000 word sample and waxed an 

accuracy of around 90 percent. 

 

The Glove approach advocates the use of gloves for hand 

tracking, with sensors in it to recognize the movement of 

fingers and hands and display the word the user is trying to 

convey. This approach uses flex-sensor and gyroscope to 

detect finger movement and hand orientation respectively. 

S. A. Mehdi et al. [6], used seven sensors (one for each 

finger and two for hand orientation) to recognize alphabets 

in ASL in their publication “Sign language recognition 

using sensor gloves” in 2002. They obtained an accuracy 

close to 88 percent. Later in 2016, Jakub Galka et al. in 

their publication, “Inertial motion sensing glove for sign 

language gesture acquisition and recognition” [7], used 

the Glove approach combined with HMM to get an 

accuracy of 99 percent for 40 different gestures. The cost 

of sensors and the uncomfortability of wearing gloves 

make it an unreliable method of further research. 
 

III. METHODOLOGY 
 

Real-time sign language detection can be achieved by a 

variety of Classical and Deep Learning algorithms like 

Decision Tree, Random Forrest and K- Nearest Neighbour, 

but the accuracy of these algorithms isn’t over 75 percent. 

So, we have used the Keras RNN LSTM model to fit our 

dataset of hand landmarks obtained from MediaPipe 

implementation. MediaPipe hand tracking was first 

introduced by Fan Zhang et al. in their publication, 

“MediaPipe Hands: On-device Real-time Hand Tracking” 

[8], in 2020. We have used Python programming for our 

development. The basic architecture of our model is 

depicted in Fig 1. 

 

 
Fig 1. Basic architecture of Real-time Sign Language Detector 

 

1. MEDIAPIPE IMPLEMENTATION 

MediaPipe employs various ML Pipelines consisting of 

multiple models working in conjunction. A hand landmark 

model works on the cropped part of the image explicated 

by the palm detector and a series of high-precision 3D 

hand key points is returned. The accuracy of palm 

detection is higher than 95 percent according to the 

documentation by Google. After the palm detection, the 

image is passed to a CNN (Convolutional Neural Network) 

model [11], also known as the finger detector. The model 

accurately defines key point localization of 21 3D- hand-

knuckle coordinates of each hand, shown in Fig 2. We 

have implemented this MediaPipe Hand-landmarks 

pipeline and tested it in our local setup in Real-time, 

depicted in Fig 3. 

 

 
Fig 2 21 3D Key points for each hand 

 

 
Fig 3 MediaPipe Hand-landmark implementation 
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2. DATASET COLLECTION 

We produced about 126 videos each for the 5 chosen signs 

of ASL. These words are- teacher, think, tiger, twins and 

wait. The video dataset was of 30FPS each and lasted for 

2-3 seconds and was pre-processed to increase the clarity 

and hue of the frames in it. Now, this processed video 

dataset was passed through the MediaPipe ML pipelines to 

get the hand-knuckle coordinates of each frame. We used 

frames at the rate of 1 out of 8 consecutive frames and got 

42 coordinate values for each frame and stored them in a 

CSV file. We ignored the z-axis in this case as we aren’t 

considering image depth for our instance. After the 

conversion, we obtained a dataset of 630 rows of 

coordinates. The no. of columns isn’t fixed as the time 

period, and corresponding frames for all the videos are 

different. A part of the raw dataset is given in Fig 4. 

 

 
Fig 4 Raw Hand-knuckle coordinates dataset 

 

3. PREPROCESSING 

The preprocessing of the CSV dataset is of two steps: 

handling missing values and labelling the rows. As 

mentioned earlier, we have an uneven number of columns 

in our dataset due to the different time span of videos. So, 

there are many empty cells in our CSV dataset. We padded 

our dataset with 0 so that the structure of data will be even 

and our model can handle it with ease. The second step 

involves labelling the rows with an index number 

associated with a particular Sign, for example, 0 for 

teacher, 1 for think, 2 for tiger, 3 for twins and 4 for wait. 

We stored these labels in another text file too for our future 

reference. Now, the dataset is clean and ready to be 

trained. A part of the cleaned dataset is given in Fig 5. 

 

 
Fig 5 Cleaned Hand-knuckle coordinate Dataset 

                       

4. MODEL CREATION 

We have used an RNN model which takes the Hand-

knuckle coordinates as input and returns the output label 

for that set of coordinates. The original vanilla version of 

the RNN is rarely used as it suffers from a major problem. 

The original RNN has the tribulation of vanishing gradient, 

where it cannot remember the long term dependencies of 

the dataset. Advanced versions like LSTM (Long Short 

Term Memory) and GRU (Gated Recurrent Unit) [12], 

used to compensate for this issue. We are using an LSTM 

cell in our model. The basic LSTM cell architecture is 

given in Fig 6. 

 

The two states of an LSTM cell are cell state and hidden 

state. The cell state is the memory of the LSTM cell while 

the hidden state is the output of the cell. In Fig 6, three 

inputs of each LSTM cell is depicted where: Ct-1 is the cell 

state input for the memory cell in timestep t-1, ht-1 is the 

hidden state input for the memory cell in timestep t-1 and 

Xt is the input in timestep t. There are three gates in an 

LSTM cell: input gate (adds new data to the cell), output 

gate (outputs cell data) and forget gate (erases cell data). 

The function of these gates are as follows: we choose to 

add new content from the current input to our present cell 

state in the input gate, we choose what to output from our 

cell state in the output gate and we choose what must be 

removed from the ht-1 state, keeping only the relevant ones 

using the forget gate. 

 

In our LSTM model, we used a dimensionality of 256 for 

the outer layer and 128 for the inner layer. These layers are 

accompanied by a dropout layer, a regularization layer 

where input and recurrent connections to LSTM are 

excluded from activation and weight updates during 

training probabilistically. The model performance is then 

enhanced, successfully avoiding the overfitting [14]. These 

layers are followed by two other layers: Flatten and Dense. 

Flatten layer is essential so that LSTM would be shaped as 

one dimension per input. The dense Layer is also called the 

Fully-connected layer. It ensures each neuron of layer N is 

connected to every neuron in the N+1 layer. We are using 

Keras and Tensorflow to build our model. Keras is an 

open-source python library that provides an interface for 

modelling deep learning and artificial neural networks 

while Tensorflow is an open-source end-to-end Machine 

Learning Platform. The input would pass through our 

trained model and the output would be predicted by it. The 

architecture of the model is given in Fig 7.  

 
Fig 6 Basic LSTM Cell architecture 
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Fig 7 Architecture of our LSTM model 

 

5. TRAINING AND EVALUATIONZZZZZ                                             

After accessing the Dataset CSV file we are taking 10 

frames per video as our input to the model.  So, the number 

of columns for our X variable is 420, i.e. 42*10 frames, 

and our Y variable is of a single column that contains the 

label for each video. As mentioned earlier, there are 630 

videos (rows) in our dataset. We decided to keep only 5 

per cent as our test data considering the small dataset we 

have and we split the dataset into X_train, X_test, Y_train 

and Y_test. So, the training dataset contains 598 rows and 

the test dataset contains 32 rows. 

 

LSTM [13] is capable of handling only 3D datasets. We 

used Reshape function of the Numpy package to reshape 

the X_train and X_test values into 3D arrays. Now, the 

current shape of the X_train array is (598×420×1). This the 

final set of input for our model. As described in the model 

creation part, our model contains two LSTM layers of 256 

and 128 units respectively each followed by a dropout 

layer of 0.2. These layers are followed by Flatten and 

Dense Layers. The output shapes and the parameters of our 

model are shown in Fig 8. Adam [15] optimiser is used for 

our model and Mean-squared loss as the loss parameter, 

considering it’s a multi-class classification model. We 

have set the number of epochs to 170 with a batch size of 

32 for our model and fitted the data (X_train, Y_train) in 

our model with accuracy as metrics. The validation set for 

the evaluation is again 5 per cent, which is 30 videos 

(rows) of our final dataset. 

 

The parameters chosen to analyse and evaluate our model 

are training accuracy, training loss, validation accuracy and 

validation loss. The training of 170 epochs took around 

two and a half hours in our system and we were able to 

reach an accuracy of 95 per cent with a loss of 6 per cent. 

After the end of the training, we saved the model as .h5 file 

and plotted the parameters of our model. We produced two 

plots, Epoch vs. Accuracy and Epoch vs. Loss, for our 

training and validation dataset, shown in Fig 9 and 10 

respectively. From the plot, the increment of the accuracy 

and decrement of the loss of the training and validation set 

suggests that the dataset perfectly fits in our model and the 

fact that we have not overfitted our data. 

 

 
Fig 8 Output shapes and no. of parameters of different model 

layers 

 

 
Fig 9 Epoch vs. Accuracy for Train and Test set 

 

 
Fig 10 Epoch vs. Loss for Train and Test set 

 

6. EVALUATION OF TEST DATA 

The test and train graphs from the previous topic give us 

only brevity of information on how it would work on a real 

dataset. So, considering this smattering amount of analysis 

we had, we decided to use predictive analysis algorithms 

like Confusion Matrix along with other classification 

report parameters, i.e. precision, recall and F1 score, to 

calculate accuracy, macro average and weighted average 

on the test data.  
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The first step is to use the 32 videos we kept as X_test to 

predict the Y labels with our trained model. Once we 

receive the Predicted Y values we are rounding them off to 

the nearest integer labels using the round function of the 

Numpy package. Now the labels are ready to be plotted in 

a confusion matrix [16], shown in Fig 11. The confusion 

matrix is an N × N matrix used for the evaluation of a 

classification model. The Y-axis contains the real Y labels 

for the X_test data and the X-axis contains the rounded 

predicted labels from our model. As we have 5 labels for 

our dataset so the dimension of the confusion matrix is 5 × 

5. The labels are the integers between 0-4 both inclusive. 

The colour gradient scale shows how each cell of the 

matrix is coloured depending on the quantity of data.  

 

Now, we are gathering the detailed classification report of 

these predicted values. There are 4 possible cases of 

response for a classical model, namely: TN/ True Negative, 

TP/ True Positive, FN/ False Negative and FP/ False 

Positive. TN is the case when both the real and predicted 

cases are negative, TP is the case when both real and 

predicted cases are true, FN is the case when the real case 

is positive but the predicted case is negative and FP is the 

case when the real case is negative but the predicted case is 

positive. Precision is the classifier’s ability to not label an 

instance positive if it’s negative. It’s the ratio of the true 

positives to the sum of true and false positives, given in 

(1). 
 

Precision = TP/(TP + FP)                                               (1) 
 

Recall is the classifier’s ability to find all the positive 

instances. It’s the ratio of the true positives and the sum of 

the true positives and false negatives, given in (2). 
 

Recall = TP/(TP + FN)                                                   (2) 
 

The weighted harmonic mean of the Precision and Recall, 

given that the best score and worst score is 1.0 and 0.0 

respectively, is called the F1 score [17]. So, for comparing 

a classification model the weighted average of the F1 score 

should be used and not the actual accuracy percentage. The 

F1 score is given by the following formulae (3). 
 

F1 Score = 2 × (Recall × Precision) / (Recall + Precision)  

(3) 
 

The full classification report table of our model is shown in 

Fig 12.  

 
Fig 11 Confusion Matrix for evaluation of predicted results 

 
Fig 12 Classification report table of the predicted instances 

 

7. REAL-TIME TESTING 

Now, the saved model can be used for real-time 

implementation. Firstly, the model is loaded onto a 

variable using Keras’ load model method. OpenCV [18] is 

an open-source computer vision platform to capture, 

modify and augment images and videos to create a dataset 

and implement it in a model. By using the video capture 

function of OpenCV, we captured real-time video and split 

it into 30 fps. We took a nominal frame gap of 8 frames, 

similar to our dataset creation, and passed these friends 

consecutively to the MediaPipe hand landmarks function. 

Upon detecting hands and acquiring Hand-knuckle 

coordinates for each frame, we have 42 coordinates (21 for 

each hand) and stored them in a list.  
 

As posited in the training and evaluation section, we take 

10 frames per input to the model for implementation too. 

The 42 coordinates of each frame get appended to the list 

variable until a length of 420 is reached. Upon reaching the 

desired length, we send this variable as input to our model 

for prediction. The model returns a decimal value of a 

particular labelled class. Rounding off the predicted results 

we match it with the word label we previously stored in a 

text file and display the word as output in the same real-

time video window. After displaying the output the list 

storing the coordinates is emptied and the process 

continues. The camera operation is terminated only when a 

wait key is pressed. 

 

IV. RESULTS AND DISCUSSION 
 

The real-time test was run on our setup with the following 

configurations: 

- CPU: i5-7200U CPU (2.50GHz - 2.71 GHz) 

- RAM: 16 GB (1600 MHz) 

- GPU: 4 GB Nvidia GeForce 940 MX 
 

The results from testing are compared with some of the 

Original ASL depicters from YouTube in the following Fig 

13, 14, 15, 16 and 17. 
 

 
Fig 13 YouTuber (Id: one fact ASL) vs. real-time output for word 

‘Wait’ 
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Fig 14 YouTuber (Id: Signs) vs. real-time output for word 

‘Think’ 

 

 
Fig 15 YouTuber (Id: Laura Berg Life) vs. real-time output for 

word ‘Tiger’ 

 

 
Fig 16 YouTuber (Id: Teaching Resources) vs. real-time output 

for word ‘Teacher’ 

 

 
Fig 17 YouTuber (Id: Sharon Nason) vs. real-time output for 

word ‘Twins’ 

 

The results obtained are decent accurate considering the 

minimal configurations used for real-time implementation. 

Our model and approach are different from other 

previously mentioned methods because most of the 

methods are not able to give good accuracy in real-time or 

need some high configuration camera and setup. On the 

other hand, we have implemented it on a simple phone 

camera or Webcam instead of some high configuration 

cameras. This makes the approach cost-effective for the 

general public. This research opens up new doors for a 

more accessible way to recognize ASL [19]. Although, the 

final product that people can use, is still far, the further 

implementation of other AI models along with MediaPipe 

can do the tricks. 

 

V. CONCLUSION  

 

The main conclusion from this paper is that the hand 

tracking provided by Google’s Mediapipe is efficient 

enough to detect multiple Hand Gestures. The real-time 

implementation can be done with the help of simple mobile 

cameras or a Webcam. The videos that have higher frames 

per second (higher shutter speed) work more efficiently 

when trained. This is how we have overcome the costly 

methods of hand detection with a simpler approach. We 

have only trained our model with 5 words of 126 videos 

each due to time and computational limitations. With a 

larger and augmented dataset and higher system 

configurations, we can even train the model for sentences 

instead of words. One of the drawbacks this research faces 

is that we are unable to get the full arm landmarks along 

with upper body landmarks. If some other AI-based 

approach can be implemented with this approach we are 

sure this would surely become ready for public use.   

 

VI. FUTURE SCOPE 

 

There are various ways this research can be improved in 

the future. Firstly, the AI algorithm and the dataset used in 

this paper can be greatly improved. CNN or other attention 

mechanism-based models can also be used to implement 

sign language. Besides that, the dataset used in the paper is 

not created by a professional sign language interpreter. 

Also, more research needs to be done on video 

augmentation to get better results. More datasets can also 

improve the real-time accuracy of our model. User video of 

real-time implementation can be recorded for incrementing 

the dataset size in the future. 

 

We haven’t been able to create a model that can predict the 

whole sentence depicted by the user. This can be done 

easily with the introduction of other models which can 

detect the position of elbows, shoulders, wrists and face. 

TensorFlow produced a package named PoseNet [20], used 

to get the posture coordinates of 17 body landmarks. Dlib 

[21] is another python library that can be used to get the 

facial expression coordinates. It tracks 64 points of the face 

for each frame. So, combining Hand coordinates along 

with PoseNet and Dlib to get body posture and facial 

expression and creating a dataset out of them can prove to 

be very helpful for future research works on this topic. 
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