

 © 2021, IJCSE All Rights Reserved 46

International Journal of Computer Sciences and Engineering Open Access
Research Paper Vol. 9, Issue.7, July 2021 E-ISSN: 2347-2693

Proposal of a Real-time American Sign Language Detector using

MediaPipe and Recurrent Neural Network

Souradeep Ghosh

1

1
Department of Electrical Engineering, Heritage Institute of Technology, Kolkata, India

 Author’s Mail Id: jeetsouradeep@gmail.com, Tel.: +91-7685920081

DOI: https://doi.org/10.26438/ijcse/v9i7.4652 | Available online at: www.ijcseonline.org

Received: 18/Jul/2021, Accepted: 20/Jul/2021, Published: 31/Jul/2021

Abstract— The predominant vocabulary of the deaf and dumb, Sign Language serves as a natural, visual language which

our brain is capable of processing and deciphering linguistic details. For the past two decades, scientists have been

researching the automated recognition of sign language using translating gloves and complex systems with several

cameras. Most of these systems can provide partial or complete recognition of the vocabulary but aren’t cost-effective for

the average and below-average section of the demographic. With the advent of AI, we’re trying to overcome this biasness

in technology. Google’s MediaPipe, which is an open-source framework for multimodal (video, audio, time-series)

features with applied ML pipelines, came into existence in 2019. Using MediaPipe’s Multi-hand Tracking model pipeline

we can get landmarks of our fingers. This paper advocates the use of MediaPipe Hand Tracking to get hand landmarks,

training a Keras RNN-LSTM model with that data to detect Sign Language of 5 trained words in real-time.

Keywords— MediaPipe, American Sign Language, OpenCV, RNN, LSTM, Real-time

I. INTRODUCTION

According to the data provided in 2019 by World Health

Organisation, approximately 466 million of the world’s

population has disabling hearing loss. It is extrapolated by

their research that by 2050, this number would surge to

over 900 million. For the past centuries, people have been

using translators and texts to fetch the need for

communication between the disabled and non-disabled

people. These methods have succumbed to limitations:

Firstly, the text conversions aren’t able to elucidate human

expressions and proceeds very slowly which is not as

comfortable as the spoken ones. Secondly, the translator

method can be expensive and insolvent for the majority of

the demographics and bear privacy issues to the public and

government bodies.

The advent of Computer Vision and Artificial Intelligence

has assisted us to overcome the technological barriers

involving finger tracking and real-time image and video

processing. This project aims to build and enact an AI

model capable of detecting sign language in real-time with

the help of Computer Vision and Google’s MediaPipe

Multi-Hand Tracking ML pipelines. MediaPipe helps us to

track fingers of our hands and returns the coordinates of

each point even in real-time. Giving primacy to finger

tracking, we generated a dataset of 42 coordinates per

frame (21 for each hand), for each video dataset we created

for a word. Using Keras library of Tensorflow we created a

RNN (Recurrent Neural Network) – LSTM (Long Short

Term Memory) model [9], and trained it with the dataset

we created earlier. Then using the real-time approach of

MediaPipe finger tracking, we used the saved model to

predict the word that we’re showing. MediaPipe [10] is a

framework effective to detect sign languages. This method

is advantageous to the earlier used methods of detection as

it only uses a single camera application of a laptop or a

mobile phone to detect the sign- language.

This paper doesn’t intend to recognize each and every ASL

(American Sign Language). Owing to restrictions in time

and computational power, our model can differentiate

between five different words and also invigorates the

hypothesis that if a larger dataset is used along with

combined MediaPipe Hands and PoseNet algorithm, any

number of signs is possible to decipher. The rest of the

paper contains Section II as Related Works, Section III as

Methodology (MediaPipe Implementation, Dataset

Collection, Preprocessing, Model Creation, Training and

Evaluation, Evaluation of test data and Real-time testing),

Section IV as Results and Discussion, Section V as

Conclusion and Section VI as Future Scope.

II. RELATED WORK

The need for developing a solution for sign language

detection was clear to the researchers for a couple of

decades. Now, we will be summarizing the previously

known works on this topic and would illustrate how our

Google’s MediaPipe based research is different, further in

the other topics.

The contour detection approach presented an OpenCV-

based approach which was the earliest known approach for

Object Detection (before MediaPipe). OpenCV is an Intel-

based programming library that focuses on real-time

 International Journal of Computer Sciences and Engineering Vol.9(7), Jul 2021, E-ISSN: 2347-2693

 © 2021, IJCSE All Rights Reserved 47

computer vision applications. In “Hand detection using

multiple proposals” by Arpit Mittal et al. [1], which

studies real-time hand detection claims that it can detect

multi-hands although the accuracy drops when the top half

part of the human body appears in the frame.

In 2015, Ruchi Manish Gurav et al. presented a similar

approach in “Real time finger tracking and contour

detection for gesture recognition using OpenCV” [2]. It

shows that steady signs can be predicted at the rate of

30FPS but lists numerous disadvantages: the fingers that

are behind the other fingers aren’t detected correctly and if

we display a fist, it’s only detected as a fist and not fingers.

RNN combined with other AI models approach is a

similar approach that we used in this project. We have used

Google’s MediaPipe along with RNN to detect sign

language. Sarfaraz Masood et al. details a similar

approach which utilizes the CNN approach to detect the

position of the hands along with RNN to detect a pattern of

signs in the paper “Real-Time Sign Language Gesture

(Word) Recognition from Video Sequences Using CNN and

RNN” [3]. The results were pretty good as the paper states

the detection of 46 signs with an accuracy of 95.2 percent

but the type of camera used is not defined by the authors.

HMM, Hidden Markov Model, approach was first

proposed back in 1997 by Kirsti Grobel et al. in their

research paper “Isolated sign language recognition using

hidden Markov models” [4]. They recognized 262

independent signs with an accuracy of 91 percent. Since

then, many papers have been published using this method.

One of the recent publications includes the one by

Pradeep Kumar et al [5], who in their publication,

“Coupled HMM-based multi-sensor data fusion for sign

language recognition”, tried different hand tracking

approaches to detect 25 different sign languages with the

help of HMM on a 2000 word sample and waxed an

accuracy of around 90 percent.

The Glove approach advocates the use of gloves for hand

tracking, with sensors in it to recognize the movement of

fingers and hands and display the word the user is trying to

convey. This approach uses flex-sensor and gyroscope to

detect finger movement and hand orientation respectively.

S. A. Mehdi et al. [6], used seven sensors (one for each

finger and two for hand orientation) to recognize alphabets

in ASL in their publication “Sign language recognition

using sensor gloves” in 2002. They obtained an accuracy

close to 88 percent. Later in 2016, Jakub Galka et al. in

their publication, “Inertial motion sensing glove for sign

language gesture acquisition and recognition” [7], used

the Glove approach combined with HMM to get an

accuracy of 99 percent for 40 different gestures. The cost

of sensors and the uncomfortability of wearing gloves

make it an unreliable method of further research.

III. METHODOLOGY

Real-time sign language detection can be achieved by a

variety of Classical and Deep Learning algorithms like

Decision Tree, Random Forrest and K- Nearest Neighbour,

but the accuracy of these algorithms isn’t over 75 percent.

So, we have used the Keras RNN LSTM model to fit our

dataset of hand landmarks obtained from MediaPipe

implementation. MediaPipe hand tracking was first

introduced by Fan Zhang et al. in their publication,

“MediaPipe Hands: On-device Real-time Hand Tracking”

[8], in 2020. We have used Python programming for our

development. The basic architecture of our model is

depicted in Fig 1.

Fig 1. Basic architecture of Real-time Sign Language Detector

1. MEDIAPIPE IMPLEMENTATION

MediaPipe employs various ML Pipelines consisting of

multiple models working in conjunction. A hand landmark

model works on the cropped part of the image explicated

by the palm detector and a series of high-precision 3D

hand key points is returned. The accuracy of palm

detection is higher than 95 percent according to the

documentation by Google. After the palm detection, the

image is passed to a CNN (Convolutional Neural Network)

model [11], also known as the finger detector. The model

accurately defines key point localization of 21 3D- hand-

knuckle coordinates of each hand, shown in Fig 2. We

have implemented this MediaPipe Hand-landmarks

pipeline and tested it in our local setup in Real-time,

depicted in Fig 3.

Fig 2 21 3D Key points for each hand

Fig 3 MediaPipe Hand-landmark implementation

 International Journal of Computer Sciences and Engineering Vol.9(7), Jul 2021, E-ISSN: 2347-2693

 © 2021, IJCSE All Rights Reserved 48

2. DATASET COLLECTION

We produced about 126 videos each for the 5 chosen signs

of ASL. These words are- teacher, think, tiger, twins and

wait. The video dataset was of 30FPS each and lasted for

2-3 seconds and was pre-processed to increase the clarity

and hue of the frames in it. Now, this processed video

dataset was passed through the MediaPipe ML pipelines to

get the hand-knuckle coordinates of each frame. We used

frames at the rate of 1 out of 8 consecutive frames and got

42 coordinate values for each frame and stored them in a

CSV file. We ignored the z-axis in this case as we aren’t

considering image depth for our instance. After the

conversion, we obtained a dataset of 630 rows of

coordinates. The no. of columns isn’t fixed as the time

period, and corresponding frames for all the videos are

different. A part of the raw dataset is given in Fig 4.

Fig 4 Raw Hand-knuckle coordinates dataset

3. PREPROCESSING

The preprocessing of the CSV dataset is of two steps:

handling missing values and labelling the rows. As

mentioned earlier, we have an uneven number of columns

in our dataset due to the different time span of videos. So,

there are many empty cells in our CSV dataset. We padded

our dataset with 0 so that the structure of data will be even

and our model can handle it with ease. The second step

involves labelling the rows with an index number

associated with a particular Sign, for example, 0 for

teacher, 1 for think, 2 for tiger, 3 for twins and 4 for wait.

We stored these labels in another text file too for our future

reference. Now, the dataset is clean and ready to be

trained. A part of the cleaned dataset is given in Fig 5.

Fig 5 Cleaned Hand-knuckle coordinate Dataset

4. MODEL CREATION

We have used an RNN model which takes the Hand-

knuckle coordinates as input and returns the output label

for that set of coordinates. The original vanilla version of

the RNN is rarely used as it suffers from a major problem.

The original RNN has the tribulation of vanishing gradient,

where it cannot remember the long term dependencies of

the dataset. Advanced versions like LSTM (Long Short

Term Memory) and GRU (Gated Recurrent Unit) [12],

used to compensate for this issue. We are using an LSTM

cell in our model. The basic LSTM cell architecture is

given in Fig 6.

The two states of an LSTM cell are cell state and hidden

state. The cell state is the memory of the LSTM cell while

the hidden state is the output of the cell. In Fig 6, three

inputs of each LSTM cell is depicted where: Ct-1 is the cell

state input for the memory cell in timestep t-1, ht-1 is the

hidden state input for the memory cell in timestep t-1 and

Xt is the input in timestep t. There are three gates in an

LSTM cell: input gate (adds new data to the cell), output

gate (outputs cell data) and forget gate (erases cell data).

The function of these gates are as follows: we choose to

add new content from the current input to our present cell

state in the input gate, we choose what to output from our

cell state in the output gate and we choose what must be

removed from the ht-1 state, keeping only the relevant ones

using the forget gate.

In our LSTM model, we used a dimensionality of 256 for

the outer layer and 128 for the inner layer. These layers are

accompanied by a dropout layer, a regularization layer

where input and recurrent connections to LSTM are

excluded from activation and weight updates during

training probabilistically. The model performance is then

enhanced, successfully avoiding the overfitting [14]. These

layers are followed by two other layers: Flatten and Dense.

Flatten layer is essential so that LSTM would be shaped as

one dimension per input. The dense Layer is also called the

Fully-connected layer. It ensures each neuron of layer N is

connected to every neuron in the N+1 layer. We are using

Keras and Tensorflow to build our model. Keras is an

open-source python library that provides an interface for

modelling deep learning and artificial neural networks

while Tensorflow is an open-source end-to-end Machine

Learning Platform. The input would pass through our

trained model and the output would be predicted by it. The

architecture of the model is given in Fig 7.

Fig 6 Basic LSTM Cell architecture

 International Journal of Computer Sciences and Engineering Vol.9(7), Jul 2021, E-ISSN: 2347-2693

 © 2021, IJCSE All Rights Reserved 49

Fig 7 Architecture of our LSTM model

5. TRAINING AND EVALUATIONZZZZZ

After accessing the Dataset CSV file we are taking 10

frames per video as our input to the model. So, the number

of columns for our X variable is 420, i.e. 42*10 frames,

and our Y variable is of a single column that contains the

label for each video. As mentioned earlier, there are 630

videos (rows) in our dataset. We decided to keep only 5

per cent as our test data considering the small dataset we

have and we split the dataset into X_train, X_test, Y_train

and Y_test. So, the training dataset contains 598 rows and

the test dataset contains 32 rows.

LSTM [13] is capable of handling only 3D datasets. We

used Reshape function of the Numpy package to reshape

the X_train and X_test values into 3D arrays. Now, the

current shape of the X_train array is (598×420×1). This the

final set of input for our model. As described in the model

creation part, our model contains two LSTM layers of 256

and 128 units respectively each followed by a dropout

layer of 0.2. These layers are followed by Flatten and

Dense Layers. The output shapes and the parameters of our

model are shown in Fig 8. Adam [15] optimiser is used for

our model and Mean-squared loss as the loss parameter,

considering it’s a multi-class classification model. We

have set the number of epochs to 170 with a batch size of

32 for our model and fitted the data (X_train, Y_train) in

our model with accuracy as metrics. The validation set for

the evaluation is again 5 per cent, which is 30 videos

(rows) of our final dataset.

The parameters chosen to analyse and evaluate our model

are training accuracy, training loss, validation accuracy and

validation loss. The training of 170 epochs took around

two and a half hours in our system and we were able to

reach an accuracy of 95 per cent with a loss of 6 per cent.

After the end of the training, we saved the model as .h5 file

and plotted the parameters of our model. We produced two

plots, Epoch vs. Accuracy and Epoch vs. Loss, for our

training and validation dataset, shown in Fig 9 and 10

respectively. From the plot, the increment of the accuracy

and decrement of the loss of the training and validation set

suggests that the dataset perfectly fits in our model and the

fact that we have not overfitted our data.

Fig 8 Output shapes and no. of parameters of different model

layers

Fig 9 Epoch vs. Accuracy for Train and Test set

Fig 10 Epoch vs. Loss for Train and Test set

6. EVALUATION OF TEST DATA

The test and train graphs from the previous topic give us

only brevity of information on how it would work on a real

dataset. So, considering this smattering amount of analysis

we had, we decided to use predictive analysis algorithms

like Confusion Matrix along with other classification

report parameters, i.e. precision, recall and F1 score, to

calculate accuracy, macro average and weighted average

on the test data.

 International Journal of Computer Sciences and Engineering Vol.9(7), Jul 2021, E-ISSN: 2347-2693

 © 2021, IJCSE All Rights Reserved 50

The first step is to use the 32 videos we kept as X_test to

predict the Y labels with our trained model. Once we

receive the Predicted Y values we are rounding them off to

the nearest integer labels using the round function of the

Numpy package. Now the labels are ready to be plotted in

a confusion matrix [16], shown in Fig 11. The confusion

matrix is an N × N matrix used for the evaluation of a

classification model. The Y-axis contains the real Y labels

for the X_test data and the X-axis contains the rounded

predicted labels from our model. As we have 5 labels for

our dataset so the dimension of the confusion matrix is 5 ×

5. The labels are the integers between 0-4 both inclusive.

The colour gradient scale shows how each cell of the

matrix is coloured depending on the quantity of data.

Now, we are gathering the detailed classification report of

these predicted values. There are 4 possible cases of

response for a classical model, namely: TN/ True Negative,

TP/ True Positive, FN/ False Negative and FP/ False

Positive. TN is the case when both the real and predicted

cases are negative, TP is the case when both real and

predicted cases are true, FN is the case when the real case

is positive but the predicted case is negative and FP is the

case when the real case is negative but the predicted case is

positive. Precision is the classifier’s ability to not label an

instance positive if it’s negative. It’s the ratio of the true

positives to the sum of true and false positives, given in

(1).

Precision = TP/(TP + FP) (1)

Recall is the classifier’s ability to find all the positive

instances. It’s the ratio of the true positives and the sum of

the true positives and false negatives, given in (2).

Recall = TP/(TP + FN) (2)

The weighted harmonic mean of the Precision and Recall,

given that the best score and worst score is 1.0 and 0.0

respectively, is called the F1 score [17]. So, for comparing

a classification model the weighted average of the F1 score

should be used and not the actual accuracy percentage. The

F1 score is given by the following formulae (3).

F1 Score = 2 × (Recall × Precision) / (Recall + Precision)

(3)

The full classification report table of our model is shown in

Fig 12.

Fig 11 Confusion Matrix for evaluation of predicted results

Fig 12 Classification report table of the predicted instances

7. REAL-TIME TESTING

Now, the saved model can be used for real-time

implementation. Firstly, the model is loaded onto a

variable using Keras’ load model method. OpenCV [18] is

an open-source computer vision platform to capture,

modify and augment images and videos to create a dataset

and implement it in a model. By using the video capture

function of OpenCV, we captured real-time video and split

it into 30 fps. We took a nominal frame gap of 8 frames,

similar to our dataset creation, and passed these friends

consecutively to the MediaPipe hand landmarks function.

Upon detecting hands and acquiring Hand-knuckle

coordinates for each frame, we have 42 coordinates (21 for

each hand) and stored them in a list.

As posited in the training and evaluation section, we take

10 frames per input to the model for implementation too.

The 42 coordinates of each frame get appended to the list

variable until a length of 420 is reached. Upon reaching the

desired length, we send this variable as input to our model

for prediction. The model returns a decimal value of a

particular labelled class. Rounding off the predicted results

we match it with the word label we previously stored in a

text file and display the word as output in the same real-

time video window. After displaying the output the list

storing the coordinates is emptied and the process

continues. The camera operation is terminated only when a

wait key is pressed.

IV. RESULTS AND DISCUSSION

The real-time test was run on our setup with the following

configurations:

- CPU: i5-7200U CPU (2.50GHz - 2.71 GHz)

- RAM: 16 GB (1600 MHz)

- GPU: 4 GB Nvidia GeForce 940 MX

The results from testing are compared with some of the

Original ASL depicters from YouTube in the following Fig

13, 14, 15, 16 and 17.

Fig 13 YouTuber (Id: one fact ASL) vs. real-time output for word

‘Wait’

 International Journal of Computer Sciences and Engineering Vol.9(7), Jul 2021, E-ISSN: 2347-2693

 © 2021, IJCSE All Rights Reserved 51

Fig 14 YouTuber (Id: Signs) vs. real-time output for word

‘Think’

Fig 15 YouTuber (Id: Laura Berg Life) vs. real-time output for

word ‘Tiger’

Fig 16 YouTuber (Id: Teaching Resources) vs. real-time output

for word ‘Teacher’

Fig 17 YouTuber (Id: Sharon Nason) vs. real-time output for

word ‘Twins’

The results obtained are decent accurate considering the

minimal configurations used for real-time implementation.

Our model and approach are different from other

previously mentioned methods because most of the

methods are not able to give good accuracy in real-time or

need some high configuration camera and setup. On the

other hand, we have implemented it on a simple phone

camera or Webcam instead of some high configuration

cameras. This makes the approach cost-effective for the

general public. This research opens up new doors for a

more accessible way to recognize ASL [19]. Although, the

final product that people can use, is still far, the further

implementation of other AI models along with MediaPipe

can do the tricks.

V. CONCLUSION

The main conclusion from this paper is that the hand

tracking provided by Google’s Mediapipe is efficient

enough to detect multiple Hand Gestures. The real-time

implementation can be done with the help of simple mobile

cameras or a Webcam. The videos that have higher frames

per second (higher shutter speed) work more efficiently

when trained. This is how we have overcome the costly

methods of hand detection with a simpler approach. We

have only trained our model with 5 words of 126 videos

each due to time and computational limitations. With a

larger and augmented dataset and higher system

configurations, we can even train the model for sentences

instead of words. One of the drawbacks this research faces

is that we are unable to get the full arm landmarks along

with upper body landmarks. If some other AI-based

approach can be implemented with this approach we are

sure this would surely become ready for public use.

VI. FUTURE SCOPE

There are various ways this research can be improved in

the future. Firstly, the AI algorithm and the dataset used in

this paper can be greatly improved. CNN or other attention

mechanism-based models can also be used to implement

sign language. Besides that, the dataset used in the paper is

not created by a professional sign language interpreter.

Also, more research needs to be done on video

augmentation to get better results. More datasets can also

improve the real-time accuracy of our model. User video of

real-time implementation can be recorded for incrementing

the dataset size in the future.

We haven’t been able to create a model that can predict the

whole sentence depicted by the user. This can be done

easily with the introduction of other models which can

detect the position of elbows, shoulders, wrists and face.

TensorFlow produced a package named PoseNet [20], used

to get the posture coordinates of 17 body landmarks. Dlib

[21] is another python library that can be used to get the

facial expression coordinates. It tracks 64 points of the face

for each frame. So, combining Hand coordinates along

with PoseNet and Dlib to get body posture and facial

expression and creating a dataset out of them can prove to

be very helpful for future research works on this topic.

REFERENCES

[1] Arpit Mittal, Andrew Zisserman, Philip HS Torr, “Hand

detection using multiple proposals”, The British Machine

Vision Conference, Vol.40, pp.75.1–75.11, 2011.

[2] Ruchi Manish Gurav, Premanand K. Kadbe, “Real time finger

tracking and contour detection for gesture recognition using

OpenCV”, In the proceedings of 2015 International Conference

on Industrial Instrumentation and Control, ICIC 2015, pp. 974–

977, 2015, isbn: 9781479971657, doi:

10.1109/IIC.2015.7150886

[3] Sarfaraz Masood, Adhyan Srivastava, Harish Chandra Thuwal,

Musheer Ahmad, “Real-Time Sign Language Gesture (Word)

Recognition from Video Sequences Using CNN and RNN”,

Intelligent Engineering Informatics, Ed. by Vikrant Bhateja,

Carlos A. Coello Coello, Suresh Chandra Satapathy, Prasant

Kumar Pattnaik., Springer, Singapore, pp. 623–632, 2018, isbn:

978-981-10-7566-7

[4] Kirsti Grobel and Marcell Assan, "Isolated sign language

recognition using hidden Markov models", In the proceedings of

 International Journal of Computer Sciences and Engineering Vol.9(7), Jul 2021, E-ISSN: 2347-2693

 © 2021, IJCSE All Rights Reserved 52

1997 IEEE International Conference on Systems, Man, and

Cybernetics, Computational Cybernetics and Simulation, Vol.1,

pp. 162-167, 1997, doi: 10.1109/ICSMC.1997.625742

[5] Pradeep Kumar, Himaanshu Gauba, Partha Pratim Roy, Debi

Prosad Dogra, “Coupled HMM-based multi-sensor data fusion

for sign language recognition”, Pattern Recognition Letters,

Vol.86, Pages 1-8, 2017, ISSN 0167-8655, doi :

/10.1016/j.patrec.2016.12.004

[6] S. A. Mehdi and Y. N. Khan, "Sign language recognition using

sensor gloves," In the proceedings of the 9th International

Conference on Neural Information Processing, 2002, ICONIP

'02., Vol.5, pp. 2204-2206, 2002, doi:

10.1109/ICONIP.2002.1201884.

[7] J. Gałka, M. Mąsior, M. Zaborski, K. Barczewska, "Inertial

Motion Sensing Glove for Sign Language Gesture Acquisition

and Recognition,", IEEE Sensors Journal, Vol.16, pp. 6310-

6316, 2016, doi: 10.1109/JSEN.2016.2583542.

[8] Fan Zhang, Valentin Bazarevsky, Andrey Vakunov, Andrei

Tkachenka, George Sung, Chuo-Ling Chang, Matthias

Grundmann, “MediaPipe Hands: On-device Real-time Hand

Tracking”, Google AI Blog, 2020.

[9] Ivan Vasilev, Daniel Slater, Gianmario Spacagna, Peter

Roelants, Valentino Zocca, “Python Deep Learning: Exploring

deep learning techniques and neural network architectures with

Pytorch, Keras, and TensorFlow”, Packt Publishing Ltd, pp.

198-212, 2019.

[10] C. Lugaresi, J. Tang, H. Nash, C. McClanahan, E. Uboweja, M.

Hays, F. Zhang, Cl. Chang, MG. Yong, J. Lee, WT. Chang,

“Mediapipe: A framework for building perception pipelines”,

Google AI Blog, 2019, doi:1906.08172.

[11] Hoo-Chang Shin, Holger R. Roth, Mingchen Gao, Le Lu, Ziyue

Xu, Isabella Nogues, Jianhua Yao, Daniel Mollura, Ronald M,

"Deep Convolutional Neural Networks for Computer-Aided

Detection: CNN Architectures, Dataset Characteristics and

Transfer Learning", IEEE Transactions on Medical Imaging,

Vol.35, Issue.5, pp. 1285-1298, 2016, doi:

10.1109/TMI.2016.2528162.

[12] Saurav Singla, Anjali Patel, "Comparative Study of the Deep

Learning Neural Networks on the basis of the Human Activity

Recognition", International Journal of Computer Sciences and

Engineering, Vol.8, Issue.11, pp.27-32, 2020.

[13] J. Sun, J. Wang, T. C. Yeh, “Video understanding: from video

classification to captioning”. In the Proceedings of the

Computer Vision and Pattern Recognition, Stanford University,

pp.1-9, 2017.

[14] H. Li, J. Li, X. Guan, B. Liang, Y. Lai, X. Luo, "Research on

Overfitting of Deep Learning," In the proceedings of 2019 15th

International Conference on Computational Intelligence and

Security (CIS), pp. 78-81, 2019, doi: 10.1109/CIS.2019.00025.

[15] S. Bock, M. Weiß, "A Proof of Local Convergence for the Adam

Optimizer," In the proceedings of 2019 International Joint

Conference on Neural Networks (IJCNN), pp. 1-8, 2019, doi:

10.1109/IJCNN.2019.8852239.

[16] N. D. Marom, L. Rokach, A. Shmilovici, "Using the confusion

matrix for improving ensemble classifiers," In the proceedings

of 2010 IEEE 26-th Convention of Electrical and Electronics

Engineers in Israel, pp. 000555-000559, 2010, doi:

10.1109/EEEI.2010.5662159.

[17] D. Zhang, J. Wang, X. Zhao, X. Wang, "A Bayesian

Hierarchical Model for Comparing Average F1 Scores," In the

proceedings of 2015 IEEE International Conference on Data

Mining, pp. 589-598, 2015, doi: 10.1109/ICDM.2015.44.

[18] M. Genovese, E. Napoli, N. Petra, "OpenCV compatible real

time processor for background foreground identification," In the

proceedings of 2010 International Conference on

Microelectronics, pp. 467-470, 2010, doi:

10.1109/ICM.2010.5696190.

[19] Fatima Ansari, Anwar Hussain Mistry, Yusuf Mirkar, Alim

Merchant, "Real Time ASL (American Sign Language)

Recognition", International Journal of Computer Sciences and

Engineering, Vol.7, Issue.2, pp.848-851, 2019.

[20] S. Singh et al., "Action Replication in GTA5 using Posenet

Architecture with LSTM Cells,"In the proceedings of 2021 2nd

International Conference on Intelligent Engineering and

Management (ICIEM), pp. 544-549, 2021,

doi:10.1109/ICIEM51511.2021.9445358.

[21] S. Sharma, K. Shanmugasundaram and S. K. Ramasamy,

"FAREC — CNN based efficient face recognition technique

using Dlib," In the proceedings of 2016 International

Conference on Advanced Communication Control and

Computing Technologies (ICACCCT), pp. 192-195, 2016, doi:

10.1109/ICACCCT.2016.7831628.

AUTHORS PROFILE

Mr. Souradeep Ghosh is currently

pursuing Bachelor of Technology in

Electrical Engineering from Heritage

Institute of Technology, Kolkata,

India. His research interest lies in

Machine Learning, Artificial

Intelligence, Computer Vision and

Natural Language Processing.

https://doi.org/10.1016/j.patrec.2016.12.004
https://doi.org/10.1016/j.patrec.2016.12.004
https://ieeexplore.ieee.org/author/37085518779
https://ieeexplore.ieee.org/author/37408480300
https://ieeexplore.ieee.org/author/37085495699
https://ieeexplore.ieee.org/author/37085553914
https://ieeexplore.ieee.org/author/37071529100
https://ieeexplore.ieee.org/author/37071529100
https://ieeexplore.ieee.org/author/37085767181
https://ieeexplore.ieee.org/author/37280661200
https://ieeexplore.ieee.org/author/38229031200
https://ieeexplore.ieee.org/author/37272385900

