a
A]CSE International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol. 9, Issue.7, July 2021 E-ISSN: 2347-2693

Proposal of a Real-time American Sign Language Detector using
MediaPipe and Recurrent Neural Network

Souradeep Ghosh!

'Department of Electrical Engineering, Heritage Institute of Technology, Kolkata, India
Author’s Mail Id: jeetsouradeep@gmail.com, Tel.: +91-7685920081
DOI: https://doi.org/10.26438/ijcse/v9i7.4652 | Available online at: www.ijcseonline.org

Received: 18/Jul/2021, Accepted: 20/Jul/2021, Published: 31/Jul/2021
Abstract— The predominant vocabulary of the deaf and dumb, Sign Language serves as a natural, visual language which
our brain is capable of processing and deciphering linguistic details. For the past two decades, scientists have been
researching the automated recognition of sign language using translating gloves and complex systems with several
cameras. Most of these systems can provide partial or complete recognition of the vocabulary but aren’t cost-effective for
the average and below-average section of the demographic. With the advent of Al, we’re trying to overcome this biasness
in technology. Google’s MediaPipe, which is an open-source framework for multimodal (video, audio, time-series)
features with applied ML pipelines, came into existence in 2019. Using MediaPipe’s Multi-hand Tracking model pipeline
we can get landmarks of our fingers. This paper advocates the use of MediaPipe Hand Tracking to get hand landmarks,

training a Keras RNN-LSTM model with that data to detect Sign Language of 5 trained words in real-time.

Keywords— MediaPipe, American Sign Language, OpenCV, RNN, LSTM, Real-time

l. INTRODUCTION

According to the data provided in 2019 by World Health
Organisation, approximately 466 million of the world’s
population has disabling hearing loss. It is extrapolated by
their research that by 2050, this number would surge to
over 900 million. For the past centuries, people have been
using translators and texts to fetch the need for
communication between the disabled and non-disabled
people. These methods have succumbed to limitations:
Firstly, the text conversions aren’t able to elucidate human
expressions and proceeds very slowly which is not as
comfortable as the spoken ones. Secondly, the translator
method can be expensive and insolvent for the majority of
the demographics and bear privacy issues to the public and
government bodies.

The advent of Computer Vision and Artificial Intelligence
has assisted us to overcome the technological barriers
involving finger tracking and real-time image and video
processing. This project aims to build and enact an Al
model capable of detecting sign language in real-time with
the help of Computer Vision and Google’s MediaPipe
Multi-Hand Tracking ML pipelines. MediaPipe helps us to
track fingers of our hands and returns the coordinates of
each point even in real-time. Giving primacy to finger
tracking, we generated a dataset of 42 coordinates per
frame (21 for each hand), for each video dataset we created
for a word. Using Keras library of Tensorflow we created a
RNN (Recurrent Neural Network) — LSTM (Long Short
Term Memory) model [9], and trained it with the dataset
we created earlier. Then using the real-time approach of
MediaPipe finger tracking, we used the saved model to

© 2021, 1JCSE All Rights Reserved

predict the word that we’re showing. MediaPipe [10] is a
framework effective to detect sign languages. This method
is advantageous to the earlier used methods of detection as
it only uses a single camera application of a laptop or a
mobile phone to detect the sign- language.

This paper doesn’t intend to recognize each and every ASL
(American Sign Language). Owing to restrictions in time
and computational power, our model can differentiate
between five different words and also invigorates the
hypothesis that if a larger dataset is used along with
combined MediaPipe Hands and PoseNet algorithm, any
number of signs is possible to decipher. The rest of the
paper contains Section Il as Related Works, Section 11 as
Methodology (MediaPipe Implementation, Dataset
Collection, Preprocessing, Model Creation, Training and
Evaluation, Evaluation of test data and Real-time testing),
Section IV as Results and Discussion, Section V as
Conclusion and Section VI as Future Scope.

Il. RELATED WORK

The need for developing a solution for sign language
detection was clear to the researchers for a couple of
decades. Now, we will be summarizing the previously
known works on this topic and would illustrate how our
Google’s MediaPipe based research is different, further in
the other topics.

The contour detection approach presented an OpenCV-
based approach which was the earliest known approach for
Object Detection (before MediaPipe). OpenCV is an Intel-
based programming library that focuses on real-time

46

International Journal of Computer Sciences and Engineering

computer vision applications. In “Hand detection using
multiple proposals” by Arpit Mittal et al. [1], which
studies real-time hand detection claims that it can detect
multi-hands although the accuracy drops when the top half
part of the human body appears in the frame.

In 2015, Ruchi Manish Gurav et al. presented a similar
approach in “Real time finger tracking and contour
detection for gesture recognition using OpenCV” [2]. It
shows that steady signs can be predicted at the rate of
30FPS but lists numerous disadvantages: the fingers that
are behind the other fingers aren’t detected correctly and if
we display a fist, it’s only detected as a fist and not fingers.

RNN combined with other Al models approach is a
similar approach that we used in this project. We have used
Google’s MediaPipe along with RNN to detect sign
language. Sarfaraz Masood et al. details a similar
approach which utilizes the CNN approach to detect the
position of the hands along with RNN to detect a pattern of
signs in the paper “Real-Time Sign Language Gesture
(Word) Recognition from Video Sequences Using CNN and
RNN ” [3]. The results were pretty good as the paper states
the detection of 46 signs with an accuracy of 95.2 percent
but the type of camera used is not defined by the authors.

HMM, Hidden Markov Model, approach was first
proposed back in 1997 by Kirsti Grobel et al. in their
research paper “lsolated sign language recognition using
hidden Markov models” [4]. They recognized 262
independent signs with an accuracy of 91 percent. Since
then, many papers have been published using this method.
One of the recent publications includes the one by
Pradeep Kumar et al [5], who in their publication,
“Coupled HMM-based multi-sensor data fusion for sign
language recognition”, tried different hand tracking
approaches to detect 25 different sign languages with the
help of HMM on a 2000 word sample and waxed an
accuracy of around 90 percent.

The Glove approach advocates the use of gloves for hand
tracking, with sensors in it to recognize the movement of
fingers and hands and display the word the user is trying to
convey. This approach uses flex-sensor and gyroscope to
detect finger movement and hand orientation respectively.
S. A. Mehdi et al. [6], used seven sensors (one for each
finger and two for hand orientation) to recognize alphabets
in ASL in their publication “Sign language recognition
using sensor gloves” in 2002. They obtained an accuracy
close to 88 percent. Later in 2016, Jakub Galka et al. in
their publication, “Inertial motion sensing glove for sign
language gesture acquisition and recognition” [7], used
the Glove approach combined with HMM to get an
accuracy of 99 percent for 40 different gestures. The cost
of sensors and the uncomfortability of wearing gloves
make it an unreliable method of further research.

I1l. METHODOLOGY

Real-time sign language detection can be achieved by a
variety of Classical and Deep Learning algorithms like

© 2021, 1JCSE All Rights Reserved

Vol.9(7), Jul 2021, E-ISSN: 2347-2693

Decision Tree, Random Forrest and K- Nearest Neighbour,
but the accuracy of these algorithms isn’t over 75 percent.
So, we have used the Keras RNN LSTM model to fit our
dataset of hand landmarks obtained from MediaPipe
implementation. MediaPipe hand tracking was first
introduced by Fan Zhang et al. in their publication,
“MediaPipe Hands: On-device Real-time Hand Tracking”
[8], in 2020. We have used Python programming for our
development. The basic architecture of our model is
depicted in Fig 1.

Trahing

Vidoo Dorawee

l

Landmark Dataset
Preprocess
Sealtirse Testing . i
Aral tvme Maflad i sy Lt

e 5T
Video w Heod wmp . wmp Meds!
Iepat Landmarks | £ i |

Fig 1. Basic architecture of Real-time Sign Language Detector

1. MEDIAPIPE IMPLEMENTATION

MediaPipe employs various ML Pipelines consisting of
multiple models working in conjunction. A hand landmark
model works on the cropped part of the image explicated
by the palm detector and a series of high-precision 3D
hand key points is returned. The accuracy of palm
detection is higher than 95 percent according to the
documentation by Google. After the palm detection, the
image is passed to a CNN (Convolutional Neural Network)
model [11], also known as the finger detector. The model
accurately defines key point localization of 21 3D- hand-
knuckle coordinates of each hand, shown in Fig 2. We
have implemented this MediaPipe Hand-landmarks
pipeline and tested it in our local setup in Real-time,
depicted in Fig 3.

0. WRST 17, MIDDLE_FINGER_D@®

& M 4 1. THUME_CMC 12 MIDDLE_FINGER_TIP
7 e |15 2 THUMB_MCP 13. RING_FINGER_MCP
6% 01 94 S 3 THUMERP 14, RING_FINGER_P1P
a e] 4 THUMB_TIP 15, RING_FINGER_DIP
4 19 5 S 18 5. INDEX_FINGER_MCP 16 RING_FINGER_TIP
3® 17 6. INDEX_FINGER_PIP 17, PINKY_MCS
. 7. INDEX_FINGERDIP 18, PINKY_PIP
2 B. INDEX_FINGER_TI® 19, PINKY_DIP

1% 9. MIDDLE FINGER.MCP 20 PINKY_T#
&0 10. MIDDLE_FINGER_PIP

Fig 2 21 3D Key points for each hand

47

International Journal of Computer Sciences and Engineering

2. DATASET COLLECTION

We produced about 126 videos each for the 5 chosen signs
of ASL. These words are- teacher, think, tiger, twins and
wait. The video dataset was of 30FPS each and lasted for
2-3 seconds and was pre-processed to increase the clarity
and hue of the frames in it. Now, this processed video
dataset was passed through the MediaPipe ML pipelines to
get the hand-knuckle coordinates of each frame. We used
frames at the rate of 1 out of 8 consecutive frames and got
42 coordinate values for each frame and stored them in a
CSV file. We ignored the z-axis in this case as we aren’t
considering image depth for our instance. After the
conversion, we obtained a dataset of 630 rows of
coordinates. The no. of columns isn’t fixed as the time
period, and corresponding frames for all the videos are
different. A part of the raw dataset is given in Fig 4.

1| 8 790 s s 2 s & &
68 | 072396 0.53637 0.70845 055412 071004 0.56426 087545
69 079391 05038 078004 051825 079161 052552 08229
70| 0.78067 057183 0.76%38 0,58776 0.78226 0.59276
71| 078146 055173 0.78208 056715 0.80541 05727 091161
72| 075484 054924 074229 0.56066 0.74761 056514 0.89738
73 | 0.80153 0.51204 0.786 052093 0.78865 05264 0.88233
74| 071715 053948 0.68859 0.5503 0.67508 055649 0.50342
75| 0.8257 052875 0.80456 0.54713 0.80118 0.55744 0.50175
76 0.74365 0.50245 0.73776 0.52442 0.765 0.53548 0.75242
77| 0.28012 048513 0.26629 0.48487 0.25392 048577 0.10259
78| 0.24875 047346 0.24395 0435019 0.21912 0493 0.135
79| 0.16649 046120 017268 046712 0.16773 047144

Fig 4 Raw Hand-knuckle coordinates dataset

3. PREPROCESSING

The preprocessing of the CSV dataset is of two steps:
handling missing values and labelling the rows. As
mentioned earlier, we have an uneven number of columns
in our dataset due to the different time span of videos. So,
there are many empty cells in our CSV dataset. We padded
our dataset with 0 so that the structure of data will be even
and our model can handle it with ease. The second step
involves labelling the rows with an index number
associated with a particular Sign, for example, 0 for
teacher, 1 for think, 2 for tiger, 3 for twins and 4 for wait.
We stored these labels in another text file too for our future
reference. Now, the dataset is clean and ready to be
trained. A part of the cleaned dataset is given in Fig 5.

7 79 80 81 82 & 84 85
68 (0723955 0.536371 0.709447 0.55412 0710037 0.564265 0.87545 0
69 |0.793914 0.503803 0.780037 0.518245 0791614 0.525516 0.822%03 0
70 0.78067 0.571833 0.769377 0.587762 0.782257 0592757 0 1
710781462 055173 0.78206 0567155 0.805408 0572701 0911606 1
72(0.754837 0549239 0.742292 0.560662 0.74761 0.565138 0897382 2
7310.801531 0.51204 0.785595 (.520928 0.738647 05264 0882331 2
74|0.717151 0539478 0.688552 0.550305 0.675076 0556493 0.503421 3
750.828697 (0.528753 0.804561 0.547128 0.301182 055744 0301748 3
76 0743652 0.502449 0.737763 0.524421 0.765001 0.535482 0.75242 4
7710.280123 0.485129 0.26629 0.484868 0.253916 0.485773 0102588 4
75 10.24475¢ 0.47345¢ 0243952 0.490193 0.219117 0.492999 0.134%%9 0
79 10.166491 0.461285 0.172685 0467122 0167727 0.471436 0 0

Fig 5 Cleaned Hand-knuckle coordinate Dataset

© 2021, 1JCSE All Rights Reserved

Vol.9(7), Jul 2021, E-ISSN: 2347-2693

4. MODEL CREATION

We have used an RNN model which takes the Hand-
knuckle coordinates as input and returns the output label
for that set of coordinates. The original vanilla version of
the RNN is rarely used as it suffers from a major problem.
The original RNN has the tribulation of vanishing gradient,
where it cannot remember the long term dependencies of
the dataset. Advanced versions like LSTM (Long Short
Term Memory) and GRU (Gated Recurrent Unit) [12],
used to compensate for this issue. We are using an LSTM
cell in our model. The basic LSTM cell architecture is
given in Fig 6.

The two states of an LSTM cell are cell state and hidden
state. The cell state is the memory of the LSTM cell while
the hidden state is the output of the cell. In Fig 6, three
inputs of each LSTM cell is depicted where: Cy; is the cell
state input for the memory cell in timestep t-1, h, is the
hidden state input for the memory cell in timestep t-1 and
X is the input in timestep t. There are three gates in an
LSTM cell: input gate (adds new data to the cell), output
gate (outputs cell data) and forget gate (erases cell data).
The function of these gates are as follows: we choose to
add new content from the current input to our present cell
state in the input gate, we choose what to output from our
cell state in the output gate and we choose what must be
removed from the hy, state, keeping only the relevant ones
using the forget gate.

In our LSTM model, we used a dimensionality of 256 for
the outer layer and 128 for the inner layer. These layers are
accompanied by a dropout layer, a regularization layer
where input and recurrent connections to LSTM are
excluded from activation and weight updates during
training probabilistically. The model performance is then
enhanced, successfully avoiding the overfitting [14]. These
layers are followed by two other layers: Flatten and Dense.
Flatten layer is essential so that LSTM would be shaped as
one dimension per input. The dense Layer is also called the
Fully-connected layer. It ensures each neuron of layer N is
connected to every neuron in the N+1 layer. We are using
Keras and Tensorflow to build our model. Keras is an
open-source python library that provides an interface for
modelling deep learning and artificial neural networks
while Tensorflow is an open-source end-to-end Machine
Learning Platform. The input would pass through our
trained model and the output would be predicted by it. The
architecture of the model is given in Fig 7.

D)
F'S
N e
>
h t
-
&9
Fig 6 Basic LSTM Cell architecture
48

International Journal of Computer Sciences and Engineering

waiae| o

-
osuaq

INndur NS

v
T waLish
!

T anodouad
l
waisn
!

c wnmodoaq
|

Fig 7 Architecture of our LSTM model

5. TRAINING AND EVALUATION

After accessing the Dataset CSV file we are taking 10
frames per video as our input to the model. So, the number
of columns for our X variable is 420, i.e. 42*10 frames,
and our Y variable is of a single column that contains the
label for each video. As mentioned earlier, there are 630
videos (rows) in our dataset. We decided to keep only 5
per cent as our test data considering the small dataset we
have and we split the dataset into X_train, X_test, Y_train
and Y_test. So, the training dataset contains 598 rows and
the test dataset contains 32 rows.

LSTM [13] is capable of handling only 3D datasets. We
used Reshape function of the Numpy package to reshape
the X_train and X test values into 3D arrays. Now, the
current shape of the X_train array is (598x420x1). This the
final set of input for our model. As described in the model
creation part, our model contains two LSTM layers of 256
and 128 units respectively each followed by a dropout
layer of 0.2. These layers are followed by Flatten and
Dense Layers. The output shapes and the parameters of our
model are shown in Fig 8. Adam [15] optimiser is used for
our model and Mean-squared loss as the loss parameter,
considering it’s a multi-class classification model. We
have set the number of epochs to 170 with a batch size of
32 for our model and fitted the data (X_train, Y_train) in
our model with accuracy as metrics. The validation set for
the evaluation is again 5 per cent, which is 30 videos
(rows) of our final dataset.

The parameters chosen to analyse and evaluate our model
are training accuracy, training loss, validation accuracy and
validation loss. The training of 170 epochs took around
two and a half hours in our system and we were able to
reach an accuracy of 95 per cent with a loss of 6 per cent.
After the end of the training, we saved the model as .h5 file
and plotted the parameters of our model. We produced two
plots, Epoch vs. Accuracy and Epoch vs. Loss, for our
training and validation dataset, shown in Fig 9 and 10
respectively. From the plot, the increment of the accuracy
and decrement of the loss of the training and validation set
suggests that the dataset perfectly fits in our model and the
fact that we have not overfitted our data.

© 2021, 1JCSE All Rights Reserved

Vol.9(7), Jul 2021, E-ISSN: 2347-2693

“Param #

Output S

(None,
dropout_1 (DOropout)
stm_2 (LSTM)
dropout 2 (Dropout)
latten_1 (Flatten) (None, 53768)
ense 1 (D {None,
Total params:

rainable params: 515,087
Non-trainable params: @

Fig 8 Output shapes and no. of parameters of different model
layers

model accuracy

10 1 — train | I | V] N A
. A MRS AT
test «-‘4' /’A,\L_(| WN]WV k'
038 {’-{/‘M l
Y
I
- |
8 06 I
b=
04
w»“/
02 '.",v
0 % % 7% 100 D5 150 175

époch
Fig 9 Epoch vs. Accuracy for Train and Test set

model loss
30
—TaMN
— oSt
254
20 1
9215
= {
5
10
05 1 \x |
: \K'W%—MWW__*_ ks
0.0) -
0 5 S0 s 100 125 150 175
epoch

Fig 10 Epoch vs. Loss for Train and Test set

6. EVALUATION OF TEST DATA

The test and train graphs from the previous topic give us
only brevity of information on how it would work on a real
dataset. So, considering this smattering amount of analysis
we had, we decided to use predictive analysis algorithms
like Confusion Matrix along with other classification
report parameters, i.e. precision, recall and F1 score, to
calculate accuracy, macro average and weighted average
on the test data.

49

International Journal of Computer Sciences and Engineering

The first step is to use the 32 videos we kept as X_test to
predict the Y labels with our trained model. Once we
receive the Predicted Y values we are rounding them off to
the nearest integer labels using the round function of the
Numpy package. Now the labels are ready to be plotted in
a confusion matrix [16], shown in Fig 11. The confusion
matrix is an N x N matrix used for the evaluation of a
classification model. The Y-axis contains the real Y labels
for the X_test data and the X-axis contains the rounded
predicted labels from our model. As we have 5 labels for
our dataset so the dimension of the confusion matrix is 5 x
5. The labels are the integers between 0-4 both inclusive.
The colour gradient scale shows how each cell of the
matrix is coloured depending on the quantity of data.

Now, we are gathering the detailed classification report of
these predicted values. There are 4 possible cases of
response for a classical model, namely: TN/ True Negative,
TP/ True Positive, FN/ False Negative and FP/ False
Positive. TN is the case when both the real and predicted
cases are negative, TP is the case when both real and
predicted cases are true, FN is the case when the real case
is positive but the predicted case is negative and FP is the
case when the real case is negative but the predicted case is
positive. Precision is the classifier’s ability to not label an
instance positive if it’s negative. It’s the ratio of the true
positives to the sum of true and false positives, given in

().

Precision = TP/(TP + FP) 1)

Recall is the classifier’s ability to find all the positive
instances. It’s the ratio of the true positives and the sum of
the true positives and false negatives, given in (2).

Recall = TP/(TP + FN) 2)

The weighted harmonic mean of the Precision and Recall,
given that the best score and worst score is 1.0 and 0.0
respectively, is called the F1 score [17]. So, for comparing
a classification model the weighted average of the F1 score
should be used and not the actual accuracy percentage. The
F1 score is given by the following formulae (3).

F1 Score = 2 x (Recall x Precision) / (Recall + Precision)

©)

The full classification report table of our model is shown in
Fig 12.

Confusion Matrix

bels

Tue Ll

”

0 1 2 3 4
Predicted Labels
Fig 11 Confusion Matrix for evaluation of predicted results

© 2021, 1JCSE All Rights Reserved

Vol.9(7), Jul 2021, E-ISSN: 2347-2693

recall fi-score

precision

1.00
09.78
1.00
1.00
1.00

.80
.88

accuracy
maCro avg
weighted avg

Fig 12 Classification report table of the predicted instances

7. REAL-TIME TESTING

Now, the saved model can be used for real-time
implementation. Firstly, the model is loaded onto a
variable using Keras’ load model method. OpenCV [18] is
an open-source computer vision platform to capture,
modify and augment images and videos to create a dataset
and implement it in a model. By using the video capture
function of OpenCV, we captured real-time video and split
it into 30 fps. We took a nominal frame gap of 8 frames,
similar to our dataset creation, and passed these friends
consecutively to the MediaPipe hand landmarks function.
Upon detecting hands and acquiring Hand-knuckle
coordinates for each frame, we have 42 coordinates (21 for
each hand) and stored them in a list.

As posited in the training and evaluation section, we take
10 frames per input to the model for implementation too.
The 42 coordinates of each frame get appended to the list
variable until a length of 420 is reached. Upon reaching the
desired length, we send this variable as input to our model
for prediction. The model returns a decimal value of a
particular labelled class. Rounding off the predicted results
we match it with the word label we previously stored in a
text file and display the word as output in the same real-
time video window. After displaying the output the list
storing the coordinates is emptied and the process
continues. The camera operation is terminated only when a
wait key is pressed.

IV. RESULTS AND DISCUSSION

The real-time test was run on our setup with the following
configurations:

- CPU: i5-7200U CPU (2.50GHz - 2.71 GHz)

- RAM: 16 GB (1600 MHz)

- GPU: 4 GB Nvidia GeForce 940 MX

The results from testing are compared with some of the
Original ASL depicters from YouTube in the following Fig
13, 14, 15, 16 and 17.

Fig 13 YouTuber (Id: one fact ASL) vs. real-time output for word
‘Wait’

50

International Journal of Computer Sciences and Engineering

Fig 14 YouTuber (Id: Signé) vs. real-time outpt]t for word
“Think’

Fig 15 YouTuber (Id: Laura Be?g Life) vs. real-time output for
word ‘Tiger’

Fig 16 YouTuber (Id: Teachiﬁg Resources) vs. real-time output
for word ‘Teacher’

Fig 17 YouTuber (Id: Sharon_Naéo_r1) vs. real-time output for
word ‘Twins’

The results obtained are decent accurate considering the
minimal configurations used for real-time implementation.
Our model and approach are different from other
previously mentioned methods because most of the
methods are not able to give good accuracy in real-time or
need some high configuration camera and setup. On the
other hand, we have implemented it on a simple phone
camera or Webcam instead of some high configuration
cameras. This makes the approach cost-effective for the
general public. This research opens up new doors for a
more accessible way to recognize ASL [19]. Although, the
final product that people can use, is still far, the further
implementation of other Al models along with MediaPipe
can do the tricks.

V. CONCLUSION

The main conclusion from this paper is that the hand
tracking provided by Google’s Mediapipe is efficient

© 2021, 1JCSE All Rights Reserved

1

Vol.9(7), Jul 2021, E-ISSN: 2347-2693

enough to detect multiple Hand Gestures. The real-time
implementation can be done with the help of simple mobile
cameras or a Webcam. The videos that have higher frames
per second (higher shutter speed) work more efficiently
when trained. This is how we have overcome the costly
methods of hand detection with a simpler approach. We
have only trained our model with 5 words of 126 videos
each due to time and computational limitations. With a
larger and augmented dataset and higher system
configurations, we can even train the model for sentences
instead of words. One of the drawbacks this research faces
is that we are unable to get the full arm landmarks along
with upper body landmarks. If some other Al-based
approach can be implemented with this approach we are
sure this would surely become ready for public use.

VI. FUTURE SCOPE

There are various ways this research can be improved in
the future. Firstly, the Al algorithm and the dataset used in
this paper can be greatly improved. CNN or other attention
mechanism-based models can also be used to implement
sign language. Besides that, the dataset used in the paper is
not created by a professional sign language interpreter.
Also, more research needs to be done on video
augmentation to get better results. More datasets can also
improve the real-time accuracy of our model. User video of
real-time implementation can be recorded for incrementing
the dataset size in the future.

We haven’t been able to create a model that can predict the
whole sentence depicted by the user. This can be done
easily with the introduction of other models which can
detect the position of elbows, shoulders, wrists and face.
TensorFlow produced a package named PoseNet [20], used
to get the posture coordinates of 17 body landmarks. Dlib
[21] is another python library that can be used to get the
facial expression coordinates. It tracks 64 points of the face
for each frame. So, combining Hand coordinates along
with PoseNet and Dlib to get body posture and facial
expression and creating a dataset out of them can prove to
be very helpful for future research works on this topic.

REFERENCES

[1] Arpit Mittal, Andrew Zisserman, Philip HS Torr, “Hand
detection using multiple proposals”, The British Machine
Vision Conference, Vol.40, pp.75.1-75.11, 2011.

[2] Ruchi Manish Gurav, Premanand K. Kadbe, “Real time finger
tracking and contour detection for gesture recognition using
OpenCV”, In the proceedings of 2015 International Conference
on Industrial Instrumentation and Control, ICIC 2015, pp. 974—
977, 2015, isbn: 9781479971657, doi:
10.1109/11C.2015.7150886

[3] Sarfaraz Masood, Adhyan Srivastava, Harish Chandra Thuwal,
Musheer Ahmad, “Real-Time Sign Language Gesture (Word)
Recognition from Video Sequences Using CNN and RNN”,
Intelligent Engineering Informatics, Ed. by Vikrant Bhateja,
Carlos A. Coello Coello, Suresh Chandra Satapathy, Prasant
Kumar Pattnaik., Springer, Singapore, pp. 623-632, 2018, isbn:
978-981-10-7566-7

[4] Kirsti Grobel and Marcell Assan, "lsolated sign language
recognition using hidden Markov models", In the proceedings of

51

International Journal of Computer Sciences and Engineering

[5]

(6]

[7]

8]

(9]

[10]

(11]

(12]

(13]

[14]

[15]

[16]

[17]

[18]

[19]

1997 IEEE International Conference on Systems, Man, and
Cybernetics, Computational Cybernetics and Simulation, Vol.1,
pp. 162-167, 1997, doi: 10.1109/ICSMC.1997.625742

Pradeep Kumar, Himaanshu Gauba, Partha Pratim Roy, Debi
Prosad Dogra, “Coupled HMM-based multi-sensor data fusion
for sign language recognition”, Pattern Recognition Letters,
Vol.86, Pages 1-8, 2017, ISSN 0167-8655, doi
/10.1016/j.patrec.2016.12.004

S. A. Mehdi and Y. N. Khan, "Sign language recognition using
sensor gloves," In the proceedings of the 9th International
Conference on Neural Information Processing, 2002, ICONIP
'02., Vol.5, pp. 2204-22086, 2002, doi:
10.1109/ICONIP.2002.1201884.

J. Galka, M. Masior, M. Zaborski, K. Barczewska, "Inertial
Motion Sensing Glove for Sign Language Gesture Acquisition
and Recognition,”, IEEE Sensors Journal, Vol.16, pp. 6310-
6316, 2016, doi: 10.1109/JSEN.2016.2583542.

Fan Zhang, Valentin Bazarevsky, Andrey Vakunov, Andrei
Tkachenka, George Sung, Chuo-Ling Chang, Matthias
Grundmann, “MediaPipe Hands: On-device Real-time Hand
Tracking ”, Google Al Blog, 2020.

Ivan Vasilev, Daniel Slater, Gianmario Spacagna, Peter
Roelants, Valentino Zocca, “Python Deep Learning: Exploring
deep learning techniques and neural network architectures with
Pytorch, Keras, and TensorFlow”, Packt Publishing Ltd, pp.
198-212, 2019.

C. Lugaresi, J. Tang, H. Nash, C. McClanahan, E. Uboweja, M.
Hays, F. Zhang, Cl. Chang, MG. Yong, J. Lee, WT. Chang,
“Mediapipe: A framework for building perception pipelines”,
Google Al Blog, 2019, doi:1906.08172.

Hoo-Chang Shin, Holger R. Roth, Mingchen Gao, Le Lu, Ziyue
Xu, Isabella Nogues, Jianhua Yao, Daniel Mollura, Ronald M,
"Deep Convolutional Neural Networks for Computer-Aided
Detection: CNN Architectures, Dataset Characteristics and
Transfer Learning”, IEEE Transactions on Medical Imaging,
Vol.35, Issue.5, pp. 1285-1298, 2016, doi:
10.1109/TMI1.2016.2528162.

Saurav Singla, Anjali Patel, "Comparative Study of the Deep
Learning Neural Networks on the basis of the Human Activity
Recognition”, International Journal of Computer Sciences and
Engineering, Vol.8, Issue.11, pp.27-32, 2020.

J. Sun, J. Wang, T. C. Yeh, “Video understanding: from video
classification to captioning”. In the Proceedings of the
Computer Vision and Pattern Recognition, Stanford University,
pp.1-9, 2017.

H. Li, J. Li, X. Guan, B. Liang, Y. Lai, X. Luo, "Research on
Overfitting of Deep Learning," In the proceedings of 2019 15th
International Conference on Computational Intelligence and
Security (CIS), pp. 78-81, 2019, doi: 10.1109/CI1S.2019.00025.
S. Bock, M. WeiB, "A Proof of Local Convergence for the Adam
Optimizer," In the proceedings of 2019 International Joint
Conference on Neural Networks (IJCNN), pp. 1-8, 2019, doi:
10.1109/1JCNN.2019.8852239.

N. D. Marom, L. Rokach, A. Shmilovici, "Using the confusion
matrix for improving ensemble classifiers," In the proceedings
of 2010 IEEE 26-th Convention of Electrical and Electronics
Engineers in Israel, pp. 000555-000559, 2010, doi:
10.1109/EEEI.2010.5662159.

D. Zhang, J. Wang, X. Zhao, X. Wang, "A Bayesian
Hierarchical Model for Comparing Average F1 Scores," In the
proceedings of 2015 IEEE International Conference on Data
Mining, pp. 589-598, 2015, doi: 10.1109/ICDM.2015.44.

M. Genovese, E. Napoli, N. Petra, "OpenCV compatible real
time processor for background foreground identification," In the
proceedings of 2010 International Conference on
Microelectronics, pp. 467-470, 2010, doi:
10.1109/1CM.2010.5696190.

Fatima Ansari, Anwar Hussain Mistry, Yusuf Mirkar, Alim
Merchant, "Real Time ASL (American Sign Language)
Recognition”, International Journal of Computer Sciences and
Engineering, Vol.7, Issue.2, pp.848-851, 2019.

© 2021, 1JCSE All Rights Reserved

[20]

[21]

Vol.9(7), Jul 2021, E-ISSN: 2347-2693

S. Singh et al., "Action Replication in GTA5 using Posenet
Architecture with LSTM Cells,"In the proceedings of 2021 2nd
International Conference on Intelligent Engineering and
Management (ICIEM), pp. 544-549, 2021,
doi:10.1109/ICIEM51511.2021.9445358.

S. Sharma, K. Shanmugasundaram and S. K. Ramasamy,
"FAREC — CNN based efficient face recognition technique
using Dlib,” In the proceedings of 2016 International
Conference on Advanced Communication Control and
Computing Technologies (ICACCCT), pp. 192-195, 2016, doi:
10.1109/ICACCCT.2016.7831628.

AUTHORS PROFILE

Mr.
pursuing Bachelor of Technology in
Electrical Engineering from Heritage

Institute of Technology, Kolkata,
India. His research interest lies in
Machine Learning, Artificial
Intelligence, Computer Vision and

Natural Language Processing.

Souradeep Ghosh is currently

52

https://doi.org/10.1016/j.patrec.2016.12.004
https://doi.org/10.1016/j.patrec.2016.12.004
https://ieeexplore.ieee.org/author/37085518779
https://ieeexplore.ieee.org/author/37408480300
https://ieeexplore.ieee.org/author/37085495699
https://ieeexplore.ieee.org/author/37085553914
https://ieeexplore.ieee.org/author/37071529100
https://ieeexplore.ieee.org/author/37071529100
https://ieeexplore.ieee.org/author/37085767181
https://ieeexplore.ieee.org/author/37280661200
https://ieeexplore.ieee.org/author/38229031200
https://ieeexplore.ieee.org/author/37272385900

