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Abstract— Uncertainty measures form essential constituents of information theory as they provide a sufficient mechanism
for determining the quantity of useful information contained in a system. In the present work, the concept of divergence
between fuzzy sets are made use of in defining new measures of uncertainty in the framework of fuzzy rough sets. Further,
these measures are utilized in developing an algorithm for binary image segmentation of a grey level image. Moreover, the
proposed algorithm is implemented using different test images with the help of an OCTAVE program.
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l. INTRODUCTION

Claude E. Shannon put forward the theory of information
in 1904 in order to lay the mathematical foundations for the
systems that process and communicate information [1]. It
has been a challenging task to tackle the difficulties arising
out of the presence of noise, ambiguity and uncertainty in
any information processing system. Different measures of
uncertainty are proven to be very effective tools in
handling this aspect.

Zdzislaw Pawlak’s rough set theory and Lofti A. Zadeh’s
fuzzy set theory are two different approaches to address the
problem of uncertainty and incompleteness in data at hand
[2],[3]. The complementary nature of the two theories
prompted the introduction of the hybrid theory called fuzzy
rough set theory [4],[5]. Different measures of uncertainty
are defined using the concepts in fuzzy set theory, rough
set theory and also in fuzzy rough set theory [6],[7], [8].[9].
Segmentation of an image refers to the process of
fragmenting the input image into a number of segments
[10]. It helps in analyzing and understanding the image
under consideration in a better way and extracting useful
results out of it. Turning a grey level image to a binary
image is termed as binary image segmentation. There are
several existing image segmentation techniques which
make use of the gray level histogram, spatial details,
mathematical morphology, fuzzy set theoretic approaches,
neural networks etc [11],[12],[13]. Thresholding
techniques are very efficient methods which are widely
used for binary image segmentation [14]. Of them, OTSU
and FCM methods are the two very popular and classic
techniques used for object background segmentation
[15],[16]. The OTSU method determines the threshold by
the maximization of the intensity variance between
different classes, while the FCM method decides the
threshold by the optimization of an objective function
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based on a measure of similarity between the pixels and the
cluster centres. In the present paper, the divergence
measure which quantifies the magnitude of dissimilarity
between two given fuzzy sets is utilized to propose a new
measure of uncertainty in the context of fuzzy
approximation spaces. Based on the proposed measure, an
algorithm for converting a grey level image to a binary
image is also presented. The success of the algorithm is
examined using many test images applying an OCTAVE
program.

The structure of the paper is as follows: section 1l recalls
some of the basic results and definitions, section Il
describes the new measure of uncertainty and investigate
its properties, section 1V presents the image segmentation
algorithm and the experimental results and section V
provides the conclusion.

Il. RELATED WORK

This section recalls some of the basic definitions and
concepts in connection with the theory of fuzzy rough sets.
Throughout this paper, X represents a nonempty finite set
of objects and R denotes a fuzzy equivalence relation on X.

A. Fuzzy Set Theory

The fuzzy equivalence classes of R are defined V x € X as,
b @) =R(x,y), Yy € X [17].

The fuzzy cardinality of a fuzzy subset A of X is given by,
1Al = Yyex A(x) [17].

Let F(X) represents the collection of all the fuzzy subsets
of X. A function §: F(X) x F(X) — [0,1] is termed as a
divergence measure on F(X) if and only if for all fuzzy
sets A4,B,C € F(X), 6(A,B) = 6(B,A), 6(4,A) =0 and
max{§(AUC,BUC),6(ANC,BNnC)}<6(4, B)[18].
For the fuzzy subsets 4, B, C, F of X,
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ASBCSCCSF=D(BC)< DAF) (1)

B. Fuzzy rough sets

Let R be a crisp equivalence relation on X. Then, the lower
and the upper approximations of a crisp set A € X are
defined as

R(A) = {xeX: [x]p € 4} )
R(A) = {x € X: [x[xNA # ¢} (3)
respectively [19].

A weak fuzzy partition on X is the family of fuzzy sets
{A1, A, ..., A} on X such that inf (max; 4;(x) > Oand
X

sup(min (Ai(x),A-(x)) <1,vi,j[20].

Consider a nonempty set X of objects and a fuzzy
equivalence relation R defined on X. The pair (X,R) is
said to be a fuzzy approximation space. The fuzzy rough
lower and upper approximations of a fuzzy set A on X are
defined by Dubois and Prade as

g (a)(X) = infye x{max[1 — R, y),ua N} (4)

U7y (X) = supye x{min[R(x, y), s ()1} )

respectively [20].

Further generalizations of fuzzy rough approximations
have been proposed by many authors [21],[22],[23],[24].
C. Uncertainty Measures

In a crisp approximation space (X R), the R - roughness of
_ rR@|

aset A € X isgiven by pr(4) = RG] [19].
Consider X/R = {Ry,R,, ...,Rk}. Then,
IR;| IR
E(R) = T, (1-1) (5)

is called the information entropy of the approximation
space (U, R) [25].

LetX = {x;, x3,...,x,}. Then,

1 I[xilzl
i= 1|X|(1_ 1X] ) (6)

is called the complement information entropy of the fuzzy
approximation space (X, R) [26].

H®) =

111, FUZZY ROUGH UNCERTAINTY MEASURE

Take X = {x;, x,,..,x,} and R be a fuzzy equivalence
relation on X. Let D(A, B) be a fuzzy divergence measure
defined on F(X) x F(X) satisfying D(4,B) = D(B,A),
forall4,B € F(X).

Definition 3.1: The divergence-based information entropy
of the fuzzy approximation space (X, R) is given to be
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n DRXlxilr)

ED(R) |X| i=1 D()?,(To) (7)
where ¢ and X are the fuzzy sets corresponding to the
empty set and the universal set respectively. Also, [x;]g is
the fuzzy set onX given by . (%) = R(x;,x;) for all
x]' €X.

Theorem 3.2: If D(4,B) = X" |A(x;) — B(x;)| and
(X, R) is a crisp approximation space, then E,, (R) = E(R).
Proof: Let X/R = {R;,R,, ..., Ri}. Then, every element x
of X belongs to only one among the equivalence classes.

€
It follows that R (x;,x;) = { Y xother[:vlz];e

So, D()?' [xi]R) = Z?=1|XA(xj) - [xi]R(xj)|
=¥ |1 - R (x,x))]
= ujelxz |

(]2

) |X| — |in]R|

Again, D(X,9) =27, |X(x;) — ¢(x;)]

=Y, 1 -0l =|X|

1 gp D@DxlR)

x| “=1 p(2,p)

1oy XIlixilgl

x| “i=1 1X]

no 1 (1 lixilel
=1 x| (1 X )

Denote [x;]g by R;. Then, each value

Thus, E,(R) =

= (1 - I[x’]RI) will

1x1 X1
be repeated exactly R; times in the above summation.

Therefore, E, (R) = j?:l% <1 - %)
= E(R)
Theorem 3.3: If D(A4,B) =X".,|A(x;) — B(x;)| and

(X,R) is a fuzzy approximation space, then E,(R) =
H(R).

. n D(X l]R)
Proof: We have, E,(R) = Zl T
_ 1 sn i j=1l% (xj)-L 1]7€(x1)|
x| 2=t Z” 112 ()= (%))l
_1 yn i 1|1 R(xpx7)|
T x| AEL w0l
1 Z-= 111-X7_ 4R (xpxj)|
= n == fx|1 I as0< fR(xl-,xj) <
1,Vij
1 o IXI-[x

:m n lez]Je as [x;]g = J 1|fR(x“xJ)|

— n i [l]fR
T A=l (1 x| )
=H®)

Theorem 3.4: If R, and R, are two fuzzy equivalence
relations on X, then R, € R, = Ep(R,) = Ep(Ry).
Proof: We have,

RIER, = Rl(xi, xj) < fRz(xl-,xj),in,xj EX
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(x) Rz(x)<1in,x]-€X
[ -] C [x l]RZCXVx €EX
=>D(X[ ilz,) 2 DX, [x/]%,)
D(X[xilr,) _ D(X[xilz,)
D(Y@() ) D(X.®)
D(X,[xi]l», n
PEP) = Lis
= Ep(Ry) Z Ep(R,)

\

D(X,[xilz,)
D(X,9)

n
i=1

Definition 3.5: The divergence based fuzzy rough
uncertainty of a fuzzy set A € F(X) with respect to R is
defined as

D(R(A),R (4))

E3(A) ===

(®)

Proposition 3.6: For all fuzzy sets A € F(X) and for all
divergence measures D, 0 < EX(4) < 1.

Proof: Consider the fuzzy sets @, X, R (4), R(4) on X.
Clearly, ¢ SR (A) S R(A) <X . Therefore, by the
property of divergence measure, 0 <D (ﬁ(A),g (A)) <
D(R(A),R (4))

DX,®) . H < . <1. Thus, 0<
X, 9) ence, 0< ke = us, 0
ERX(A) < 1.

Theorem 3.7: If R, and R, are two fuzzy equivalence

relationson X, then R, € R, = Effl(A) > Effz 4).
Proof: R, € R, = Rl(xi,xj) <R, (xi,xj), Vx;, x; € X
= Hpy (4) (x) = K, (4) (x) and Hz () x) < Hz5 ) (x)
=R, (4) 2R, (4) and R, (4) € R,(4)
=R, (A) SR, (A) S R,(4) € R,(A)
= D(R;(A), R, (A)) = D(R,(A), Ry (A))
D(R2(A).R2 (M) _ DR1(A),Ry (4))

D(X,p) D(RP)
n @Ry (A))>Z” D(R1(4)Ry (4))
=1 pRe) T &= bR

= E)'(A) = EX*(A)

V. APPLICATION TO IMAGE PROCESSING

Let X denote the set of all pixel values in a grey level
image of order m X n and t(i, j) be the grey level value of
pixel (i,j). Then, X ={0,1,...,255}. As the first step, we
divide the entire image into m parts and obtain the most
frequent grey level value (say v, ) in each part.
Corresponding to each v,, forr = 1,2,..., N, we define a
fuzzy set A,-on X, as

A (l) — |t(l;§5 vy | )

©)

Then, P ={A, :r =1,2,...,m} will constitute a weak
fuzzy partition on X. For each grey level value s, we define
a fuzzy set corresponding to the object in the image as
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t@ij) . ..
Rap=fa 1 CGD>s

0, otherwise

(10)

Let P(F,) and P(F,) denote the fuzzy rough lower and
upper approximations of F; with respect to the weak fuzzy
partition P. That is;

P(F) =
sup {mg.n [Ar(i,j), inf(max(1 — A, (i, )), Fs(i,j))]} (11)
r L i,j

P(F,) =
sup {minilj [Ar (i, /), sup(min(A, (i, ), F; (i,j))]} (12)
r L]

The fuzzy rough uncertainty measure corresponding to s is
given by

D(R(F5).R (Fs))
D(X.9)

Here, we take, D(4,B) = 3™, |A(x;) — B(x))|.

The value of s at which the uncertainty measure becomes
the minimum is chosen as the threshold c. In case the
minimum value occurs at more than one value of s, the
highest value among them is determined as c. Then the
image is converted into the corresponding binary image.

EF(F) = 13)

Algorithm4.4: The algorithm for the proposed binary image
segmentation process is
1. Input the grey level image X
2. Obtain the corresponding weak fuzzy partition P
3. Determine the fuzzy set F; for s=1:256 using equation
(10)
4. Compute the fuzzy rough approximations of F; using
equations (11) and (12)
5. Calculate the fuzzy roughness measure EX(F,) using
equation (13)
6. Obtain c, which is the value of s for which EZ(F,) is
the minimum
7. Convert the image into a binary image using ¢

IV. EXPERIMENTAL RESULTS

The algorithm for object background segmentation is
experimented with four different test images which are
barbara, boat, bridge, lena and cameraman. The input
images and the output images obtained using the proposed
method, OTSU and FCM methods are given as figures 1to
5. One can easily observe that fine binary images are
obtained by the use of the proposed method. The figures
clearly convey that the overlapping of the foreground
background pixels in the images segmented using the
proposed method is lesser than those of the other two
methods. However, in the case of barbara image,
dominance of white pixels occurred on some portions. Yet,
the image of the lady and the table are clearly separated
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from the other parts. The output images are compared
using their root mean square error values (table 1) and it is
found that the proposed method produces output images
with lesser error in four out of five test images.

o

—

py

LT e e
(iv) OTSU

Figure 2: Boat

(iii) FCM " (iv) OTSU
Figure 3: Bridge
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(iv)OTSU

(iii) FCM
Figure 4: Lena

(iv) OTSU
Figure 5: Cameraman

Table 1: Root Mean Square Error Values

Sl.No. Image Proposed FCM OTSU
Method Method Method

1 Barbara 10.190 13.093 11.243

2 Boat 5.776 13.236 7.3552

3 Bridge 8.0197 14.045 12.535

4 Lena 10.505 13.768 10.313

5 Cameraman 8.2662 10.343 8.6094

V. CONCLUSION

Uncertainty measures are used widely in the process of
information acquisition. They have been successfully
applied in many image processing techniques. In this
paper, new measures of uncertainty have been defined
using the divergence measures of fuzzy sets in the context
of fuzzy approximation spaces. Also, divergence based
fuzzy rough uncertainty of a fuzzy set has been introduced.
An object background segmentation technique using the
proposed measure of uncertainty has been presented and
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experimented with different test images. The segmented
images of five common test images have been compared
with those of OTSU method and FCM method. It is
observed that the overlapping of the foreground
background pixels in the images segmented using the
proposed method is lesser than those of the other two
methods. Also, the root mean square error values of the
output binary images obtained using the proposed method
are found to be lesser than those of the other two methods

in four out of five test images.
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