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Abstract— Uncertainty measures form essential constituents of information theory as they provide a sufficient mechanism 

for determining the quantity of useful information contained in a system. In the present work, the concept of divergence 

between fuzzy sets are made use of in defining new measures of uncertainty in the framework of fuzzy rough sets. Further, 

these measures are utilized in developing an algorithm for binary image segmentation of a grey level image. Moreover, the 

proposed algorithm is implemented using different test images with the help of an OCTAVE program. 
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I.  INTRODUCTION  

 

Claude E. Shannon put forward the theory of information 

in 1904 in order to lay the mathematical foundations for the 

systems that process and communicate information [1]. It 

has been a challenging task to tackle the difficulties arising 

out of the presence of noise, ambiguity and uncertainty in 

any information processing system. Different measures of 

uncertainty are proven to be very effective tools in 

handling this aspect. 

 

Zdzislaw Pawlak’s rough set theory and Lofti A. Zadeh’s 
fuzzy set theory are two different approaches to address the 

problem of uncertainty and incompleteness in data at hand 

[2],[3]. The complementary nature of the two theories 

prompted the introduction of the hybrid theory called fuzzy 

rough set theory [4],[5]. Different measures of uncertainty 

are defined using the concepts in fuzzy set theory, rough 

set theory and also in fuzzy rough set theory [6],[7], [8],[9]. 

Segmentation of an image refers to the process of 

fragmenting the input image into a number of segments 

[10]. It helps in analyzing and understanding the image 

under consideration in a better way and extracting useful 
results out of it. Turning a grey level image to a binary 

image is termed as binary image segmentation. There are 

several existing image segmentation techniques which 

make use of the gray level histogram, spatial details, 

mathematical morphology, fuzzy set theoretic approaches, 

neural networks etc [11],[12],[13]. Thresholding 

techniques are very efficient methods which are widely 

used for binary image segmentation [14]. Of them, OTSU 

and FCM methods are the two very popular and classic 

techniques used for object background segmentation 

[15],[16]. The OTSU method determines the threshold by 

the maximization of the intensity variance between 
different classes, while the FCM method decides the 

threshold by the optimization of an objective function 

based on a measure of similarity between the pixels and the 

cluster centres. In the present paper, the divergence 

measure which quantifies the magnitude of dissimilarity 

between two given fuzzy sets is utilized to propose a new 

measure of uncertainty in the context of fuzzy 

approximation spaces. Based on the proposed measure, an 

algorithm for converting a grey level image to a binary 

image is also presented. The success of the algorithm is 

examined using many test images applying an OCTAVE 

program. 

 

The structure of the paper is as follows: section II recalls 
some of the basic results and definitions, section III 

describes the new measure of uncertainty and investigate 

its properties, section IV presents the image segmentation 

algorithm and the experimental results and section V 

provides the conclusion. 

 

II. RELATED WORK  

 

This section recalls some of the basic definitions and 

concepts in connection with the theory of fuzzy rough sets. 

Throughout this paper,   represents a nonempty finite set 

of objects and   denotes a fuzzy equivalence relation on  . 

 

A. Fuzzy Set Theory 

The fuzzy equivalence classes of   are defined       as, 

 , - ( )   (   )           [17].  

The fuzzy cardinality of a fuzzy subset   of   is given by, 
| |   ∑  ( )    [17]. 

 

Let   ( ) represents the collection of all the fuzzy subsets 

of X. A function    ( )   ( )  ,   - is termed as a 

divergence measure on  ( )  if and only if for all fuzzy 

sets         ( ) ,  (   )   (   ) ,  (   )    and 

   * (       )  (       )+   (   ) [18]. 
For the fuzzy subsets         of X,  
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          (   )    (   )              (1) 

 

B. Fuzzy rough sets 

Let   be a crisp equivalence relation on X. Then, the lower 

and the upper approximations of a crisp set     are 
defined as  

 

 ( )   *     , -   +                            (2) 

 

       ( )   *     , ,      +                        (3) 

 

respectively [19]. 

A weak fuzzy partition on    is the family of fuzzy sets 

*          + on   such that    
 
 (      ( )   and 

   
 
(   .  ( )   ( )/          [20]. 

 

Consider a nonempty set X of objects and a fuzzy 

equivalence relation   defined on  . The pair (   )  is 
said to be a fuzzy approximation space. The fuzzy rough 

lower and upper approximations of a fuzzy set   on   are 

defined by Dubois and Prade as 

 

   ( )( )         *   ,   (   )   ( )-+    (4) 

 

  ( )( )         *   , (   )   ( )-+ (5) 

  
respectively [20]. 

Further generalizations of fuzzy rough approximations 

have been proposed by many authors [21],[22],[23],[24]. 

C. Uncertainty Measures 

In a crisp approximation space (   ), the   - roughness of 

a set     is given by   ( )     
| ( )|

| ( )|
 [19]. 

Consider      *          }. Then,  

 

  ( )    ∑
|  |

| |
 .  

|  |

| |
/ 

                                  (5) 

 

is called the information entropy of the approximation 

space (   ) [25]. 

Let     *          +. Then,  

 

  ( )    ∑
 

| |
 
   .  

|,  - |

| |
/                             (6) 

 

is called the complement information entropy of the fuzzy 

approximation space (   ) [26]. 

 

III. FUZZY ROUGH UNCERTAINTY MEASURE 

 

Take     *          + and   be a fuzzy equivalence 

relation on  . Let  (   ) be a fuzzy divergence measure 

defined on  ( )    ( )  satisfying  (   )   (   ) , 
for all        ( ).  
 

Definition 3.1: The divergence-based information entropy 

of the fuzzy approximation space (   ) is given to be   

  ( )  
 

| |
 ∑

 ( ̂ ,  - ) 

 ( ̂  ̂)

 
                                 (7) 

 

where  ̂  and  ̂  are the fuzzy sets corresponding to the 

empty set and the universal set respectively. Also, ,  -  is 

the fuzzy set on   given by   ,  - (  )   (     ) for all 

    . 

 

Theorem 3.2: If  (   )  ∑ | (  )   (  )|
 
    and 

(   ) is a crisp approximation space, then   ( )   ( ). 
Proof: Let      *          +. Then, every element   
of   belongs to only one among the equivalence classes. 

It follows that   (     )   {
             ,  -  

                     
. 

 

So,   ( ̂ ,  - )  ∑ | ̂(  )  ,  - (  )|
 
     

                           ∑ |    (     )|
 
    

                            ∑      ,  - 
 

                            |(,  - )
 | 

                           | |  |,  - | 

Again,   ( ̂  ̂)  ∑ | ̂(  )   ̂(  )|
 
    

                            ∑ |   | 
    | |  

Thus,   ( )   
 

| |
 ∑

 ( ̂ ,  - )

 ( ̂  ̂)
 
    

                        
 

| |
 ∑

| | |,  - | 

| |

 
    

                       ∑
 

| |
 .  

|,  - | 

| |
/ 

    

Denote ,  -  by   . Then, each value  
 

| |
 .  

|,  - | 

| |
/ will 

be repeated exactly    times in the above summation.   

 

Therefore,   ( )   ∑
|  |

| |
 (  

|  | 

| |
) 

    

                                ( ) 
 

Theorem 3.3: If  (   )  ∑ | (  )   (  )|
 
    and 

(   )  is a fuzzy approximation space, then   ( )  
 ( ). 

 

 Proof: We have,   ( )  
 

| |
 ∑

 ( ̂ ,  - )

 ( ̂  ̂)
 
      

     
 

| |
 ∑

∑ | ̂(  ) ,  - (  )|
 
    

∑ | ̂(  )  ̂(  )|
 
   

 
     

     
 

| |
 ∑

∑ |   (     )|
 
    

∑ |   | 
   

 
     

     
 

| |
 ∑

∑ | | 
    ∑ | (     )|

 
    

| |
 
   , as    (     )  

        

     
 

| |
 ∑

| | ,  -  

| |
 
   . as ,  -  ∑ | (     )|

 
    

      ∑
 

| |
.  

,  -  

| |
/ 

    

      ( ) 
 

Theorem 3.4: If    and    are two fuzzy equivalence 

relations on  , then         (  )    (  ). 
Proof: We have, 

         (     )    (     )               
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           ,  -  (  )  ,  -  (  )             

           ,  -   ,  -    ̂       

            ( ̂ ,  -  )   ( ̂ ,  -  ) 

            
 ( ̂ ,  -  ) 

 ( ̂  ̂)
 
 ( ̂ ,  -  ) 

 ( ̂  ̂)
      

            ∑
 ( ̂ ,  -  )

 ( ̂  ̂)
 
    ∑

 ( ̂ ,  -  )

 ( ̂  ̂)
 
        

              (  )    (  ) 
 

Definition 3.5: The divergence based fuzzy rough 

uncertainty of a fuzzy set    ( ) with respect to   is 

defined as  

 

     
 ( )  

 ( ( )   ( )) 

 ( ̂  ̂)
                                        (8) 

 

Proposition 3.6: For all fuzzy sets    ( )  and for all 

divergence measures  ,     
 ( )   . 

 

Proof: Consider the fuzzy sets  ̂  ̂   ( )  ( ) on X. 

Clearly,  ̂    ( )   ( )   ̂ . Therefore, by the 

property of divergence measure,     . ( )   ( )/  

  ( ̂  ̂) . Hence,    
 ( ( )   ( )) 

 ( ̂  ̂)
  . Thus,   

  
 ( )   . 

 

Theorem 3.7: If    and    are two fuzzy equivalence 

relations on  , then         
  ( )    

  ( ). 

Proof:         (     )    (     )               

        ( )( )      ( )( ) and    ( )( )     ( )( ) 

       ( )     ( ) and   ( )    ( ) 

       ( )     ( )     ( )    ( )      

     (  ( )    ( ))    (  ( )    ( ))  

    
 (  ( )    ( )) 

 ( ̂  ̂)
 
 (  ( )    ( )) 

 ( ̂  ̂)
  

    ∑
(  ( )    ( ))

 ( ̂  ̂)
 
    ∑

 (  ( )    ( ))

 ( ̂  ̂)
 
    

     
  ( )    

  ( ) 
 

IV. APPLICATION TO IMAGE PROCESSING 

 

Let   denote the set of all pixel values in a grey level 

image of order     and  (   ) be the grey level value of 

pixel (   ). Then,   *           +. As the first step, we 

divide the entire image into   parts and obtain the most 

frequent grey level value (say   ) in each part. 

Corresponding to each   , for            , we define a 

fuzzy set    on  , as 

 

  ( )   
| (   )    |

   
 .                        (9) 

 

Then,   *             +  will constitute a weak 

fuzzy partition on  . For each grey level value  , we define 

a fuzzy set corresponding to the object in the image as 

   (   )  {
 (   )

   
          (   )   

                  
                (10) 

 

Let  (  ) and  (  ) denote the fuzzy rough lower and 

upper approximations of    with respect to the weak fuzzy 

partition  . That is; 

 

 (  )  

   
 
{   
   
[  (   )    

   
(   (    (   )   (   ))]} (11) 

 

 (  )  

   
 
{      [  (   )    

   
(   (  (   )   (   ))]}     (12) 

 

The fuzzy rough uncertainty measure corresponding to s is 

given by 

 

   
 (  )  

 ( (  )   (  )) 

 ( ̂  ̂)
                                 (13) 

 

Here, we take,  (   )   ∑ | (  )    (  )|
 
   .  

The value of s at which the uncertainty measure becomes 

the minimum is chosen as the threshold  . In case the 

minimum value occurs at more than one value of  , the 

highest value among them is determined as  . Then the 

image is converted into the corresponding binary image. 

 
Algorithm4.4: The algorithm for the proposed binary image 

segmentation process is 

1. Input the grey level image   

2. Obtain the corresponding weak fuzzy partition   

3. Determine the fuzzy set    for s=1:256 using equation 

(10) 

4. Compute the fuzzy rough approximations of    using 

equations (11) and (12) 

5. Calculate the fuzzy roughness measure   
 (  ) using 

equation (13) 

6. Obtain c, which is the value of   for which   
 (  ) is 

the minimum 

7. Convert the image into a binary image using   
 

IV. EXPERIMENTAL RESULTS 

 

The algorithm for object background segmentation is 

experimented with four different test images which are 

barbara, boat, bridge, lena and cameraman. The input 

images and the output images obtained using the proposed 

method, OTSU and FCM methods are given as figures 1to 

5. One can easily observe that fine binary images are 

obtained by the use of the proposed method. The figures 

clearly convey that the overlapping of the foreground 

background pixels in the images segmented using the 
proposed method is lesser than those of the other two 

methods. However, in the case of barbara image, 

dominance of white pixels occurred on some portions. Yet, 

the image of the lady and the table are clearly separated 
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from the other parts. The output images are compared 

using their root mean square error values (table 1) and it is 

found that the proposed method produces output images 

with lesser error in four out of five test images. 

 

          
(i) Input                                      (ii) Output 

         
(iii) FCM                              (iv) OTSU 

Figure 1: Barbara 

 

          
(i) Input                                (ii) Output 

        
(iii) FCM                              (iv) OTSU 

Figure 2: Boat 

 

            
(i) Input                                (ii) Output 

            
(iii) FCM                              (iv) OTSU 

Figure 3: Bridge 

 

           
(i) Input                          (ii) Output 

             
(iii) FCM                              (iv) OTSU 

Figure 4: Lena 

 

        
(i) Input                                (ii) Output 

          
(iii) FCM                              (iv) OTSU 

Figure 5: Cameraman 

 
Table 1: Root Mean Square Error Values 

Sl.No. Image Proposed 

Method 

FCM 

Method 

OTSU 

Method 

1 Barbara 10.190 13.093 11.243 

2 Boat 5.776 13.236 7.3552 

3 Bridge 8.0197 14.045 12.535 

4 Lena 10.505 13.768 10.313 

5 Cameraman 8.2662 10.343 8.6094 

 

V.    CONCLUSION 
 

Uncertainty measures are used widely in the process of 
information acquisition. They have been successfully 

applied in many image processing techniques. In this 

paper, new measures of uncertainty have been defined 

using the divergence measures of fuzzy sets in the context 

of fuzzy approximation spaces. Also, divergence based 

fuzzy rough uncertainty of a fuzzy set has been introduced. 

An object background segmentation technique using the 

proposed measure of uncertainty has been presented and 



   International Journal of Computer Sciences and Engineering                                 Vol.9(4), Apr 2021, E-ISSN: 2347-2693 

  © 2021, IJCSE All Rights Reserved                                                                                                                                  24 

experimented with different test images. The segmented 

images of five common test images have been compared 

with those of OTSU method and FCM method. It is 

observed that the overlapping of the foreground 

background pixels in the images segmented using the 

proposed method is lesser than those of the other two 

methods. Also, the root mean square error values of the 
output binary images obtained using the proposed method 

are found to be lesser than those of the other two methods 

in four out of five test images. 
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