

A Comparative Analysis of Vegetation Radiometric Indices for Classification of Bambusa Tulda using Satellite Imagery

Mayuri Sharma^{1*}, Aniruddha Deka²

¹School of Innovation and Technology, Assam Rajiv Gandhi University of Cooperative Management, Sivasagar, India

²Dept. of Computer Science and Engineering, Assam Royal Global University, Guwahati, India

*Corresponding Author: mayurisarmah71@gmail.com,

DOI: <https://doi.org/10.26438/ijcse/v8i8.6772> | Available online at: www.ijcseonline.org

Received: 19/Aug/2020, Accepted: 25/Aug/2020, Published: 31/Aug/2020

Abstract—Bamboo trees are very common in almost every household of rural areas in Assam. Monitoring their expansion is useful for various environmentalists. Bamboo is in the path of becoming a great replacement for plastics. Hence, its preservation and monitoring are very important. Most of the existing works of tree identification are based on machine learning models, Convolutional Neural Network, UNet and Fully Convolutional deep learning models. Specific tree detection of coconut and palm trees has also been done using satellite images. Very few works have mapped bamboo regions using Sentinel products. Landsat and WorldView are the repeatedly used data for bamboo mapping and classification. The aim of this study is to provide a view to the ability of Sentinel imagery and vegetation indices for monitoring of Bambusa Tulda (Jati bamboo) during winter season. The study was carried out in Dimoria Development Block of Assam, India. The bamboo classification techniques using satellite products have been vigorously compared in this work. We have used Normalized Difference Vegetation Index, Stress Index and Bamboo Index to extract the features of Bambusa Tulda. The results show that Bamboo Index and Stress Index improves the bamboo classification result.

Keywords—Satellite Imagery, Bamboo mapping, Sentinel, NDVI, BI, SI, Tree identification

I. INTRODUCTION

Currently, object detection from satellite imagery is in high demand. Machine learning algorithms like seed growing, circular hough transform, local maxima point detection, random forests are applicable in vegetation detection and mapping. Forest is the most important resource in the ecosystem. Tree attributes like treetops, their heights and counts are being measured time to time for forest analysis. Due to global warming a necessity arises to observe and monitor the trees and crop diversities [1, 2]. Satellite imagery has been serving this cause for easy identification of plant characteristics and distribution. The commonly used satellite images in this case is the World View imagery [1, 2, 3] followed by Sentinel [5] and QuickBird [6]. Over the years many classification algorithms have been tested for tree species detection using satellite imagery. Some important algorithms include Support Vector Machine, Maximum likelihood, Decision tree, seed growing, local maxima point detection and circular though transform [7]. The tree tops are assumed as bright spots or star shaped structures. These features can be identified by local maxima filters and non-maximum suppression. Template matching is another approach. Morphological operations like regional maxima are also applied. The peak regions can be highlighted as top hats but it results in repeated detections. Euclidean minimum distance filtering may be useful to avoid these repeated detections. If the distance is smaller than tree tops are known to be merged into one [2, 3, 8]. Nowadays, deep learning is in high

demand. It is resistant to the cloud covered satellite imagery. In its maiden years, deep learning was used only for document recognition. It was the attempt of Krizhevsky et al. [9] that made the deep learning possible for image classification on large datasets. This created a path to the beginning of new deep learning techniques [10][32, 33]. Deep learning proves to be a more robust approach in forest resource monitoring. Convolutional Neural Network is popular in solving the problem of individual tree detection.

In this paper, we investigated the potentiality of vegetation indices in satellite imagery for bamboo classification. The main focus is to identify the bamboo species Bambusa Tulda. The objectives of the present work are:

- To analyse the bamboo coverage in Dimoria of Assam through vegetation indices and spectral reflectance of satellite data.
- To check if classification is possible when bamboo index is used as an input feature to the random forest classifier.
- To compare our results with the existing works.

This paper consists of total five sections. The first section gives a basic introduction to the tree species detection using satellite images. The various models and techniques used in the existing works are mentioned in Section II. Section III introduces our study region and data used. It also explains the flow of our research. Section IV compares our results against the existing works. Finally the paper is concluded in Section V.

II. RELATED WORK

In middle of the year 2018, Watanabe, Sumi and Ise [11] tried to detect the bamboo trees by chopping the Google Earth images and by using LeNet and Convolutional Neural Network. The results proved the capability of deep learning models to detect bamboo forests accurately. Zhao et al [12] used phenological classification and Random forest for the bamboo mapping in the three East African countries. Chen et al [13] effectively estimated the aboveground biomass of bamboo forests. Random forest based classification model along with the satellite feature variables like seasonal bamboo index showed excellent performance. The pattern of Moso bamboo's extension was analyzed through Marked correlation functions, Mark variogram functions and pair correlation [14]. Spectral temporal signatures of bamboo dominated regions were analyzed to identify bamboo regions and bamboo life cycles by Greig, Robertson and Lacerda [15]. Zhang et al [16] applied a complete phenological approach of bamboo classification with the involvement of Normalized Vegetation Index, Enhanced Vegetation Index, Land Surface Water Index and Green Chlorophyll Vegetation Index. This work suggested that phenological classification gives accurate results in tropical regions. Machine learning and deep learning models was very helpful in identification of Lei bamboo from other forests. Dong et al [17] proposed a hybrid technique comprising of random forest and Convolutional Neural Network for bamboo forest mapping. It was proved that Convolutional Neural Network performed best to estimate Lei bamboo aboveground biomass with coefficient of correlation 0.943. Li et al [18] performed bamboo classification supported by different vegetation indices and spectral characteristics extracted from satellite imagery.

Table 1. Few recent works for bamboo classification using images

Reference s	Methodology		
	Technique	Merit	Demerit
Watanabe, Sumi and Ise (2018)	Convolutional Neural Network And LeNet	High target accuracy	Less samples
Zhao et al. (2018)	Phenological classification	Better performance	Less training samples
Chen et al., (2018)	Phenological classification	High user and producer accuracy	Inconsistency of field dates and image acquisition
Zhang and Xue, (2018)	Phenological classification	High accuracy	Less training data
Greig, Robertson and Lacerda (2018)	Hybrid spectral-temporal model, MLC	Highly effective	Misclassification due to drop in EVI value
Zhang et al., (2019)	Phenological classification and Random Forest	High discrimination accuracy	Presence of unintegrated bamboo features
Li et al.,	Decision tree	Accurate	Landsat can

Reference s	Methodology		
	Technique	Merit	Demerit
Watanabe, Sumi and Ise (2018)	Convolutional Neural Network And LeNet	High target accuracy	Less samples
(2019)	and vegetation indices	proposed bamboo index	tract bamboo features easily
Dong et al., (2020a)	Convolutional Random forest	Rich in bamboo features	Takes more time
Dong et al., (2020b)	Convolutional Random forest	Superior performance	Less sensitive to
Juyal et al., (2020)	Machine Learning	Convolutional Random forest	Sensitive to parameter GLCM features

Most recently, Juyal et al [21] have classified five bamboo species namely *Phyllostachys nigra*, *Bambusa vulgaris 'Striata'*, *Dendrocalamus giganteus*, *Bambusa ventricosa*, and *Bambusa tulda* using a modified Convolutional Neural Network and digital bamboo images. There are no available bamboo dataset for classification. It was evident from the recent studies that the best time to be able to differentiate bamboo from other vegetation is during mid summer and during December-February [17]. Bamboo species like Moso and Lei which are available in Japan, China and Taiwan have been mapped using satellite imagery [18-20]. All the recent works [21-24] on bamboo species (four or more bamboo species classes) classification have used digital images. Individual bamboo species identification from satellite imagery is still in an initial stage [21]. This motivated us to introduce a method to analyze and classify *Bambusa Tulda* using Sentinel-2 data and vegetation indices.

III. METHODOLOGY

This section presents a detailed discussion on the mapping of *Bambusa Tulda* followed in this study. The structure of our research carried out during winter season is shown in Figure 1.

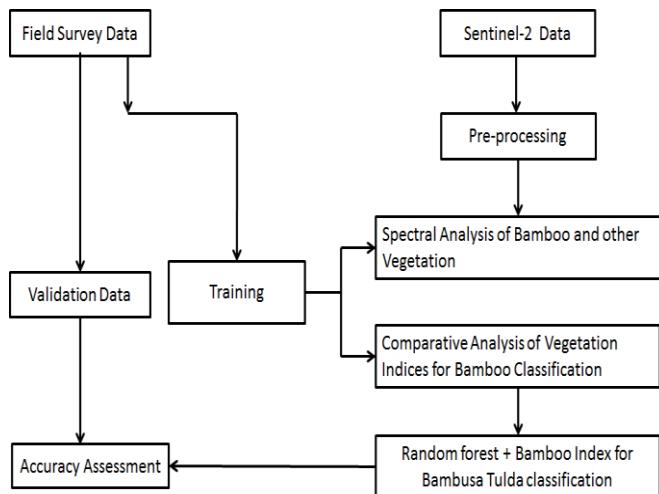


Figure 1. Framework for *Bambusa Tulda* classification

A. Study Area

Dimoria Development Block of Assam, India covering an area of 304.25 square kilometres was selected [25]. According to the Dimoria Block Register data of 2011, this block has a total population of 1,37,839. In order to explore the bamboo coverage in this block, two sub regions namely Senabar and Taloni were selected. The plain region (Senabar, Dimoria) and hilly region (Taloni, Dimoria) have an altitude of 70.5442177m and 70.60135m respectively. Bambusa Tulda (Jati Bamboo) is the most commonly available bamboo species in Dimoria. It is also called as spineless bamboo. This bamboo species appear as light green colored 'stretching stars' when seen from above.

B. Data Preparation

The fieldwork was carried out in the month of February 2020. A total of 15 large bamboo fields were visited. The coordinates of Bambusa Tulda in these fields were recorded as polygon features in Google Earth. Sentinel-2 Level 2A products containing 13 bands (Table 3) and field survey data were used in this comparative study. Sentinel-2 data were downloaded from the Copernicus Open Access Hub acquired on 17 January, 2020.

The pre-processing of Sentinel-2 data was performed in three steps. At first, the satellite image was clipped according to our study area. In the second step, bilinear resampling [26, 27] was applied to the created subset. The size of resampled product was defined according to band 2 of Sentinel data which has the highest resolution. Finally the resampled subset was projected to WGS 84/OTM zone 46N [18].

C. Spectral Analysis of Bamboo and other Forests

The spectral reflectance of plants gets extracted from their leaves' characteristics. This reflectance is controlled by water and photosynthetic pigments specially [28].

Table 2. Data used in this research

Satellite	Characteristics of data		
	Spatial resolution	Location	Acquisition date
Sentinel-2A	10m	Dimoria, Assam	17 January, 2020
Field Survey	-	Dimoria, Assam	February 2020

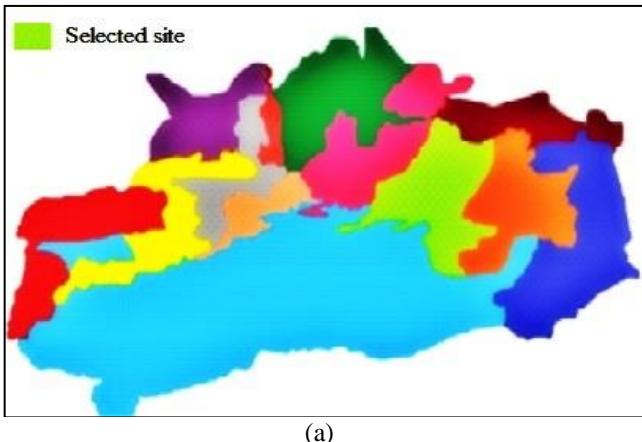
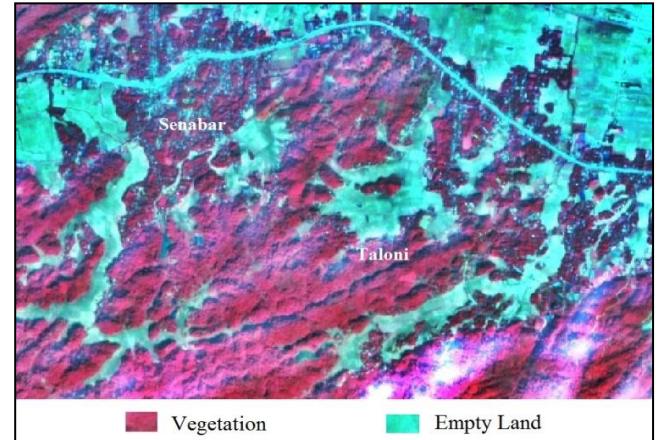


Figure 2. Study area. (a) Dimoria Development Block, Assam (b) False color composites of Sentinel-2 data, 17 January 2020.

In order to differentiate among the features of bamboo and other forests, spectral analysis was done. We selected bamboo (Bambusa Tulda), other natural forests and empty agriculture land for comparison. Mean values of spectral bands for each of these type was found and then spectral curves were obtained.

Table 3. Bands of Sentinel-2 used in the study

Band	Characteristics of bands		
	Resolution(m)	Wavelength(nm)	Description
B1	60	443	Ultra blue
B2	10	490	Blue
B3	10	560	Green
B4	10	665	Red
B5	20	705	Visible and near infrared
B6	20	740	Visible and near infrared
B7	20	783	Visible and near infrared
B8	10	842	Visible and near infrared
B8A	20	865	Visible and near infrared
B9	60	945	Short wave infrared
B11	20	1610	Short wave infrared
B12	20	2190	Short wave infrared

D. Mapping of Bambusa Tulda

The masking procedure [18] was implemented in order to achieve the bamboo forest classification. Normalized Difference Vegetation Index (NDVI) [28] was applied to differentiate the non-vegetation and vegetation regions during winter season. The pixels less than 0.5 or greater than 0.10001 were considered as non-vegetation types (empty land and roads). The pixels above or equal to 0.5 represented both bamboo and other forests. After this, Bamboo Index (BI) and Stress Index (SI) [29] were also analysed for this study. The approximate threshold in Bamboo Index was considered as 0.7 or 0.8. Thresholds in Stress Index were taken as 0.6 for vegetation class and 0.3 for non-vegetation class.

$$\text{NDVI} = (B8-B4)/(B8+B4) \quad (1)$$

$$\text{SI} = (B8-B11) / (B8+B11) \quad (2)$$

$$\text{BI} = (\text{NDVI-SI}) / (\text{NDVI+SI}) \quad (3)$$

Random forest classifier [31] of 50 trees was applied to our method with Bamboo Index, Stress Index, NDVI and the bands of Sentinel-2 as feature variables. The validation points were obtained during field survey. Based on these validation points and visual interpretation, the resultant Bambusa Tulda map was compared.

IV. RESULTS

A. Spectral analysis of Bambusa Tulda and other Forests
The spectral reflectance of plants gets extracted from their leaves' characteristics. This reflectance is controlled by water and photosynthetic pigments specially [28]. In order to differentiate among the features of bamboo and other forests, spectral analysis was done.

Figure 3. Illustration of bamboo (Bambusa Tulda), its adjacent other forests and empty lands.

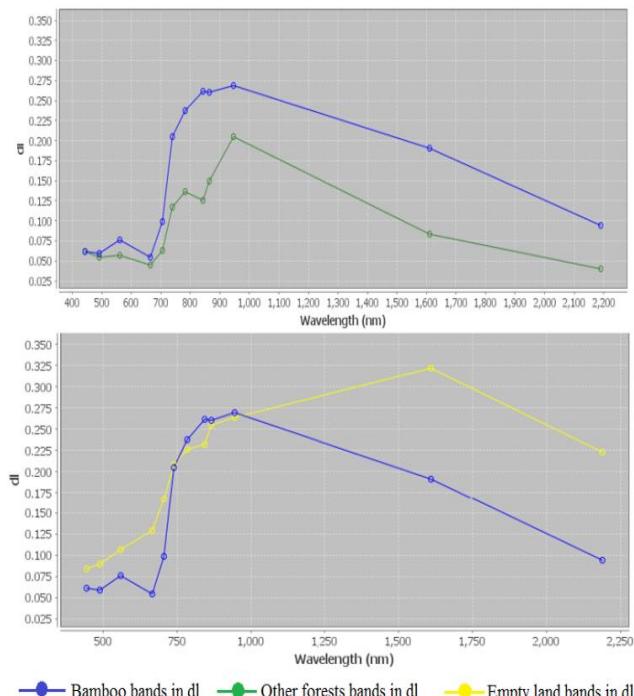


Figure 4. The comparative plot shows the spectral curves of bamboo, other forests and empty lands.

We selected Bambusa Tulda, other natural forests and empty land (Figure 3) for comparison. The spectral values of our selected bamboo species were found to be higher than the other forests types. There are points where the spectral reflectance tends to be identical in these three classes. Figure 4 shows that bamboo-growing areas can be spectrally differentiated using a combination of the different Sentinel bands.

B. Comparative Analysis of Different Indices

Normal bamboo Index range is between -79.1 to 175.6. Normalized Difference Vegetation Index (NDVI) ranges from 0.14 to 0.72. The non-vegetated areas are represented in dark green by NDVI (Figure 5a). Stress Index was mapped for evaluating the water content in the bamboo leaves. It is observed that Stress Index fluctuated between -0.21 to 0.26 (Figure 5d). It can be concluded from the Stress Index map that, bamboo has less water content. Bamboo Index experienced a coefficient of variation of 1.13 with a maximum error of 0.014. The coefficient of variation in the case of NDVI and SI were 0.196 and 0.9 respectively. Stress index and Bamboo index were processed as features through random forest classifier to map the Bambusa Tulda.

Wang et al. [30] used the Enhanced Vegetation Index which was lower in case of bamboo. Winter NDVI gave higher coefficient of determination which helped in visualizing the variation in bamboo coverage. Figure 5a shows the visual representation of NDVI estimation in our work. It is observed that the bamboo areas reflect more NDVI than other forest areas. Goswami, Tajo and Sarma [30] proposed a bamboo index which gave a cost effective result with kappa value of 0.79. In this study the bamboo species Bambusa Tulda was extracted by using the Sentinel-2 Level 2 datasets acquired during winter season in the study region. Extraction accuracies of Bambusa Tulda and other forests were 38.37% and 51.024% (Table 4) respectively. The resultant map of Bambusa Tulda (Figure 6) was overlayed with the ground truth map in Google Earth to find a good match.

V. CONCLUSION AND FUTURE SCOPE

This study implemented and compared the competence of vegetation indices and spectral reflectances for the classification of Bambusa Tulda using Sentinel-2 data. Additionally including bamboo index and stress index as model inputs was very beneficial. With the winter season data the final classification map exhibited a total reasonable performance. The pattern of Bambusa Tulda is distinct. It is light green in color and the leaves come out in all directions starting from the centre. This information was utilised to collect the geographic coordinates of the areas containing Bambusa Tulda. Out of 13 bands of Sentinel-2 data, we have used only 12 bands. Feature variables like Normalized Vegetation Index, Stress index and Bamboo Index were used along with the satellite bands. The Random Forest Classifier was applied for classification purpose. This study will help in setting the

foundation of bamboo mapping in the rural regions. As a future work, we plan to perform an enhanced comparative analysis of different non-parametric classifiers for classification of bamboo species other than *Bambusa Tulda*.

Table 4. Classification accuracy using Sentinel-2 data

Class name	Model accuracy
<i>Bambusa Tulda</i>	38.37%
Other forests	49.49%
Empty land	13.16%

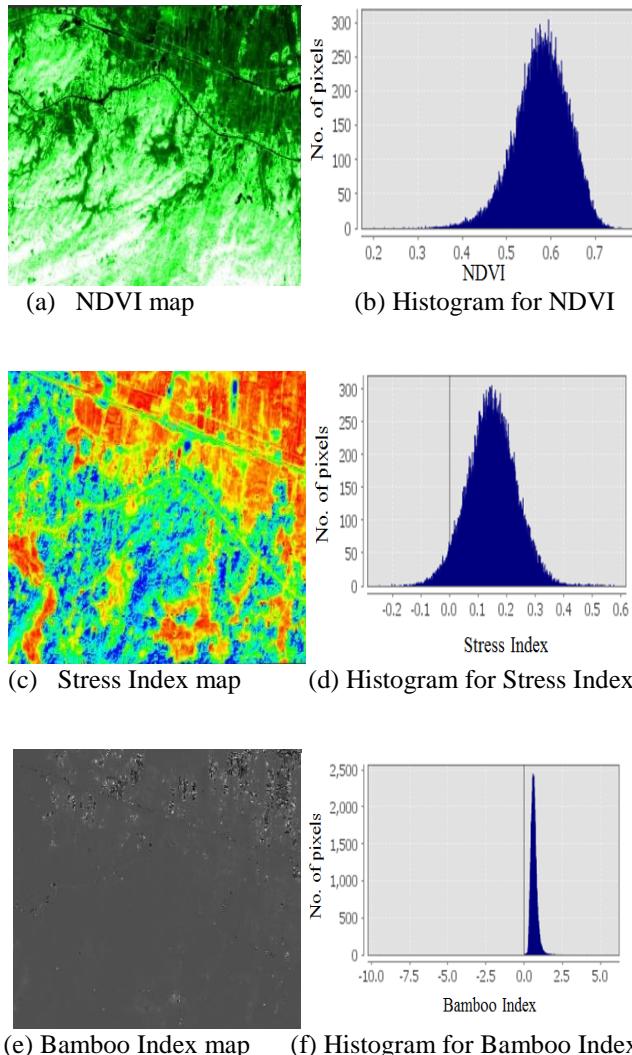


Figure 5. Comparative analysis of three vegetation indices.

(a) and (b) Normalized Difference Vegetation Index (NDVI), (c) and (d) Stress Index (SI), (e) and (f) Bamboo Index (BI) during winter season.

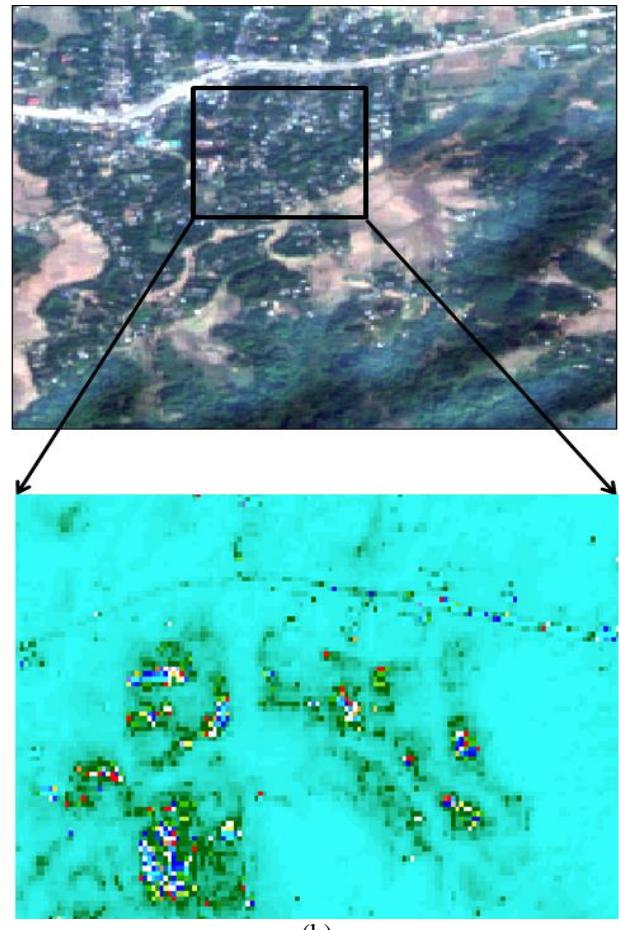


Figure 6. The result of *Bambusa Tulda* classification. The *Bambusa Tulda* species are highlighted by red dots.

REFERENCES

- [1] C. Xiao, R. Qin, X. Xie, X. Huang, “Individual Tree Detection and Crown De-lineation with 3D Information from Multi-view Satellite Images”, Photogrammetric Engineering and Remote Sensing, Vol.85, pp.55-63, 2019.
- [2] C. Xiao, R. Qin, X. Huang, “Treetop detection using convolutional neural networks trained through automatically generated pseudo label”, International Journal of Remote Sensing, Vol. 41, pp.3010-3030, 2020.
- [3] M. Fredenberg, N. Nolke, A. Agostini, K. Urban, F. Wörgötter, > Kleinn, “Large Scale Palm Tree Detection and Counting using U-Net”, Remote Sensing, Vol. 11, pp.312, 2019.
- [4] H. Akcay, S. Kaya, E. Sertel, U. Alganci, “Determination of Olive Trees with Multi-sensor Data”, In the Proceedings of the 8th IEEE International conference on Agro-Geoinformatics, Istanbul, Turkey, pp.1-6, 2019.
- [5] M. Mohammad, “Performance Impact of Addressing Modes on Encryption Algorithms”, In the Proceedings of the 2001 IEEE International Conference on Computer Design (ICCD 2001), Indore, USA, pp.542-545, 2001.
- [6] W. Li, R. Dong, H. Fu, L. Hu, “Large-Scale Oil Palm Tree Detection from High-Resolution Satellite Images using Two-Stage Convolutional Neural Network”, Remote Sensing, Vol.11, pp.11, 2018.
- [7] L. Soleimannejad, S. Ullah, R. Abedi, M. Dees, B. Koch, “Evaluating the Potential of Sentinel-2, Landsat-8, and IRS Satellite Images in Tree Species Classification of Hyrcanian Forest of Iran using Random Forest”, Journal of Sustainable Forestry, Vol.38, pp.615-628, 2018.

[8] S. I. B. Roth, R. Leiterer, M. Volpi, E. Celio, M. E. Schaepman, P. C. Joerg, "Automated Detection of Individual Clove Trees for Yield Classification in Northeastern Madagascar based on Multi-spectral Satellite Data", *Remote Sensing of Environment*, Vol.221, pp.144-156, 2019.

[9] A. Krizhevsky, I. Sutskever, G. Hinton, "Imagenet Classification with Deep Convolutional Neural Networks", In the Proceedings of the 26th Annual Conference on Neural Information Processing Systems, Lake Tahoe, USA, pp.1097-1105, 2012.

[10] M. Sharma, "Towards an Effective Building Segmentation using Deep Learning", In the Proceedings of the National Seminar on Application of IT in Socio Economic Development, Sivasagar, India, 2020.

[11] O. Ronneberger, P. Fischer, T. Brox., "U-Net: Convolutional Networks for Biomedical Image Segmentation", Springer, Switzerland, pp. 234-241, 2015.

[12] S. Watanabe, K. Sumi, T. Ise, "Using Deep Learning for Bamboo Forest Detection from Google Earth Image", 2018.

[13] Y. Zhao, D. Feng, D. Jayaraman, D. Belay, H. Sebrala, "Bamboo Mapping of Ethiopia, Kenya, Uganda for the year 2016 using Multi-Temporal Landsat Imagery", *Remote Sensing*, pp.1-15, 2019.

[14] Y. Chen, L. Li, D. Lu, D. Li, "Exploring Bamboo Forest Aboveground Biomass Estimation using Sentinel-2 Data", *Remote Sensing*, Vol.11, 2019.

[15] H. Zhang, J. Xue, "Special Pattern and Competitive Relationships of Moso Bamboo in a Native Subtropical Rainforest Community", *Forests*, Vol.9, Issue 12, pp.774, 2018.

[16] C. Greig, C. Robertson, A. E. B. Lacerda, "Spectral-Temporal Modelling of Bamboo-Dominated Forest Succession in the Atlantic Forest of Southern Brazil", *Ecological Modelling*, Vol. 384, pp.316-332, 2018.

[17] M. Zhang, P. Gong, S. Qi, C. Liu, T. Xiong, "Mapping Bamboo with Regional Phenological Characteristics Derived from Dense Landsat Time Series using Google Earth Engine", *International Journal of Remote Sensing*, Vol. 40, pp.9541-9555, 2019.

[18] L. Li, N. Li, D. Lu, Y. Chen, "Mapping Moso Bamboo Forest and its On-year and Off-year Distribution in a Subtropical Region using Time-series Sentinel-2 and Landsat 8 data", *Remote Sensing of Environment*, Vol. 231, 2019.

[19] L. Dong, H. Du, N. Han, X. Li, D. Zhu, F. Mao, M. Zhang, J. Zheng, H. Liu, Z. Huang, S. He, "Application of Convolutional Neural Network on Lei Bamboo Above-Ground-Biomass (AGB) Estimation Using Worldview-2", *Remote Sensing*, Vol. 12, pp.958, 2020.

[20] L. Dong, H. Du, F. Mao, N. Han, X. Li, G. Zhou, D. Zhu, J. Zheng, M. Zhang, L. Xing, T. Liu, "Very High Resolution Remote Sensing Imagery Classification Using a Fusion of Random Forest and Deep Learning Technique-Subtropical Area for Example", *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, Vol. 13, pp.113-128, 2020.

[21] P. Juyal, C. Kulshrestha, S. Sharma, T. Ghanshala, "Common Bamboo Species Identification using Machine Learning and Deep Learning Algorithms", *International Journal of Innovative Technology and Exploring Engineering*, Vol. 9, Issue 4, pp.3012-3017, 2020.

[22] K. Singh, I. Gupta, S. Gupta, "Classification of Bamboo Plant Based on Digital Image Processing by Central Moment", In the Proceedings of the 2011 International Conference on Image Information Processing, Shimla, India, pp.1-5, 2011.

[23] K. Singh, S. Singh, "Advances in Intelligent and Soft Computing", Springer, Berlin, Heidinburg, pp.795-802, 2012.

[24] K. Singh, I. Gupta, S. Supta, "Classification of Bamboo Species by Fourier and Legendre Moment", *International Journal of Advanced Science and Technology*, Vol. 50, pp.61-70, 2013.

[25] R. Devi, "A Study of Socio-economic Development in Dimoria Tribal Development Block of Assam", Guwahati, 1996.

[26] C. Wang, H. Du, X. Xu, N. Han, G. Zhou, S. Sun, G. GaO, "Multi-scale crown closure retrieval for moso bamboo forest using multi-source remotely sensed imagery based on geometric-optical and Erf-BP neural network models", *International Journal of Remote Sensing*, Vol. 36, Issue 21, pp.5384-5402, 2015.

[27] Z. Shang, G. Zhou, H. Du, X. Xu, Y. Shi, Y. Li, Y. Zhou, "Moso Bamboo Forest Extraction and Aboveground carbon Storage Estimation based on Multi-source Remotely Sensed Images", *International Journal of Remote Sensing*, Vol. 34, pp.5351-5368, 2013.

[28] J. Goswami, L. Tajo, K. K. Sarma, "Bamboo Resources Mapping using Satellite Technology a New Approach", *Current Science*, Vol. 99, Issue 5, pp.650-653, 2010.

[29] R. K. Lallianthanga, R. L. Sailo, "Monitoring of Bamboo Flowering using Satellite Remote Sensing and GIS Techniques in Mizoram, India", *Science Vision*, Vol. 12, Issue 4, pp.143-151, 2012.

[30] T. J. Wang, A. K. Skidmore, A. G. Toxopeus, "Improved Understorey Bamboo over Mapping using Novel Hybrid Neural Network and Expert System", *International Journal of Remote Sensing*, Vol. 30, pp.965-981, 2009.

[31] F. Zhang, T. Akiyama, Y. Wei, Y. Saijoh, H. Kawai, Bagana, "Extraction of Bamboo Distribution Area using the Fused Satellite Image", *International System for Agricultural Science and Technology*, Vol. 20, pp.86-96, 2004.

[32] N. S. Lele, "Image Classification using Convolutional Neural Network", *International Journal of Scientific Research in Computer Sciences and Engineering*, Vol. 6, Issue 3, pp.22-26, 2018.

[33] S. D. Raut, S. A. Thorat, "Deep Learning Techniques: A Review", *International Journal of Scientific Research in Computer Sciences and Engineering*, Vol. 8, Issue 1, pp.105-109, 2020.

AUTHORS PROFILE

Ms. Mayuri Sharma (B.E, M.Tech) is currently pursuing Ph.D. in Department of Computer Science and Engineering, Assam Royal Global University and currently working as Assistant Professor in Assam Rajiv Gandhi University of Cooperative Management since 2018. She has published 5 research papers in journals and conferences. Her main research work focuses on Artificial Intelligence, Deep Learning, Remote Sensing and 3D Scene Reconstruction. She has 2 years of teaching experience.

Dr. Aniruddha Deka, (B.E, M.Tech, Ph.D) is currently working as Assistant Professor and HoD in the Department of Computer Science and Engineering and Coordinator of Royal School of Information Technology, Assam Royal Global University. He worked as an Assistant Project Engineer in IIT Guwahati from the year 2007 to 2012, mainly focusing on development of speech-based application for visually impaired and low literate people through Assamese language. He has guided more than 30 students in UG and PG level. He has published 15 research papers in reputed international/national journals/conferences and has attended more than 20 workshops/conferences till date. His research area includes Speech Processing, Identification of Human Psychology, Artificial Intelligence, Image Classification etc.

