
© 2020, IJCSE All Rights Reserved 132

 International Journal of Computer Sciences and Engineering Open Access
Research Paper Vol.8, Issue.7, July 2020 E-ISSN: 2347-2693

Unsheathing input to SAT solver from logic circuit in DIMAC format

Vaishnavi Thorve

Dept. of Electronics and Communication, Government Engineering College, Bhavnagar, India

Author’s Mail Id: vaishnavithorve710@gmail.com

DOI: https://doi.org/10.26438/ijcse/v8i7.132135 | Available online at: www.ijcseonline.org

Received: 28/June/2020, Accepted: 15/July/2020, Published: 31/July/2020

Abstract - Satisfiability probability(SAT) solvers are algorithms that take well-formed formulas and return true if

satisfiable and false otherwise. They are significantly useful in various tasks in-circuit verification and have prominent

importance in various fields such as automated verification, Electronic Design Automation (EDA) which include formal

checking of equivalence, artificial intelligence planning, and so on. The input to these SAT solvers is generally accepted in

DIMAC CNF (conjunctive normal form), which is a textual representation of the equation in CNF form. Most verification

tasks are commenced from a description of problem instances at the logic circuit level, deducing DIMAC CNF format

from the given logic circuit could be tedious and time-consuming if done manually as the conversion includes complex

formulas. This paper aims to present an effective code that could easily convert any given logic circuit to DIMAC CNF

format just by selecting gate and proper variable names to operate upon according to the heuristic presented by a logic

circuit. The output thus formed could be directly given as input to any SAT solver that uses DIMAC format readily,

abating time and conversion efforts. The final part of the paper also demonstrates an example for the acyclic circuit and

compares the result of generated output to manually derived formula for the same circuit on various parameters.

Keyword: DIMAC, CNF, SAT solvers, input generator

I.INTRODUCTION

Satisfiability probability(SAT) solvers work on a

propositional formula for a given Boolean expression or

well-formed formulas and provide the assignment that

conveys whether the given Boolean formula is satisfied.

Gomes et al. (1) state that “Despite the worst-case

exponential run time of all known algorithms, satisfiability

solvers are increasingly leaving their mark as a

general-purpose tool in areas as diverse as software and

hardware verification, automatic test pattern generation,

planning, scheduling and even challenging problems from

algebra”.

Satisfiability problems often trace back to be

computationally inaccessible as it belongs to a

Nondeterministic polynomial time(NP) complexity class.

However as emphasized by Gilles et al. (2), “with the

introduction of lazy data-structures, efficient learning

mechanisms, and activity-based heuristics, the picture is

quite different. In many combinatorial field, the

state-of-the-art schema is often to use an adequate

polynomial reduction to this canonical NP-Complete

problem, and then to solve it efficiently with an SAT

solver”, using Boolean constraint Propagation(BCP).

SAT solver formula is usually represented with CNF, and

they generally use the Davis-Putnam-Logemann-Loveland

(DPLL) algorithm for deciding the satisfiability of

propositional logic formula.

Many SAT solvers preferably accept the input in DIMAC

CNF format, which is a textual representation of CNF

formula. Zhaohui et al. (3) stated “Most circuit verification

tasks start from a logic circuit description of the problem

instance”, favorably there are conversion heuristics from

logic circuit network to CNF form, but the process of

extracting appropriate input from the logic circuit can be

extremely time-consuming as each gate present in the

logic circuit will have to be converted to its CNF form

with formulas given in table 1. A problem instance

description taken from the real world could include as

many as 50,000 variables and solve for each gate

individually could be a daunting and tedious task, so the

correct approach would be to formulate a way to extract

this format efficiently and with little work.

II. MOTIVATION FOR RESEARCH

This section provides an overall motivation for carrying

out the research. First, the dearth of effective measures on

finding a solution for the unsheathing of DIMACS which

leads to time-consuming conversions carried by

individuals when the real motive is distress. Second, the

ubiquity of the DIMACS in any problem-solving in SAT

solvers will incorporate such a method. Third, many

researchers mainly focus on finding new ways to solve the

existential problem, but this research will bridge the

existing present method to bring about the required

changes.

The aim of this paper is thus to provide an efficient code

for the generation of the proper DIMAC format input for a

given logic circuit, by selecting or giving appropriate gates

and variables as input to the code. This will thus in turn

provide an output, which could be readily given to any

International Journal of Computer Sciences and Engineering Vol.8(7), July 2020, E-ISSN: 2347-2693

© 2020, IJCSE All Rights Reserved 133

SAT solvers as input and thus finds the required

satisfiability assignments of variables.

The work presented by Klimek et al. (4), is based on

“random generation of long and complex logical

formulas”, it does not include the participation of

unsheathing formulas from logic circuits which could be

the basic form of information and problem instance.

Gopalakrishnan et al. (5) represent work with the

integration of Binary Decision Diagrams(BDD‟s) and

CNF, while the main focus of this paper will be entirely on

CNF format. Zhaohui et al. (3) presents an overall query

about the loss of structural information while using

circuit-based verification and provides an adequate result

to bridge the gap by applying heuristics which could be of

great use, thus dynamically approaching the problems.

This research could thus provide a great methodology to

unsheathing the inputs that could be used on a wide range

of works related to AI planning to the normal curriculum

of students to find the desired solution by giving them a

quick method to determine the inputs for there SAT

solvers. It will be useful in finding solutions with the

knowledge present today, giving it a quick upgrade to be

useful to a large group of people where this could be

applied in the real world.

Conjunctive normal form (CNF)
Not many problems and expressions we encounter in our

day to day lives are in CNF format, hence conversion is

often an essential part while formulating CNF.

CNF is a set of clauses consisting of literals, which are

“AND of OR” representation of Boolean variables. Smith

(6) inferred “The CNF formula representing the

constraints for a gate can be generated from characteristic

function‟, and can be converted to a minimal constraint

using Karnaugh map”.

Smith (6) “This process can be repeated for any gate type,

including multi-output gates. The construction will be

polynomial in the number of inputs and outputs as long as

“counting”-type gates are assumed to have a fixed

maximum number of inputs”.

Table 1 gives the CNF for all the gate types which could

be satisfactorily used in converting logic gates into CNF

form.

The C code also makes use of these formulas for

formulating CNF and forming the required output. Smith

(6) stated, “Any variable assignment that satisfies this

formula directly yields a valid assignment of logic values

to circuit lines”.

III.DIMAC CNF FORMAT AND NOTATION

DIMAC format is one of the prevalent formats vividly

used by most of the SAT solvers and they give a textual

representation of CNF in ASCII characters.

DIMAC generally consists of a preamble which depicts

the information that the format holds within each line. In

the given format every subsequent row starts with a

variable that describes the type of the line.

1] comments: this particular line starts with the variable

„c‟ and is used to depict additional information about the

file which is human readable, and the program ignores this

line.

2] Problem line: these lines start with the variable „p‟, each

problem instance has this line and it depicts the FORMAT

which is expected, VARIABLES in the instance and

CLAUSE present in the instance, and follows the structure

shown below:

p FORMAT VARIABLES CLAUSES

p: indicates the start of the problem line.

FORMAT: determines the expected format by the problem,

and contains the term “cnf”.

VARIABLES: depicts the number of variables present in a

particular instance.

CLAUSE: depicts the number of clauses present.

Each subsequent line followed by the structure of the

problem line gives the variable in natural number

representation and their assignments present within the

clause. The numbers in each row may or may not include a

“-” minus sign that precedes the number, this sign

represents a negation of the variable. The zero in the rows

marks the end of that particular row.

1. EXAMPLE: the given CNF formula

(g | -h | i) ^ (-j) ^ (-h | i)

Is given in DIMAC format as follows

c files

p cnf 4 3

1 -2 3 0

-4 0

IV. CODE AND ITS WORKING

The aim of this code is to generate an input sequence that

could be readily given to the SAT solvers. The important

aspect of this code is its effectiveness in deducing the

formula in minimum time with apt parameterization.

It takes into account all the preambles of DIMAC format

and thus provides the required output. The approach used

in this is solely based on circuit verification and thus is a

unique approach for solving satisfiability problems.

The formula generation process involves giving

appropriate variables and gates as an input and can be

done as follows:

Keyword: DIMAC, CNF, SAT solvers, input generator

Let us initially consider a part of the logic circuit inferred

from a real-time application circuit and find the output for

the same in DIMAC CNF format so as to check its

satisfiability.

International Journal of Computer Sciences and Engineering Vol.8(7), July 2020, E-ISSN: 2347-2693

© 2020, IJCSE All Rights Reserved 134

1] Figure 1.1 shows a logic circuit for which this code will

be used to find the required output. The conversions done

in this program are based on the formulas which are given

in table1.

Table 1. CNF FORMULAS FOR ELEMENTRY GATES

GATE

FUNCTION

CNF FORMULA

AND

y=x1 . x2 …..xn.

NAND

 y=x1 . x2 ……..xn.

OR

y=x1 + x2 + ….. +xn.

NOR

y=x1 + x2 + ….. +xn.

XOR

NXOR

BUFFER

 y=x

NOT

 y = x

MUX

HALF-AD

D

FULL-AD

D

Figure 1.1: Logic Circuit

2] Figure 2 shows the screenshot of the initial program

which gives the user the notation that is being used to

depict a particular gate in the instance and the user has to

enter this notation according to the gates the problem

involves.

This also gives the users the benefit to enter multiple gates

of their choice or to find an output after each gate is given

its required input.

Figure 2: Introduction to Code Notations

3]Figure 3 shows how the code is provided with the

essential variables, which are the inputs the gate takes in a

logic circuit format.





n

i

n

i

yxiyxi
11

)))(((

)))(((
1

1






n

i

n

i

yxiyxi

)))(((
1

1






n

i

n

i

yxiyxi







n

i

n

i

yxiyxi
1

1

)))(((

21 xxy 
)21)(21(

)21)(21(

yxxyxx

yxxyxx





21 xxy 
)21)(21(

)21)(21(

yxxyxx

yxxyxx





))((yxyx 

))((yxyx 

2:1?)1(xxsy 

)1)(1(ysxysx 

)2)(2(ysxysx 

bas 

bacout 
))((

))((

))((

scoutbscouta

sbasba

coutbcouta







cbas 

abcinbacout )(

))((

))((

))((

))((

))((

))((

))((

cinbascinbas

coutcinscoutcins

coutbscoutbs

coutascoutas

coutcinbcoutcinb

coutcinacoutcina

coutbacoutba















International Journal of Computer Sciences and Engineering Vol.8(7), July 2020, E-ISSN: 2347-2693

© 2020, IJCSE All Rights Reserved 135

Figure 3: Input To The Code

4]Figure 4 thus gives the final output for the entire logic

circuit shown in figure 1. This output can be copied and

thus be given to any SAT solver that takes this input

format and thus see the satisfiability.

Figure 4: Output Of Logic Circuit

V. RESULTS

In the above-carried work, figure 4 we can see the final

output of a simple logic circuit having 7 gates, this

obtained result is now directly fed into MiniSAT solver

and the final desired results are shown in figure 5.

The solver accepts the input given to it which is the direct

result that was obtained in figure 4 and no potential

changes are needed to be made int the output before

feeding it into any SAT solver.

Figure 5: Output From Sat Solver

The above figure thus gives the results returning the

satisfiable conditions for the given logic circuit in figure

1.1. It tells what inputs are to be given at each input so as

to obtain the desired result which could be easily traced

and implemented in the original circuit.

The output received after successful implementation of the

code is compared by manual conversion and the output

thus obtained is similar to the result obtained by pen and

paper, this gives an overall idea about the effectiveness

and accuracy of the code used. The output that is inferred

can now be used directly as an input to various SAT

solvers including MiniSAT, MaxSAT, etc, which are the

widely used solvers in today's ti

VI. CONCLUSION AND FUTURE SCOPE

In this paper, the main focus is given to form a DIMAC

CNF formula from a particularly given logic circuit, the

main idea is to focus on the inputs that are to be generated

to give to any SAT solver rather than focusing on the

satisfiability. Then it goes on to produce a dynamic code

that could help to formulate the final inputs.

The core limitations are the lack of memory space to hold

on to large inputs given to the code, this could be further

solved by creating a website thus making sure the memory

size is expanded and the user can input any desirable

amount of logic gates thus to find the required result and

work conveniently on a larger platform.

REFERENCES

[1] C Gomes, H Kautz, A Sabharwal, B Selman. "Satisfiability

Solvers"2008.https://www.cs.cornell.edu/gomes/pdf/2008_gomes_kn
owledge_satisfiability.pdf

[2] A.Gilles, S Laurent. "Predicting Learnt Clauses Quality in Modern

SAT Solvers". IJCAI International Joint Conference on Artificial
Intelligence., pp 399-404 2009.

[3] F Zhaohui, Y Yinlei, M Sharad ." Considering Circuit Observability

Don‟t Care in CNF Satisfiability". DATE‟05, Mar 2005, Munich,
Germany. pp.1108-1113. ?hal-00181279?

[4] R Klimek, K Grobler-Dębska, E Kucharska . "System for automatic

generation of logical formulas". MATEC Web of Conferences.,pp
252:03005,2019;.

[5] S Gopalakrishnan, V Durairaj, P Kalla. "Integrating CNF and BDD

based SAT solvers". Eighth IEEE International High-Level Design
Validation and Test Workshop; 2003.

[6] A Smith ." Diagnosis of combinational logic circuits using Boolean

satisfiability". Ottawa: Library and Archives Canada Biblioth que
et Archives Canada; 2005.

[7] N Eén, N Sörensson ." Translating Pseudo-Boolean Constraints into

SAT". Journal on Satisfiability, Boolean Modeling, and Computation.
pp 2(1-4):1-26.,2006.

[8] Ifat Jahangir, Anindya Das, Masud Hasan, “Facile Algebric

Representation of a Novel Quaternary Logic”.International Journal of
Computer Sciences and Engineering Vol.4 Issue 5,pp 1-15, 2016.

AUTHORS PROFILE

Vaishnavi Thorve, an undergraduate

student pursuing B.Tech in Electronics

and Communication Engineering from

Government Engineering College

Bhavnagar, Gujarat India.Interested

field of study VLSI and computer

science coding, and their tie-up in

bringing about automotive changes.

