[
AJCSE International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.8, Issue.7, July 2020 E-ISSN: 2347-2693

Unsheathing input to SAT solver from logic circuit in DIMAC format

Vaishnavi Thorve

Dept. of Electronics and Communication, Government Engineering College, Bhavnagar, India

Author’s Mail Id: vaishnavithorve710@gmail.com
DOI: https://doi.org/10.26438/ijcse/v8i7.132135 | Available online at: www.ijcseonline.org

Received: 28/June/2020, Accepted: 15/July/2020, Published: 31/July/2020

Abstract - Satisfiability probability(SAT) solvers are algorithms that take well-formed formulas and return true if
satisfiable and false otherwise. They are significantly useful in various tasks in-circuit verification and have prominent
importance in various fields such as automated verification, Electronic Design Automation (EDA) which include formal
checking of equivalence, artificial intelligence planning, and so on. The input to these SAT solvers is generally accepted in
DIMAC CNF (conjunctive normal form), which is a textual representation of the equation in CNF form. Most verification
tasks are commenced from a description of problem instances at the logic circuit level, deducing DIMAC CNF format
from the given logic circuit could be tedious and time-consuming if done manually as the conversion includes complex
formulas. This paper aims to present an effective code that could easily convert any given logic circuit to DIMAC CNF
format just by selecting gate and proper variable names to operate upon according to the heuristic presented by a logic
circuit. The output thus formed could be directly given as input to any SAT solver that uses DIMAC format readily,
abating time and conversion efforts. The final part of the paper also demonstrates an example for the acyclic circuit and

compares the result of generated output to manually derived formula for the same circuit on various parameters.

Keyword: DIMAC, CNF, SAT solvers, input generator

I.INTRODUCTION

Satisfiability probability(SAT) solvers work on a
propositional formula for a given Boolean expression or
well-formed formulas and provide the assignment that
conveys whether the given Boolean formula is satisfied.
Gomes et al. (1) state that “Despite the worst-case
exponential run time of all known algorithms, satisfiability
solvers are increasingly leaving their mark as a
general-purpose tool in areas as diverse as software and
hardware verification, automatic test pattern generation,
planning, scheduling and even challenging problems from
algebra”.

Satisfiability problems often trace back to be
computationally inaccessible as it belongs to a
Nondeterministic polynomial time(NP) complexity class.
However as emphasized by Gilles et al. (2), “with the
introduction of lazy data-structures, efficient learning
mechanisms, and activity-based heuristics, the picture is
quite different. In many combinatorial field, the
state-of-the-art schema is often to use an adequate
polynomial reduction to this canonical NP-Complete
problem, and then to solve it efficiently with an SAT
solver”, using Boolean constraint Propagation(BCP).

SAT solver formula is usually represented with CNF, and
they generally use the Davis-Putnam-Logemann-Loveland
(DPLL) algorithm for deciding the satisfiability of
propositional logic formula.

Many SAT solvers preferably accept the input in DIMAC
CNF format, which is a textual representation of CNF

© 2020, IJCSE All Rights Reserved

formula. Zhaohui et al. (3) stated “Most circuit verification
tasks start from a logic circuit description of the problem
instance”, favorably there are conversion heuristics from
logic circuit network to CNF form, but the process of
extracting appropriate input from the logic circuit can be
extremely time-consuming as each gate present in the
logic circuit will have to be converted to its CNF form
with formulas given in table 1. A problem instance
description taken from the real world could include as
many as 50,000 variables and solve for each gate
individually could be a daunting and tedious task, so the
correct approach would be to formulate a way to extract
this format efficiently and with little work.

Il. MOTIVATION FOR RESEARCH

This section provides an overall motivation for carrying
out the research. First, the dearth of effective measures on
finding a solution for the unsheathing of DIMACS which
leads to time-consuming conversions carried by
individuals when the real motive is distress. Second, the
ubiquity of the DIMACS in any problem-solving in SAT
solvers will incorporate such a method. Third, many
researchers mainly focus on finding new ways to solve the
existential problem, but this research will bridge the
existing present method to bring about the required
changes.

The aim of this paper is thus to provide an efficient code
for the generation of the proper DIMAC format input for a
given logic circuit, by selecting or giving appropriate gates
and variables as input to the code. This will thus in turn
provide an output, which could be readily given to any

132

International Journal of Computer Sciences and Engineering

SAT solvers as input and thus finds the required
satisfiability assignments of variables.

The work presented by Klimek et al. (4), is based on
“random generation of long and complex logical
formulas”, it does not include the participation of
unsheathing formulas from logic circuits which could be
the basic form of information and problem instance.
Gopalakrishnan et al. (5) represent work with the
integration of Binary Decision Diagrams(BDD’s) and
CNF, while the main focus of this paper will be entirely on
CNF format. Zhaohui et al. (3) presents an overall query
about the loss of structural information while using
circuit-based verification and provides an adequate result
to bridge the gap by applying heuristics which could be of
great use, thus dynamically approaching the problems.

This research could thus provide a great methodology to
unsheathing the inputs that could be used on a wide range
of works related to Al planning to the normal curriculum
of students to find the desired solution by giving them a
quick method to determine the inputs for there SAT
solvers. It will be useful in finding solutions with the
knowledge present today, giving it a quick upgrade to be
useful to a large group of people where this could be
applied in the real world.

Conjunctive normal form (CNF)

Not many problems and expressions we encounter in our
day to day lives are in CNF format, hence conversion is
often an essential part while formulating CNF.

CNF is a set of clauses consisting of literals, which are
“AND of OR” representation of Boolean variables. Smith
(6) inferred “The CNF formula representing the
constraints for a gate can be generated from characteristic
function’, and can be converted to a minimal constraint
using Karnaugh map”.

Smith (6) “This process can be repeated for any gate type,
including multi-output gates. The construction will be
polynomial in the number of inputs and outputs as long as
“counting”-type gates are assumed to have a fixed
maximum number of inputs”.

Table 1 gives the CNF for all the gate types which could
be satisfactorily used in converting logic gates into CNF
form.

The C code also makes use of these formulas for
formulating CNF and forming the required output. Smith
(6) stated, “Any variable assignment that satisfies this
formula directly yields a valid assignment of logic values
to circuit lines”.

I11.DIMAC CNF FORMAT AND NOTATION
DIMAC format is one of the prevalent formats vividly

used by most of the SAT solvers and they give a textual
representation of CNF in ASCII characters.

© 2020, IJCSE All Rights Reserved

\Vol.8(7), July 2020, E-ISSN: 2347-2693

DIMAC generally consists of a preamble which depicts
the information that the format holds within each line. In
the given format every subsequent row starts with a
variable that describes the type of the line.

1] comments: this particular line starts with the variable
‘c’ and is used to depict additional information about the
file which is human readable, and the program ignores this
line.

2] Problem line: these lines start with the variable ‘p’, each
problem instance has this line and it depicts the FORMAT
which is expected, VARIABLES in the instance and
CLAUSE present in the instance, and follows the structure
shown below:

p FORMAT VARIABLES CLAUSES

p: indicates the start of the problem line.

FORMAT: determines the expected format by the problem,
and contains the term “cnf”.

VARIABLES: depicts the number of variables present in a
particular instance.

CLAUSE: depicts the number of clauses present.

Each subsequent line followed by the structure of the
problem line gives the variable in natural number
representation and their assignments present within the
clause. The numbers in each row may or may not include a
“-” minus sign that precedes the number, this sign
represents a negation of the variable. The zero in the rows
marks the end of that particular row.

1. EXAMPLE: the given CNF formula
@ [-h D" D™ ¢h)

Is given in DIMAC format as follows

c files
pcnf43
1-230
-40

IVV. CODE AND ITS WORKING

The aim of this code is to generate an input sequence that
could be readily given to the SAT solvers. The important
aspect of this code is its effectiveness in deducing the
formula in minimum time with apt parameterization.

It takes into account all the preambles of DIMAC format
and thus provides the required output. The approach used
in this is solely based on circuit verification and thus is a
unique approach for solving satisfiability problems.

The formula generation process involves giving
appropriate variables and gates as an input and can be
done as follows:

Keyword: DIMAC, CNF, SAT solvers, input generator
Let us initially consider a part of the logic circuit inferred
from a real-time application circuit and find the output for
the same in DIMAC CNF format so as to check its
satisfiability.

133

International Journal of Computer Sciences and Engineering

1] Figure 1.1 shows a logic circuit for which this code will
be used to find the required output. The conversions done
in this program are based on the formulas which are given
in tablel.

Table 1. CNF FORMULAS FOR ELEMENTRY GATES

GATE FUNCTION CNF FORMULA
AND y=x1.x2 ...xn. n o _ n_
(_FlI(XI +Y)Q_xi+y)
1= i=1
v |y o | (TG +y) o xi+Y)
= i=1
OR y=xX1 + X2 + ... #XN. (l_{(; + y))(z Xi+ g/)
1= i=1
NOR y=X1+ X2 + +Xn. (1_{(% + 9))(2 Xi+Y)
1= i=1
XL+ X2+ Y)(XL+ X2+
YOR Y= XD X2 (_ y)(X2 y)
(X1+x2+ y)(xL+x2+})
_— XL+ X2+) (XL+ X2 +
NXOR y=x1®x2 (_ X)(_ X)
(X1+x2+ y)(xL+x2+)
BUFFER y=X (X+9)()_(+ y)
NoT s (X+Y)(x+y)
(;1+ S+ y)(x1+s+§)
MUX -
y=(s)2xt:x2 | (X2+s+Yy)(X2+s+Y)
s=a®b | (a+cout)(b+cout)
HAL;'AD (a+b+s)(@+b+5)
cout =aeb (a+cout +s)(b+cout +5)
(a+b+cout)(a+b+cout)
FULI;'AD s=a®bdc (a+cin + cout)(a+ cin + cout)
(b+cin + cout)(b + cin + cout)
cout = (a@byecin+af (S+a-+cout)(s+a-+cout)
(s+b-+cout)(s+b+cout)
(s+cin +cout)(s + cin + cout)
(s+a+b+cin)(s+a+b+cin)

© 2020, IJCSE All Rights Reserved

\Vol.8(7), July 2020, E-ISSN: 2347-2693

Figure 1.1: Logic Circuit

2] Figure 2 shows the screenshot of the initial program
which gives the user the notation that is being used to
depict a particular gate in the instance and the user has to
enter this notation according to the gates the problem
involves.

This also gives the users the benefit to enter multiple gates
of their choice or to find an output after each gate is given
its required input.

sf indicates the gate

§and | OR

@ NAND § NOR
A YOR # XNOR
~ BUFFER ! NOT
M MUX 2:1

H HALF ADDER F FULL ADDER
select options for direct gates

1.buffer and not

2, 2:1mux

3.half adder
4.full adder
5.for other gates
select your choice

Figure 2: Introduction to Code Notations
3]Figure 3 shows how the code is provided with the

essential variables, which are the inputs the gate takes in a
logic circuit format.

134

International Journal of Computer Sciences and Engineering

elect options for direct gates

1.buffer and not

2. 2:1mux

3.half adder

4.full adder

5.for other gates

elect your choice 5

f according to gates described above
pnter ipl a

pnter ip2 b

1.for new iput and 2.To print final outputl

elect options for direct gates

1.buffer and not

2. 2:1mux

3.half adder

4.full adder

5.for other gates
elect your choice 5

Figure 3: Input To The Code

4]Figure 4 thus gives the final output for the entire logic
circuit shown in figure 1. This output can be copied and
thus be given to any SAT solver that takes this input
format and thus see the satisfiability.

O I e e
|

(00NOND
000 0 0

0

BE

0o
0

I RHRR ROD I

Figure 4: Output Of Logic Circuit
V. RESULTS

In the above-carried work, figure 4 we can see the final
output of a simple logic circuit having 7 gates, this
obtained result is now directly fed into MiniSAT solver
and the final desired results are shown in figure 5.

The solver accepts the input given to it which is the direct
result that was obtained in figure 4 and no potential
changes are needed to be made int the output before
feeding it into any SAT solver.

SAT Results

24

[Search Statistics

Figure 5: Output From Sat Solver

© 2020, IJCSE All Rights Reserved

\Vol.8(7), July 2020, E-ISSN: 2347-2693

The above figure thus gives the results returning the
satisfiable conditions for the given logic circuit in figure
1.1. It tells what inputs are to be given at each input so as
to obtain the desired result which could be easily traced
and implemented in the original circuit.

The output received after successful implementation of the
code is compared by manual conversion and the output
thus obtained is similar to the result obtained by pen and
paper, this gives an overall idea about the effectiveness
and accuracy of the code used. The output that is inferred
can now be used directly as an input to various SAT
solvers including MiniSAT, MaxSAT, etc, which are the
widely used solvers in today's ti

VI. CONCLUSION AND FUTURE SCOPE

In this paper, the main focus is given to form a DIMAC
CNF formula from a particularly given logic circuit, the
main idea is to focus on the inputs that are to be generated
to give to any SAT solver rather than focusing on the
satisfiability. Then it goes on to produce a dynamic code
that could help to formulate the final inputs.

The core limitations are the lack of memory space to hold
on to large inputs given to the code, this could be further
solved by creating a website thus making sure the memory
size is expanded and the user can input any desirable
amount of logic gates thus to find the required result and
work conveniently on a larger platform.

REFERENCES

[1] C Gomes, H Kautz, A Sabharwal, B Selman. "Satisfiability
Solvers"2008.https://www.cs.cornell.edu/gomes/pdf/2008_gomes_kn
owledge_satisfiability.pdf

[2] AGilles, S Laurent. "Predicting Learnt Clauses Quality in Modern
SAT Solvers". IJCAI International Joint Conference on Atrtificial
Intelligence., pp 399-404 2009.

[3] F Zhaohui, Y Yinlei, M Sharad ." Considering Circuit Observability
Don’t Care in CNF Satisfiability". DATE’05, Mar 2005, Munich,
Germany. pp.1108-1113. ?hal-00181279?

[4] R Klimek, K Grobler-Debska, E Kucharska . "System for automatic
generation of logical formulas”. MATEC Web of Conferences.,pp
252:03005,2019;.

[5] S Gopalakrishnan, V Durairaj, P Kalla. "Integrating CNF and BDD
based SAT solvers". Eighth IEEE International High-Level Design
Validation and Test Workshop; 2003.

[6] A Smith ." Diagnosis of combinational logic circuits using Boolean
satisfiability". Ottawa: Library and Archives Canada = Bibliotheque
et Archives Canada; 2005.

[7] N Eén, N Sorensson ." Translating Pseudo-Boolean Constraints into
SAT". Journal on Satisfiability, Boolean Modeling, and Computation.
pp 2(1-4):1-26.,2006.

[8] Ifat Jahangir, Anindya Das, Masud Hasan, “Facile Algebric
Representation of a Novel Quaternary Logic”.International Journal of
Computer Sciences and Engineering VVol.4 Issue 5,pp 1-15, 2016.

AUTHORS PROFILE

Vaishnavi Thorve, an undergraduate
student pursuing B.Tech in Electronics
and Communication Engineering from
Government Engineering College
Bhavnagar, Gujarat India.Interested
field of study VLSI and computer
science coding, and their tie-up in
bringing about automotive changes.

135

