

Management of Food Waste by Using GIS Environment: A Review

Hitesh V. Raut^{1*}, Ajay D. Nagne², Karbhari.V. Kale³

^{1,2,p3}Department of C.S & I.T, Dr. B. A. M. U, Aurangabad, India.

www.ijcseonline.org

Received: Jun/23/2015

Revised: July/06/2015

Accepted: July/21/2015

Published: July/30/ 2015

Abstract— A problem of food waste becomes a critical issue and achieving won't be easy because of growing population and increasing urbanization. It affects the social and environmental problem. Every time food is wasted the other sources like water, energy, time, manpower, land, fertilizer, packaging and mainly money is also wasted. Waste has to paid twice once in the form of packaging and again for disposal. In food waste management collection of waste food from bins plays a crucial role and how it is reduce, reuse and recycling. This paper proposes a discussion about role of geographic information system in management of food waste and its use in collection of waste food for reuse, recycling and reduction in waste and optimization of waste food collection and transport.

Keywords— Remote Sensing(RS), Geographic Information System(GIS), Food Waste, Food Waste Management(FWM), Network Analysis(NA).

I. INTRODUCTION

Today the world's largest problem is of solid waste management and food waste plays an important role. Waste management is the process of collection, sorting, optimization, recycling, reuse, transport and disposal of waste. There are number of social and environmental issue contends with the waste created by daily operation. Wasteful food-consumption is also leading to unsustainable demand for natural resources [1]. When huge quantities of food goes wasted instead of feeding hungry mouths, it ends up in a landfill means ultimately contributing to global warming by releasing methane gas and which has 21 times the global warming potential of carbon dioxide.

Food waste is defined to include refuse disposal from hotels and restaurant, wedding halls and grand parties. The quantity of food cooked is over rated on many other occasions and ultimately the surplus food goes to the waste bins. Wasteful food-consumption is also leading to unsustainable demand. Municipal solid waste management play important role to care of human health and environmental quality. GIS technology has not been conveniently used in Indian cities. There were no studies aimed at integrating these technologies into a planning process to improve the efficiency of municipal solid waste management [2].

To provide a set of Geographic Information System (GIS) tools that will allow the state to use GIS technology to map food waste location by waste types, waste quantities, and other variables, in order to facilitate improvement of composting or organics diversion infrastructure on a ward basis. Using GIS system, location can be digitizing on base maps that contain features such as streets and road, major

traffic arteries, and ward boundaries. Users of the database or GIS system can view waste locations at scales ranging from generalized city maps to large scale maps that pinpoint food waste locations on individual streets [3].

A huge amount of food waste usually takes place at Weddings, Religious feasts, Parsadi, Paus Bara, and various social collections. At Bangalore, annually 943 tons of food wasted during weddings is enough to serve 2.6 core people a normal meal and at an average cost of 40/- per meal the food worth Rs 339 crore is wasted. Wastage is more with buffet (22%) than served meals (20%). In Bhubaneswar food waste contributes to 26.63% of the city waste which is directly thrown into the bins. In Jaipur 835 tons of food is wasted every day out of the approximately 7500 tones food purchased every day [4]. However, there is no comparable investment in reducing food waste. We need to address our global resource challenges from a balanced perspective that includes bolstering efforts to improve the supply of resources, but it require better management of our resource demands, especially in improving efficiency and reducing waste.

Location modeling in GIS environment is a convenient way to improve services and efficiency in municipal solid waste management. To determine the location of a food waste bins from respective hotels and wedding halls. Differentiate the waste food by category and transport to recycling or optimization to hunger people and animal feed. In this study, they have included these factors and applied software that fully integrates GIS with location- modeling, for spatial location of food waste bins [5].

II. WASTE FOOD GENERATION

Waste generated from hotels according to their opinions very little food as the plates generally come back clean. However, wasting of food comes from a variety of sources [6].

Fig 1. Types of food waste management

- out of date and spoiled food
- Trimmings and Peelings
- Inedible products
- Kitchen error
- Plate waste

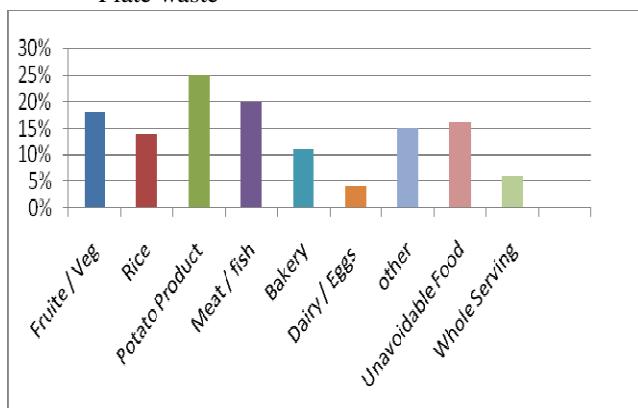


Fig 2. Comparison of food waste products

In case of best-run kitchens there will be some food waste. The priority is to reduce quantity of wasted food in your property, for that, how best is dispose of unavoidable waste. Food waste is major problem and how it is reducing from lawn and hotel is a typical task so be prepared and follow various step first is food waste measurement. Collection of food waste starts with three separate bins (one each for preparation, spoilage and plate waste), to understand why and where this waste arises and to find out where the most food waste is being generated [7]. Food that would otherwise have ended up in the sink disposal unit. This is going to present a challenge to staff to do things differently so preparation is key- make sure staff understands why you

are doing this and get on board. Second is Development of an action plan to reduce food waste. Planning and ordering. Using some pre-prepared frosted or dried ingredients will help to reduce wastage; we can freeze most foodstuffs – even eggs. Be familiar with reservations forecasts over-prepare. Locate the menu for slower-moving dishes. Choices don't need choices for customers and keeping the menu simple reduces the possibility of waste. Be creative with menus we have, Consider what perishable creations or ingredients will be used in various ways, e.g. bones adornment or fish adornment for stock, bread for breadcrumbs, pate used for soups, ingredients etc. and menus have planed accordingly to these ingredients use [4]. Third is Review progression on the plan each month. Discuss with your staff and get feedback from progress being made. This will keep people motivated and involves on work. Measure the amount of waste produced regularly and work out how much money is being saved [6]. And final step is sharing your good work with consumers, staff and industry. Don't forget to thank staff and also keep them motivated. Recompense is excellent to recognize the efforts they have made.

III. SOLUTIONS FOR TREATMENT AND DISPOSAL OF WASTE

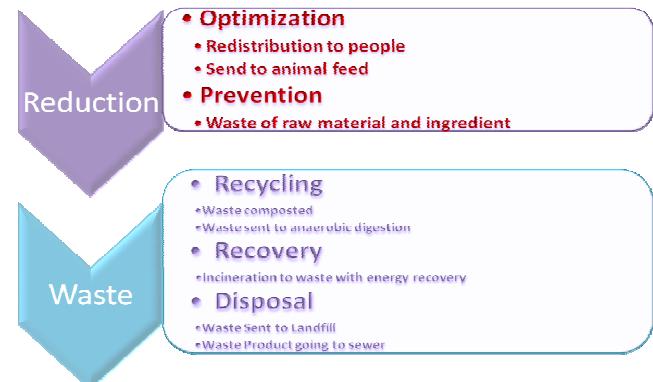


Fig 3. Solutions for disposal of waste

Legislation and availability of local services will affect your choice of options so check locally and apply the best option according to the food recovery hierarchy above.

The best method to use excess amount of food is to feed the hungry people. Many charities around the world are collecting excess food, including prepared food, to provide for the poor people, though note there may be various legal issue and health precautions and safety requirements to check with legal team and with the charity in questions [3].

This process mainly depends upon the market and capabilities of the food bank. Identify food banks or agencies that can accept prepared food and then identify hotels in the area they operate that might want to

participate. The food agency can then operate with the hotel to determine the types of food they can take and the process for storing and distribution. In many situations it is easier to freeze and schedule regular pick-ups. Some organizations may be able to pick up the same day and maintain the heated or cooled product directly to the end recipient but arranging logistics for small regular donations can be difficult task. Note that the available food banking the best, most cost-effective and environmentally friendly solution is to stop food becoming waste or surplus in the first place - being eaten is always the best option for food! [6]. However, food you cannot use does not always need to become waste. Distinguish between 'surplus food' and 'waste'. Even the best-run kitchens generate some food waste, so what you can't reduce, priorities for treatment as per the above diagram.

infrastructure/economics is set up to maximize large amount of non-perishable things from donors like grocers or manufacturers, so accommodating relatively smaller donations and perishable food can be challenging, but it is worth exploring and is a very rewarding work[4].

A. Optimization

(a) Optimization - animal feeds:

Conversion of food waste to safe animal feed is an option to the some parts of the world. Impenetrable air, hygiene, cleaning a globally leader, packaging solutions with including food safety programs, has been leading several CSR programmed such as Hope used in Soap and Linens for Life in the industry. They now pilot a scheme to collect food waste from hotels to convert it to dried food pellets for distribution to poor farmers as animal feed [3].

(b) Recycling – composting:

Synthesizing is nature's way of recycling. For the development, organic waste, such as food wasting and garden clippings, is turned into valuable fertilizer due to biodegradable. The advantages to composting are reduces the amount of solid waste in your trash and when used in a garden, it fertilizes the soil. If our property has greenhouse, composting may be an option at on-site, instead of, seek a composting contractor in your area [8].

B. Energy recovery from food waste

(a) Anaerobic digestion:

Anaerobic Digestion is the process of breaking down of ecological material without the presence of oxygen by methanogens the micro-organisms, this process of anaerobic digestion is a source of renewable energy, since the food waste is demolished down to produce bio-gas (a mixture of

carbon dioxide and methane) which is useful for energy production. The bio-gas can be used to generate heat and electricity to power on-site equipment and the infrastructure, the remaining electricity will be transported to the national grid [3][6].

(b) Biofuel from waste cooking oil:

Biofuel generation from cooking oil waste is important process. There can be much waste of cooking oil. Gathering of such waste is done and by proper recovery/recycling process we can generate biofuels. This can be used in vehicles as additive substance for petrol. It can also be used for electricity generation [5].

C. Optimization Food Recycling Program

(a) Multiple Bins:

Traditionally we have only one type of bin which is used to collect all type of waste. But this can be hectic process to separate different types of waste. So we can put multiple bins which can collect degradable waste, food waste or spoilage waste. This can reduce time to separate wastes. Also proper placing of bins is required to cover up sufficient area. And frequency must be good to collect these wastes [8]. And number of collection bin can be calculated by given equation(1) [9].

$$N = W / (D * S * AF * CF) \quad (1)$$

Where, N = Number of collection bins

W = Total quantity of waste generated per Day in Kg

D = Density of waste in Kg/m³

S = Size of bins in m³

AF = Average filling rate of bin. (Generally 80 %)

CF = Collection Frequency

(b) Choosing appropriate Waste Management Solution:

There are different kinds of waste. Each one can not be managed by one solution. For example, plastics can be recycled in factories or food waste can be decomposed biodegradable way. So choosing appropriate waste management solution plays vital role in this program. We can recycle, recover or degrade the waste [6].

(c) Data Collection:

In this phase, we need to track all the details regarding how much waste has been collected or how much waste has been recycled/reuse. All this information must be given to waste management controller. By using this information we can do future planning about number of bins and its placing. Using this data different solution can be incurred [9].

(d) *Work together:*

Consider working with neighboring businesses to buy up food waste and recycling collections, where appropriate. There may be adaptability/austerity of scale to be made by working together. Where larger scale is essential, see what you can do on a national or industry scale [1].

IV. METHODOLOGY

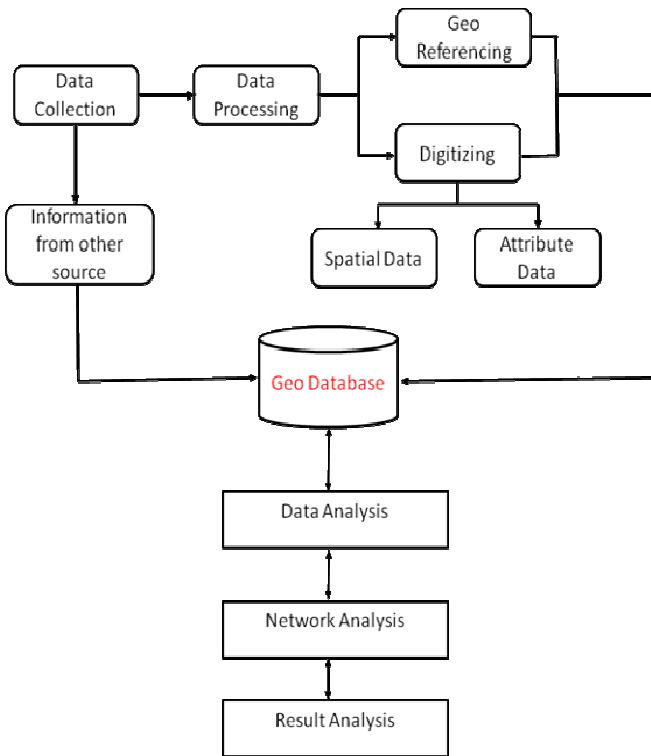


Fig. 4. Methodology of proposed work

A. Data collection

(a) *Study area:*

It is the first step chooses a study area for project. Toposheet of city can be taking from government office which show the scale trace and scan for consider as a base map for further work. Find out the coordinates of given city in the form of latitude and longitude. Creation of map data collected in the form of spatial and attributes data, spatial data can obtain by digitizing the base map of city along with its attribute data.

(b) *Data Processing:*

In data processing both spatial as well as attribute data getting merge together to form new GIS database. Spatial

data shows the map and attribute data shows the necessary information about the task and this can be use for next steps for further work.

B. Geo-referencing

The geographic data can be integrated with other GIS data and it is essential to align with the existing geographic referenced data called geo-referencing. It is more important stage for obtaining high accuracy or precision in measurements it is known as rectifying map. Geo-referencing allows us to register the base map with respect to the earth's surface. Geo-referencing can be done by selecting the four ground control points on the corners of the scanned map and placing that point by giving appropriate latitude and longitude values and it is very important to perform this step with minimum RMS error in order to gain maximum accuracy. The RMS (Root Mean Square) error can be calculated by using following equation (2).

$$\sqrt{(X_{act} - X_{est})^2 + (Y_{act} - Y_{est})^2} \quad (2)$$

(Where X_{act} and Y_{act} are the x and y value of the actual location, X_{est} and Y_{est} the x and y values of the estimated locations [1]. RMS error measures the deviation between actual and estimated locations of control points. In arcgis

(a) *Digitizing:*

Digitizing is a process to convert paper map features into digital format. It can be creates spatial data and allows the attribute data to be stored in together.

(b) *Shape files creation:*

Shape file creation is next step after geo-referencing. Select the folder in which you will create your new shape file, so select that folder and right-click on it. Go to New and select shape file and give an appropriate name. Click on Edit to see the coordinate system of the file. In the Spatial Reference Properties window click Import to use the projection of the Toposheet layer. Click OK and OK again to create the shape file [10]. Two separate shape files created. Point shape file used for storing object data and polyline for storing road network data.

(c) *Creating Personal Geo-database:*

It is a first step for the data processing stage. Geo-database stores all the information about the projection of maps,

spatial data and attributes data. After the creation of geo-database, the external/personal database is joined together by database connection.

C. Data Analysis

Data analysis can be perform for creating network analysis and use for find out the shortest paths and closest facility of desired location on a network.

(a)Creating network dataset:

The creation of network dataset incorporates the model which show multimodal network for transportation. Network dataset are collection of feature classes that posse's connectivity among the road network. It is used for creating shortest path using network analysis tool and find the closest facility available from location of client.

(b) Shortest path analysis:

Shortest Path problems are a key issue in network analysis. Travelling is part of daily life of every people. As the traffic condition among a city changes from time to time and there are usually a huge amounts of request occur at any moment, it needs to quickly find the solution [11]. Network analyst tool of ArcGIS uses a number of shortest path algorithms.

(c) Closest facility analysis:

The closest facility solver displays the best routes between incidents and facilities. For finding the closest facility; we have to specify constraints, like a cutoff cost beyond which ArcGIS Network Analyst will not search for facilities. In this example, the hospitals are facilities, and the accident is the incident. ArcGIS Network Analyst allows performing multiple closest facility analyses simultaneously. This means you can have multiple incidents and find the closest facility (or facilities) for each incident. This uses a multiple-origin, multiple-destination algorithm based on Dijkstra's algorithm. Single-origin-to-single-destination route planning service provides travel route from one origin to one destination. In contrast, the single-origin-to-multiple-destinations [17]. route planning service plans the routes from one origin to a final destination through one or multiple waypoints for multiple given source vertices (origin nodes) and one common destination vertex (destination node) in the graph. This algorithm finds a suitable rendezvous-point in which the total cost of paths

from each given vertex via the rendezvous-point to the destination vertex is the approximate lowest.

V. FOOD WASTE MANAGEMENT IN RS AND GIS

RS and GIS play an important role in food waste management. RS help in Site selection processing for study area we required a satellite image and it covers a large region with high resolution. GIS helps in creating geo database which is used to take a decision support making problem. It shows both the attribute data as well as map data. It is an effective tool for Geoprocessing [12] [13].

GIS integrates with both software and hardware for collecting, managing, querying, analyzing the data and displaying all forms of geographically information in a computer-based system. It helps to analyze data visually and look patterns, trends, and relationships that might not be visible in tabular or written form. A GIS is different from other information systems, because it integrates common database operations such as query and statistical analysis with the advantages of visual and geographic analysis through maps. Thus, GIS with the aid of control server, food waste collection can be detect and monitors [14] [15].

The role of GIS in food waste management is very large as many aspects of its planning and operations are highly dependent on spatial data. GIS is crucial in maintaining account data to facilitate collection operations such as food waste; analyzing optimal locations for NGOs; planning routes for vehicles transporting unserved food from hotels and wedding hall to NGOs and waste food to landfills; locating new landfills and monitoring the landfill, etc. GIS is a tool that imparts a digital data bank for future monitoring program as well as reduces time and cost [16].

Remote Sensing provides an opportunity to visualize the actual ground features. The Geographical Information System (GIS) can provide an opportunity to integrate the various field parameters with population and other relevant data or other associated features, which help in the site selection. These procedures can benefit from the appropriate use of GIS. The use of GIS in the site selection process will reduce the time and enhance the accuracy [17].

VI. OPTIMIZATION OF FOOD WASTE COLLECTION AND TRANSPORT IN GIS

The optimization of the decision system for collection and transport of food waste is a crucial factor of an sustainable and cost effective food waste management system. The development of optimal road scenarios is a very complex task, based on various excerpt criteria, most of which are geographical means spatial in nature. The common is of vehicle route in which each vehicle must drive and visit all

the desired location to collect food waste. It must be in a way that minimizes the total driving cost, most often defined on the basis of distance travel in given time but also reduce CO2 emissions and fuel consumption[18].

GIS can be effectively used to feature extraction, network analysis, designing thematic maps, access to several layers of data at a time. Also it will help in crossing attribute data with respect to topological and special relationship [19].

A GIS can be effectively used for the new route identification with the help of various GIS layers to identify a shortest route which will cover less distance and covers maximum waste bin locations with a less overlaps. GIS provides a solution to choose shortest route for collection of waste. The new suggested route will be cheaper by upto 50% of the old route [20].

Network and Transportation analysis within a GIS environment has become a common in many applications. A key problem is to compute the shortest paths between the different locations on a network. Many shortest path algorithms are used for finding out the shortest route of desired location. We compare the number of shortest path algorithm are given below [21][22].

Table No. 1: Comparison of Shortest path algorithm in ArcGIS

Sr. No.	Abbreviation	Implementation
1	DKQ	Dijkstra's Naive Implementation
2	DKB	Dijkstra's Buckets -- Basic Implementation
3	DKM	Dijkstra's Buckets -- Overflow Bag
4	DKA	Dijkstra's Buckets – Approximate
5	DKD	Dijkstra's Buckets -- Double
6	DKF	Dijkstra's Heap -- Fibonacci
7	DKH	Dijkstra's Heap -- k--array
8	DKR	Dijkstra's Heap -- R--Heap
9	BFM	Bellman-Ford-Moore
10	BFP	Bellman-Ford-Moore with Parent-checking

11	PAP	Graph Growth – Paper
12	TQQ	Graph Growth with Two Queues -- Pallottino
13	THR	Threshold Algorithm
14	GR1	Topological Ordering -- Basic
15	GR2	Topological Ordering -- Distance Updates

VII. CONCLUSION

The improper management of food waste produces many social and environment related issues. RS and GIS can be effectively used in the waste food management and waste collection and transport management for reuse, recycling and recovery. Bin size should be decided in consideration with the generation of amount of waste. On the basis of type of waste generated in particular area. GIS can be conveniently used in food waste collection to decide collection routes to reduce the collection cost and time.

ACKNOWLEDGEMENT

Authors would like to acknowledge and extend our heartfelt gratitude to UGC who have funded for development of UGC SAP (II) DRS Phase-I F.No.-3-42/2009 to Department of Computer Science & IT, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad.

REFERENCES

- [1] Shweta Karsauliya, “Application of Remote Sensing and GIS in Solid Waste Management: A Case Study of Surroundings of River Yamuna, India”, International Journal of Environmental Engineering and Management, ISSN:2231-1319, Volume 4, pp. **593-604, 2013**.
- [2] J. Senthil, S. Vadivel and J. Murugesan, “Optimum Location of Dust Bins Using Geo-Spatial Technology: A Case Study of Kumbakonam Town, Tamil Nadu, India”, Pelagia Research Library, Advances in Applied Science Research, 3 (5):**2997-3003**.
- [3] Draper/Lennon Incorporation, “Identification, Characterization, and Mapping of Food Waste and Food Waste Generators in Massachusetts”, Massachusetts Department of Environmental Protection, Boston, MA, **2002**.

- [4] Vivek S. Agrawal, Ambika Nag, "Sustainable Food Waste Prevention Strategies to Achieve Food Security in India", International Journal of Agriculture and Food Science Technology Volume 4: pp. **189-194, (2013)**.
- [5] Mr. AnkitVerma, Prof. B.K Bhone, "Optimisation of Municipal Solid Waste Management of Indore City using GIS", International Journal on Emerging Technologies 5(1): **194-200, 2014**.
- [6] <http://www.greeenhotelier.org/know-how-guides/reducing-and-managing-food-waste-in-hotels/> published September 2, **2014**.
- [7] Aremu, A. S., Adeleke, O. O., Sule, B. F., "A GIS-based optimization technique for spatial location of municipal waste bins in a developing city", Ethiopian Journal of Environmental Studies and Management Vol. 4 No.3, **2011**.
- [8] I.A.K.S.Illeperuma, Dr. LalSamarakoon, "Locating Bins using GIS", International Journal of Engineering & Technology IJET-IJENS Vol:10 No:**02, 2010**.
- [9] Nithya.R, Velumani.A, Senthil Kumar.S.R.R, "Optimal Location and Proximity Distance of Municipal Solid Waste Collection Bin Using GIS: a Case Study of Coimbatore City", WSEAS Transactions on Environment and Development, E-ISSN: 2224-3496, Issue 4, Volume **8, 2012**.
- [10] Mrs. K.R. Manjula, Dr. S. Jyothi, Mr. S. Anand Kumar Varma, "Digitizing the Forest Resource Map Using ArcGIS", International Journal of Computer Science Issues (IJCSI), Vol. 7, Issue 6, Nov 2010.
- [11] N.F Darquah, Jonathan Annan, K. BaahGyamfi, "Shortest Path Algorithm for Transportation Networks, Case Study: Kumasi Metropolitan Assembly", ISSN (2304-7151) Vol. 2, Issue 8.
- [12] Sumedh D. Kashid, "Solid Waste and Waste Bin Management By Using RS & GIS: A Review", International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April **2015**.
- [13] Ajay D Nagne, Rajesh K. Dhumal, A. D. Vibhute, Y. D. Rajendra, K. V. Kale, and S. C. Mehrotra, "Suitable sites identification for solid waste dumping using RS and GIS approach: A case study of Aurangabad,(MS) India." In India Conference (INDICON), 2014 Annual IEEE, pp. **1-6**. IEEE, **2014**.
- [14] MaherArebey, M A Hannan, Hassan Basri, R A Begum and Huda Abdullah, "RFID and Integrated Technologies for Solid Waste Bin Monitoring System", Proceedings of the World Congress on Engineering Vol I, London, U.K., **2010**.
- [15] Liu Yalan, RenYuhuan, Wang Aihua , Zhou Huizhen, "Identifying The Location and Distribution of the Open-Air Dumps of Solid Wastes Using Remote Sensing Technique", The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B8. Beijing, **2008**.
- [16] Dr. Michael AjideOyinloye, "Using GIS and Remote Sensing in Urban Waste Disposal and Management: A Focus on Owo L.G.A, Ondo State, Nigeria", European International Journal of Science and Technology ISSN: 2304-9693.
- [17] Tamilenthil.S, Chandra Mohan. K, VijayaLakshmi.P, R. S. Suja Rose, "The data base, land use and land cover and solid waste disposal site - using remote sensing and GIS: A case study of Sakkottai –block, Sivagangai District, Tamil Nadu, India", Pelagia Research Library Advances in Applied Science Research, 2 (6):pp:**379-392, 2011**.
- [18] Christos Chalkias, Katia Lasaridi, "Benefits from GIS Based Modelling for Municipal Solid Waste Management", Integrated Waste Management – Volume I.
- [19] Ajay D. Nagne, Amol D. Vibhute, Bharti W.Gawali, Suresh C. Mehrotra, "Spatial Analysis of Transportation Network for Town Planning of Aurangabad City by using Geographic Information System", International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July **2013**.
- [20] Alphonse Kyessi and Victoria Mwakalinga, "GIS Application in Coordinating Solid Waste Collection: The Case of SinzaNeighbourhood in Kinondoni Municipality, Dar es Salaam City, Tanzania", SDI in Municipality and Natural Resources Management, Eilat, Israel, **2009**.
- [21] F. Benjamin Zhan, "Three Fastest Shortest Path Algorithms on Real Road Networks: Data Structures and Procedures", Journal of Geographic Information and Decision Analysis, vol.1, no.1, pp. **70-82, 1997**.

[22] Vaibhavi Patel, Prof.ChitraBaggar, "A Survey Paper of Bellman - Ford Algorithm and Dijkstra Algorithm for Finding Shortest Path in GIS Application", International Journal of P2P Network Trends and Technology (IJPTT) – Volume 5 – February 2014.

AUTHORS PROFILE

Mr.Hitresh V. Raut is presently doing his (MTech) in Computer Science and Engineering from Department of Computer Science and Information Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad- 431004, Maharashtra, India.

Mr.Ajay D. Nagne is presently Pursuing to Ph.D (Computer Science) and Awarded M.Phil (Computer Science) in Department of Computer Science & IT, Dr. Babasaheb Ambedkar Marathwada, University, Aurangabad, in 2013, with First Class. M. Sc (Computer Science) from D. Y. Patil Collage, Pune with First Class in 2009.

Dr. K.V. KALE is M.Sc, MCA, Ph.D. SMIEEE, FIETE, Presently working as a Professor in Department of Computer Science and Information Technology, Dr Babasaheb Ambedkar Marathwada University, Aurangabad, MS-India. He is a fellow of IETE, SSARSC, Life member of CSI, IAPR, ISCA, IACSIT, IAENG, IEEE and elevated senior member of IEEE. He is a member & Faculty of Board of Studies of various universities in India & has designed and implemented new courses in computer science at UG & PG level. He is recipient of VIJAY SHREE Award. He is actively engaged in research and development. He has more than 240 research papers to his credit which are published in reputed national/international journals and conferences and 4 books to his credit. Under his able guidance 21 PhD students have completed their PhD and 9 students are still doing PhD under his guidance

